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Abstract

The demands for wireless communication services are growing at a rapid rate.
Meeting these demands is challenging since the availability of the radio spectrum
at the frequencies of interest is limited. Furthermore, wireless communications also
must cope with several other difficulties such as multiple access interference (MAI),
channel fading, and limitations on the power and size of the mobile terminals. This
thesis investigates the problems of MAI and channel fading in wireless communi-
cations, and focuses on developing spectrally efficient coding and signal processing
techniques to mitigate the effects of these problems.

The first part of the thesis discusses the use of multiuser detection techniques to
overcome the problems of MAI in code-division multiple access (CDMA) systems.
The thesis develops two new interference cancellation detection techniques and an
adaptive multiuser detector for joint parameter estimation and symbol detection.
In addition, the thesis derives a novel framework for analysing the convergence
behaviour of an interference cancellation technique which is commonly known as
parallel interference cancellation.

In the second part of the thesis, the effects of channel fading on the performance
of wireless communication systems are considered. The thesis examines the use
of multiple transmit and multiple receive antennas in conjunction with coding for
providing diversity to combat channel fading. Particular focus is given to the case
when the propagation paths are spatially correlated. The performance of such com-
munication systems is analysed and design criteria for constructing good codes are
derived subsequently. The thesis then develops a receiver for joint decoding and
channel estimation in time-varying fading channels.

Finally, since there are many different types of diversity which can be exploited
in wireless communication systems, the thesis develops a generalised and unified

taxonomy for system modelling and signal processing for such systems.
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Chapter 1

Introduction and Summary of

Contributions

1.1 Wireless Communications

Since the deployment of first generation (1G) cellular networks in the early 1980s,
there has been a substantial increase in the development of wireless communication
technologies. This tremendous boost in the cellular industry reflects the growing
demands for higher data rate and better quality services, and the increase in the
number of subscribers to mobile phone services. According to latest statistics [19],
there are over 1.3 billion subscribers worldwide in 2003 as compared to only 10
million subscribers in 1990 [13]. In Europe, the current average market penetration
of mobile phones is 70% of the total population [19], while in other countries like
Iceland and Finland, the market penetration is as high as 90%. Thus, wireless
communication does not only complement the mature wireline network but may
become a dominant method of communication in the near future.

Since the early 1980s, wireless communications have gone through two genera-

tions of technology overhaul. The first generation of public cellular networks was
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established to provide basic voice telephony services to mobile subscribers over a
wide area. These first generation systems were analog and based on frequency-
division multiplexing technologies. Examples of first generation systems are the
Advance Mobile Phone System (AMPS) in North America, the Nordic Mobile Tele-
phone/Total Access Communication System (NMT/TACS) in Europe, and the Nip-
pon Telephone and Telegraph-800/Japanese Total Access Communication System
(NTT-800/JTACS) in Japan. In the early 1990s, second generation (2G) systems
based on digital transmission techniques were introduced to provide more robust
communications. They provided basic services such as voice, facsimile, low-rate cir-
cuit and packet data (9.6 and 14.4 kb/s), and medium-rate packet data (up to 76.8
kb/s). Examples of 2G wireless systems are the Global System for Mobile Com-
munication (GSM), Personal Digital Cellular (PDC), IS-136 and cdmaOne/IS-95.
Due to the growing demands for a variety of multimedia communication services
such as high-speed Internet access and video/high-quality image transmission, third
generation (3G) wireless systems (e.g. Universal Mobile Telecommunication Sys-
tem/International Mobile Telecommunications-2000 (UMTS/IMT-2000)) are now
under development to address these needs. These 3G wireless systems will evolve
gracefully from mature 2G networks and offer true packet access at significant higher
speeds. It is expected that 3G wireless communication systems will support user
data rate at 144kb/s for vehicular applications, 384kb/s for outdoor pedestrian
applications, and up to 2 Mb/s for indoor applications. For more details on the de-
velopments and standards of wireless communication systems, readers are referred

to the following references [3, 13, 26, 58, 77, 111].

1.2 Motivation and Background

Unlike wireline communications, transmissions of information signals in wireless

medium suffer several impairments that can significantly degrade their performance.
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Among these impairments, multiple access interference and channel fading are the
two major problems that limit the high-data rate transmission in wireless communi-
cation systems. In addition, wireless transmissions must also deal with the difficulty
of limited availability of the radio spectrum at the frequency of interest where the
propagation conditions are favourable. Thus, in order to effectively utilise this pre-
cious bandwidth and to overcome the impairments in wireless communications, there
is a need to develop efficient methods of transmission and coding together with so-
phisticated signal processing techniques. The research in this thesis is therefore
aimed achieving the above objectives. In this thesis, we address the problems of
multiple access interference and channel fading in wireless communications and fo-
cus on two particular techniques that recently received enormous attention, namely

multiuser detection and multiple transmit multiple receive antennas.

1.2.1 Multiple Access Interference - Multiuser Detection

There are a number of multiple access schemes that allow many wireless users to
share simultaneously a finite amount of radio spectrum. Frequency division multiple
access (FDMA), time division multiple access (TDMA) and code-division multiple
access (CDMA) are the three major multiple access techniques for multiplexing wire-
less users. In FDMA systems, the frequency spectrum is partitioned into distinct
bands of frequencies (or channels) and each user is allocated a dedicated frequency
band in which information may be transmitted. In contrast to FDMA systems,
TDMA systems divide the radio spectrum into time slots. Each user is assigned a
time slot and during the time slot that user can access the entire available band-
width. Since TDMA transmissions are time slotted, strict synchronism between
the transmitter and receivers are required and guard slots are necessary to separate
different users. Unlike FDMA and TDMA systems, each user in CDMA systems

can transmit information over the entire available radio spectrum at all times. Each
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user is distinguished from each other by multiplying its data with a unique signa-
ture code sequence. At the receiver, the message signal of a user can be detected
by performing a time correlation operation of the received signal with that user’s
code waveform. Multiplexing wireless users using the CDMA technique has many
advantages over the FDMA and TDMA techniques. These advantages include the
following (but not limited to):

e Potential Capacity Increase - In the FDMA and TDMA systems, in order
to avoid co-channel interference spectral guards and time guards respectively,
are required. In addition, since each user in the FDMA system is assigned a
frequency band, FDMA channels that are not in use cannot be used by other
users to increase the capacity. Similarly for TDMA system where each user is
allocated a time slot, when a time slot that is not in use, it cannot be used by
other users. Thus, both FDMA and TDMA systems do not efficiently utilise
the available spectrum. In contrast, CDMA systems allow users to access
the entire available spectrum for all times. Therefore they fully utilise the
available spectrum and have higher potential capacity over the other multiple

access methods.

o Soft Capacity Limit - As the number of users in a CDMA system is increased,
the level of multiple access interference also raises and causes the system per-
formance to decrease accordingly. When the number of users is decreased, the
system performance is then improved. Thus, there is no absolute limit on the

number of users in a CDMA system.

o Access Flexibility - Since each user can use the entire bandwidth for transmis-
sion at any time, a new user can be added to the system without the channel

resources having to be re-sliced.
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e Diversity - Since transmitted signals are spread over a large spectrum, fre-
quency diversity will arise if the spread spectrum bandwidth is greater than
the channel coherent bandwidth. Hence, the effects of small-scale fading can
be substantially reduced. In addition, the chip duration is very short and
much less than the channel delay spread. Thus, multiple delayed versions of
the chip signal will appear in the received signal. Therefore, a Rake receiver

can be used to exploit this multipath diversity to improve reception.

e Soft Handoff - In CDMA systems, the spread spectrum mobiles share the same
channel in every cell. Thus, two or more base stations can simultaneously
monitor a particular user and allow the Mobile Switching Center (MSC) to

choose the best version of the signal at any moment in time.

Due to the attractive features of the CDMA technique, it has been chosen as the
main multiple access scheme for the 3G systems [3, 26, 111]. However, a major prob-
lem in CDMA systems is the presence of the multiple access interference (MAI). The
MAI arises due to the non-orthogonality of the spreading code sequences employed
by users and the fact that all users in a CDMA system share the same frequency
spectrum for transmission at any given time. If the spreading code sequences are or-
thogonal to each other, the MAI can be completely suppressed after performing the
time correlation operation of the received signal with the user’s signature code wave-
form. However in practice, the orthogonality of the spreading code sequences cannot
be maintained after they are transmitted through the wireless medium. Hence the
MATI is always present. This MAI can severely limit the multiple access capability
of CDMA systems if it is not properly exploited at the receiver.

A simple detection technique for CDMA systems is to correlate the received
signal with the user’s spreading code and pass it through a threshold device [33].
This is a single user detection strategy where each user is treated separately and

the signal of other users are considered as noise. As a result, it performs poorly
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when a large amount of MAI is present. A better approach is to perform multiuser
detection where the information of multiple users is used jointly [100]. In [99], a
maximum likelihood sequence estimator (MLSE) is proposed which involves find-
ing an output sequence that has the maximum conditional probability. This is the
optimal multiuser detector. However its complexity grows exponentially with the
number of users and therefore can not be implemented in practical systems. Due
to the high complexity of the optimal multiuser detector, a number of suboptimal
multiuser detectors with a much lesser complexity have been proposed. The first
class is known as linear multiuser detectors where a linear transformation is applied
to the correlator outputs to reduce the MAI The linear decorrelator [62] can com-
pletely remove the MAI by multiplying the correlator outputs with the inverse of
the crosscorrelation matrix of the spreading codes, albeit at the cost of background
noise enhancement. An advantage of the decorrelator is that it does not require the
knowledge of the transmitted signal amplitudes. As it turns out, in the absence of
any prior knowledge of the transmitted signal amplitudes, the decorrelator is the
optimal detector [100]. The minimum mean squared error (MMSE) detector [63]
is another example of linear suboptimal multiuser detectors. Unlike the decorrela-
tor, the MMSE detector takes the background noise into account in the detection.
It is found that when the background noise approaches zero, the MMSE detector
converges to the decorrelator and when the background noise approaches infinity, it
approaches the conventional matched filter {100, pp. 296]. Thus, the decorrelator
and the conventional matched filter are the two limiting cases of the MMSE detector.
A drawback of these two linear multiuser detectors is that they need to compute
the inverse of a square matrix whose elements depended on the crosscorrelation of
the spreading codes. This poses a major problem in terms of processing complexity
when long codes are employed because the computation must be done in real time.

In addition, due to the linear structure of the linear multiuser detectors, they have
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limited capacity. An alternative approach to mitigate the MAI is to perform inter-
ference cancellation where each user estimates the interference contributed by other
users and subtracts it from the received signal to give an estimate of the desired
signal. Thus, a correct decision on a particular user’s data symbol will cancel that
user’s interference, while an incorrect decision will enhance the contribution of that
interferer. The interference cancellation process can be performed in a sequentially
(serial) order [75, 102] or in parallel [29, 30, 31, 76, 97, 98, 109]. As compared to lin-
ear multiuser detection, interference cancellation techniques have lower complexity
and can provide better performance. For this reason, some interference cancellation
techniques have been proposed in the W-CDMA [3] and the CDMA I [111] propos-
als. Due to these attractive characteristics of the interference cancellation methods,

the first part of this thesis will focus on this class of suboptimal multiuser detection.

1.2.2 Multipath Fading - Multiple Transmit and Receive

Antennas

Due to the unguided nature of the wireless communication channels, radio frequency
waves emitted by the transmitter propagate through different paths and undergo dif-
ferent reflection, refraction, diffraction and attenuation. They arrive at the receiver
from different directions with different propagation delays and strengths. These
waves are then combined, constructively or destructively depending on their phases,
at the receiver to give a resulting signal which varies widely in amplitude and phase
thereby inducing fading. Depending on the relative magnitude of the time required
for the main portion of the transmitted signal to reach the receiver, termed delay
spread, and the symbol period, multipath fading can be classified as flat fading or
frequency selective fading. If the delay spread is less than the symbol period, the
channels undergo flat fading and frequency selective fading otherwise. When fre-

quency selective fading arises, it gives rise to intersymbol interference because the
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transmitted signal arrives at the receiver over several symbol periods.

Another factor in wireless propagation channels that influences fading is the pres-
ence of Doppler shift which is induced by the motion of the receiver, transmitter or
surrounding objects. This Doppler shift may cause the signal level recorded at the
receiver to vary widely with time. The temporal variation in the received signal is
termed fast fading if the channel impulse response changes rapidly within the sym-
bol duration. Conversely, if the channels impulse response changes at a rate much
slower than the transmitted symbol rate, it is called slow fading. It should be noted
that a slow or fast fading channel can be either flat or frequency-selective depending
on the time delay spread. Thus, a fading channel can be classified into one of the
following four types: flat slow fading, flat fast fading, frequency-selective slow fading

and frequency-selective fast fading.

1 1 |
——~ Non-fading channel
-5~ Rayleigh fading channe|

BER

L L [l i Il [l i Il L

0 1 2 3 4 5 6 7 8 9 10
E,/N, (dB)

Figure 1.1: Performance degradation as a result of Rayleigh fading

Maintaining a reliable communication in wireless channels can become very dif-
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ficult as a result of the random fluctuation in the received signal amplitude. In a
situation where the receiver experiences deep fades, it may require up to 20-30dB
more transmitted power in order to achieve the same bit error rate as systems oper-
ating over non-fading channels. Figure 1.1 illustrates the performance degradation
of BPSK transmissions over Rayleigh fading channels. An effective method of com-
bating channel fading is to introduce diversity into the system which would allow
the transmission and/or reception of the information signal over multiple fading
branches. If the multiple fading branches are highly uncorrelated, it would be un-
likely that they experience deep fades simultaneously. Hence, there would be some
branches that have acceptable signal quality which allow the receiver to recover the
transmitted information correctly. One way of providing diversity is to use channel
coding in conjunction with time interleaving. This provides temporal diversity for
the system as it introduces redundancy of the transmitted signal in the temporal do-
main. An alternative diversity technique is to send information over more than one
carrier frequency to induce different multipaths. Thus, if the carrier frequencies are
separated by more than the coherent bandwidth of the channel, the transmitted sig-
nals will not experience the same fades and hence we have frequency diversity. Both
temporal and frequency diversity techniques induce loss of bandwidth efficiency as
they have to introduce redundancy in the time and frequency domain respectively.
The third type of diversity is spatial diversity which can be obtained by employing
multiple transmit and/or multiple receive antennas. This technique is more advan-
tageous than the previous two as it can introduce redundancy of the signal without
having to sacrifice the precious bandwidth resources.

Recently, receive antenna diversity has been exploited in the uplink of mobile
systems by deploying multiple antennas at the base station. Provided that the
antennas at the base station are well separated (i.e. around 10 wavelengths), the

multiple received signals at the antennas will be reasonably uncorrelated and they
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can be intelligently combined at the receiver to improve the performance of the
system in the presence of channel fading. Common processing techniques that can be
used to utilise this form of diversity are: switch diversity, equal gain and maximum
ratio combining (MRC) [69, 80]. Switch diversity is the simplest diversity technique
in which the signal from the antenna branch with the best quality is selected. In the
equal gain combining, received signals from all antennas are co-phased and summed
together. In the MRC, before the signals are co-phased and added together, they
must be weighted to provide the optimal signal to noise ratio (SNR).

Another form of spatial diversity is transmit diversity which is obtained by deploy-
ing multiple antennas at the transmitter. A number of transmit diversity techniques
for the downlink of mobile systems have been recently adopted or under considera-
tion for the third generation standards [27]. Systems employing transmit diversity

can be classified into one of the following three categories:
e Feedback schemes,
e Feedforward schemes,
e Blind schemes.

In the feedback schemes, explicit information of the fading channels is fedback from
the receiver to the transmitter and the transmitter uses this knowledge to its advan-
tage. Examples of the transmit diversity schemes that involve feedback are switched
transmit diversity (STD) and transmit adaptive array (TXAA) [27]. In the STD
scheme, information is transmitted on only one antenna at any given times. To de-
termine which antenna to transmit, pilot symbols are sent from each antenna. Based
on the average received power, the receiver then decides which antenna it would like
to transmit. In the TXAA scheme, information signals are multiplied with a set
of weights before being transmitted on all antennas simultaneously. These trans-

mit weights are optimised to maximise the signal power at the receiver. They are
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periodically being sent back from receiver to the transmitter via a feedback channel.

On the contrary, transmit diversity systems employing feedforward only require
the transmitter to send training information so that the receiver can estimate the
fading channels. There is no information being fedback to the transmitter. A
simple diversity scheme of this type is the delay diversity [84] where a flat fading
channel is made to become frequency selective by sending simultaneously the data
symbol on one antenna and the delayed versions of the previous data symbols on
the remaining antennas. Another scheme with feedforward information is space-
time coding. In this method, coding is performed not only in the temporal domain
but also across the spatial-domain created by the multiple antennas. Unlike the
conventional time-domain channel coding in which the coding gain is achieved at
the expense of bandwidth expansion, by taking the advantage of the spatial-domain,
space-time coding achieves the coding gain without having to sacrifice the precious
bandwidth. Space-time coding can be implemented in either block [7, 91] or trellis
[89] forms.

The third category of transmit diversity does not require any information about
the fading channels and hence no training sequence or feedback information is re-
quired. The capacity of communication systems belonged to this category has been
analysed in [67, 112]. It is found that for a fixed number of antennas, as the length
of the coherent interval of the fading channels increases the capacity approaches the
capacity obtained as if the receiver has perfect channel estimates. It is also found
that the space-time codes that attain capacity have a unitary structure (i.e. the
signals are mutually orthogonal with respect to time among the transmit anten-
nas) [4, 43, 44]. Another type of transmit diversity belonged to the blind scheme is
differential space-time coding [45, 48, 92].

Transmit diversity schemes discussed so far can also be applied when multiple

receive antennas are used. Thus, the resulting systems are multiple-input-multiple-
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output (MIMO) systems which provide both transmit and receive diversity. As being
shown in [36, 93], simultaneous deployment of multiple antennas at the transmitter
and receiver not only provides diversity over fading channels but can significantly
boost the channel capacity. Provided that the fading paths between all pairs of
transmit and receive antennas are independent, it is found that the channel capacity
increases linearly with the smaller of the number of transmit and receive antennas
[35]. However, most previous works in this area assume that i) the channels are
statistically independent and ii) the channels undergo quasi-static fading where the
fading coefficients remain constant during the transmissions of a frame and change
independently from one frame to another. The assumption of independent fading is
the ideal case where we have a rich scattering environment and that the antennas
within the transmitter or receiver sides can be sufficiently spaced apart. This could
hardly be met in practice and spatial correlation will present. The assumption of
quasi-static fading is only valid if the mobile unit is stationary or moving at low
velocity. If the mobile unit is moving at high velocity, the channels will undergo
fast fading where the fading coefficients can change from symbol to symbol. These
fading coefficients, however, will be temporally correlated to a certain extend. In this
thesis, we will examine MIMO systems with both spatial and temporal correlation

factors being taken into account.

1.3 Overview of the Thesis and Contributions

The focus of this thesis is to develop efficient coding and signal processing tech-
niques for the transmitter and the receiver to overcome the two major impairments
in wireless communication systems, namely multiple access interference and chan-
nel fading. In chapter 2, we examine different multiuser detection techniques for
mitigating the MAI in CDMA systems. We particularly focus on the interference

cancellation techniques as they have low processing complexity and potential ca-
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pacity gains. In chapter 3, we analyse the convergence behaviour of an interference
cancellation technique known as parallel interference cancellation (PIC). In chapter
4, we investigate the performance of multiple transmit multiple receive antennas
systems and design space-time trellis codes that can exploit the additional spatial
diversity created by the multiple antennas. In chapter 5, we propose a receiver struc-
ture which can jointly decode the space-time trellis codes and estimate the fading
channels. Since there are many different types of diversity which can be exploited,
we develop a generalised and unified taxonomy for system modelling and signal pro-
cessing for such systems in chapter 6. Conclusions of the thesis and future research
direction are given in chapter 7.

The thesis is organised such that the materials presented in each chapter are self
contained. We now give more detailed summary of the main contributions of the

thesis.

Multiuser Detectors for CDMA Systems (Chapter 2) - In this chapter, we
present two new interference cancellation techniques which are hybrid of the suc-
cessive and parallel interference cancellation methods. Computer simulation results
show that the performance of the proposed techniques are in general superior to
the known successive and parallel interference cancellation techniques. Since in-
terference cancellation techniques that use nonlinear tentative decisions require the
knowledge of the signal amplitudes of all active users in the system, we propose an
adaptive algorithm for performing joint parameter estimation and symbol detection.
This proposed adaptive multiuser detector operates on-line where the estimates of
the unknown parameters are updated for each incoming observation. Computer
simulations are used to compare the performance of this proposed adaptive mul-
tiuser detector with that of the nonadaptive version where the signal amplitudes are

perfectly known.
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Convergence Behaviour Analysis of the PIC Technique (Chapter 3) - Since
there are many different types of tentative decision functions that can be employed
by the parallel interference cancellation (PIC) technique for estimating the MAI,
a general framework for analysing the convergence behaviour of the PIC detector
is developed. This framework permits the derivation of the sufficient condition for
convergence of the PIC detector for a wide range of tentative decision functions.
Several well-known conditions for convergence of the PIC detector with linear de-
cisions and clip decisions can be obtained using this general framework. Computer
simulations are also used to investigate the convergence behaviour of the PIC de-
tector with hyperbolic tangent decisions and simulation results are compared with
analytical results.

Space-Time Coding (Chapter 4) - The performance of space-time coded systems
with multiple transmit multiple receive antennas are analysed. We derive two new
upper bounds for the pairwise error probability of space-time coded systems in spa-
tially correlated Rayleigh fading environments. The traditional design criteria (eg.
rank determinant and trace) for constructing space-time trellis codes are to min-
imise the pairwise error probability of the dominant error event. In this chapter,
we present a number of new space-time trellis codes based on the design criterion
of minimising the sum of the pairwise error probability of all distinct pairs of code-
words. Simulation results support the claim that these new codes are superior to
other known codes constructed using the traditional rank determinant and the trace

criteria.

Joint Space-time Decoding and Channel Estimation (Chapter 5) - A receiver
for joint space-time trellis decoding and channel estimation in time-varying fading

channels that are spatially and temporally correlated is proposed. By approximating



Introduction and Summary of Contributions 15

the physical channel model of the multiple transmit multiple receive antennas sys-
tem with a statistical channel model, we incorporate per-survivor processing with
Kalman filtering into the Viterbi algorithm to allow the receiver to suboptimally
decode the space-time trellis codes and simultaneously track the channel variations.
Simulation results demonstrate that a performance close to the maximum likelihood

receiver with perfect channel state information can be obtained.

Recursive Receivers for General Diversity Channels (Chapter 6) - We intro-
duce a general state-space model for a general diversity communication system with
time and diversity correlated flat fading. Examples of diversity systems which fall
within this framework include space-time coded systems, orthogonal frequency divi-
sion multiplex (OFDM) systems, code division multiple access systems and hybrids
of these systems. We develop a number of time-recursive receiver structures based
on sequence estimation or on symbol by symbol estimation to exploit the tempo-
ral correlations in the channel. Such time-recursive receivers offer some advantages
over block processing schemes such as computational and memory requirement re-
ductions and the easier incorporation of adaptivity in the receiver structures. The
receivers considered include: Per-survivor processing, M-algorithm, two a posterior:
probability techniques and a per-symbol iterative technique based on EM algorithm.
Using an OFDM system as example, the performance of these proposed receivers are
compared with conventional designs which do not exploit the channel time correla-
tions. Simulation results suggest that there can be significant gains in performance
by incorporating time correlation into the signal model and the resulting receiver

designs.



Chapter 2

Multiuser Detectors for CDMA
Systems

This chapter considers the problem of multiuser detection in synchronous code-
division multiple access (CDMA) systems. It focuses mainly on interference cancel-
lation detectors as they can provide good performance with a relatively low com-
putational complexity. It proposes two interference cancellation techniques which
are hybrid of the successive interference cancellation (SIC) detector and the parallel
interference cancellation (PIC) detector. Computer simulations are used to examine
the performance of these detectors.

Since all interference cancellation detectors with nonlinear tentative decision func-
tion require the knowledge of the signal amplitudes of all active users in the systems,
this chapter addresses the issue of joint parameter estimation and symbol detection
of multiple users in the CDMA systems. It presents an adaptive multiuser detector
which iteratively performs joint symbol detection and estimation of the unknown
parameters using the Expectation-Maximization (EM) approach. Simulation results
show that the performance of this adaptive multiuser detector is very close to that

of the nonadaptive version where the signal amplitudes of all users are perfectly
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known at the receiver.

2.1 Introduction

In this chapter, we review two popular interference cancellation detectors: the Suc-
cessive Interference Cancellation (SIC) detector and the Parallel Interference Can-
cellation (PIC) detector. In the former detector, interference is successively removed
from the received signal in the descending order of user’s strength while the latter
removes the interference for all users simultaneously. By performing the interference
cancellation successively, the SIC detector has an extremely good performance when
the powers of the users in the system are unequal. However, when all users in the
system have equal power it performs poorly, especially for the users being processed
first. The PIC detector on the other hand performs extremely well in both cases,
but it requires several interference cancellation stages. This motivates us to propose
two hybrid PIC-SIC detectors, which are combination of the SIC and PIC detectors.
These combined detectors inherit the behaviours of the SIC detector when no power
control is used and that of the PIC detector when ideal power control is used.

We particularly focus on the use of nonlinear tentative decision functions for
estimating the MAI as they offer superior performance than the linear counterparts
[29]. The main disadvantage with using nonlinear tentative decision functions is that
the detector must have the knowledge of the signal amplitudes of all active users
in the system. Most work on interference cancellation detectors with nonlinear
tentative decision functions often assumes that the signal amplitudes are available
at the receiver. In this chapter, we present an adaptive multiuser detector that
performs joint parameter estimation and symbol detection for code division multiple
access (CDMA) systems. In the literature, there are proposed receivers which also
perform parameter estimation and symbol detection. The proposed receivers in

[10, 53] perform parameter estimation and symbol detection using the Baum-Welch
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version of the Expectation-Maximization (EM) method. The unknown parameters
are estimated using the maximum likelihood criterion. These methods operate off-
line and update the parameter estimates based on an entire block of observations
using the forward-backward algorithm. These methods have the advantage that
they can estimate the unknown parameters without the need of a training sequence
[65]. Hence they improve the throughput of the system. However, they have the
drawback that they require large amounts of memory for storage of the forward
and backward variables. This motivates the use of an on-line algorithm [59] in
our proposed receiver which updates the parameter estimates for each incoming
observation. This method not only reduces the memory requirement, it also allows
the receiver to perform in real-time.

The layout of this chapter is organised as follows: In section 2.2, a synchronous
CDMA system model is presented. In section 2.3, we review some known interference
cancellation detectors and describe the two proposed detectors. The performance
of these detectors with different nonlinear tentative decision functions are examined
by using computer simulations. In section 2.4, we describe the adaptive multiuser
detector which performs joint symbol detection and parameter estimation for CDMA

systems. The performance of this detector is also examined via computer simulation.

2.2 The System Model

We consider a synchronous CDMA system with K users transmitting simultaneously
to a common receiver over an additive white Gaussian noise (AWGN) channel. Each
user k € {1,..., K} is assigned a normalized signature sequence s, of length M,
sk € {J—Ai[, \/LIT[}A/[ and transmits at symbol rate the information di (i) € {£1}. We

use the time indices t and i to denote the chip index and symbol index, respectively.
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The transmitted signal of the k** user during the ™ chip interval is

i (t) = Ag(i) di(4) s (5) (2.1)

where A(i) > 0 is the signal amplitude of user k over symbol period %, dy (i) is the
it symbol and t = Mi+ 7, for 0 < j < M — L
Thus, the baseband received signal at the chip rate is the noisy sum of all signals,

which can be written as

™) =

r(t) =D _u(t) +v(t), (2.2)

k=1
where v(t) is the realization at time ¢ of a zero mean white Gaussian noise with
variance o2

Now, let r(i) consists of M consecutive observations of the received data at the
chip rate t = Mi to M(i+1) — 1 i.e. r(i) = [r(Mé) r(Mi+1) -+ r(M(i4+1)—=1)]"

where T denotes the transpose operation. Similarly, we use

v(i) = [o(Mi) v(Mi+1) -+ o(M@E+1) = 1)]", (2.3)

yr(i) = [ye(Mi) ye(Mi +1) - ye(M(i+1) = D]", (2.4)

for the corresponding noise vector and vector of user k contribution signals, respec-
tively.
Therefore, the symbol rate version of (2.2) is:

K

r(i) = Y ye(i) + v (i) with yy(6) = Ax(2) di(@) sp - (2.5)

k=1
2.3 Interference Cancellation Techniques

2.3.1 Tentative Decision Functions

Before we review the SIC and PIC detectors, and describe the proposed detectors, we

firstly describe some tentative decision functions that can be used by the detectors



Multiuser Detectors for CMDA Systems 20

for estimating the MAL In literature, there are several tentative decision functions
have been used such as the hard decision [29, 32, 97, 98, 109], the infinitely soft
decision (linear) [29, 75], the hyperbolic tangent decision [30, 31, 76], and the null-
zone [29]. For interference cancellation detectors that use these tentative functions,
with the exception of the linear decision, they all require the knowledge of the
signal amplitudes of all users in the system in order to reconstruct the MAL The
estimation of the signal amplitude can be done using the techniques described in
[53, 70] and section 2.4. Studies in [40] have shown that imperfect estimation of the
signal amplitude may significantly reduce the performance of the detectors. For the
interference cancellation detectors with linear tentative decision function, the MAI
can be estimated using the output of the tentative decision function since the signal
component at the output is linearly proportional to the user’s signal amplitude.
This in effect provides a joint estimate of the signal amplitude and the user’s data
bit, and hence no longer requires the estimation of the signal amplitude separately.
However, the disadvantage of using the linear tentative decision function is that
additive noise is now introduced into the cancellation process. Studies in [29] found
that the PIC detector with linear decisions is inferior to one with the hard decisions,
hyperbolic tangent decisions or null-zone decisions.

In this paper, we compare the performance of the SIC, PIC and the proposed de-
tectors using the hard decision and the hyperbolic tangent decision functions. These
two tentative decision functions can be described mathematically by the following

equations

e Hard-decision:

gr(x) = sign(z) . (2.6)
e Hyperbholic tangent decision:

gr(z) = tanh(ay z) , (2.7)
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where o, are positive constants.

2.3.2 Successive Interference Cancellation Detector

The idea of successive interference cancellation (SIC) detector is to perform inter-
ference cancellation in descending order of the user’s strength. Here we assume the
signal amplitudes are ordered as follow: A;(z) > Ay(i) > -+ > Ag(i). There are two
reasons for cancelling in this descending order. Firstly, users with stronger power
can be detected more reliably and secondly, the removal of stronger signals have the
most benefit for the remaining users as they contribute significant interference. The
successive detection statistics using the nonlinear tentative decision functions are

computed according to

k—1
ye(i) = r(@)— z A;(3) d; (i) s ;
dp(i) = gi(st Fk(2)), (2.8)

where § (i) is the k% user’s estimate of the desired signal and gx(x) is the tentative
decision function as previously described. From (2.8) one can notice that the first
user sees all the interference while later users see less and less interference as the
process progresses. Thus, there is no benefit for the first user and the detection is
equivalent to using the conventional matched filter. The most beneficial user is the
last user as it utilises the decisions of all other users and ideally (i.e., when the deci-

sions of the stronger power users are correct) achieves the single user performance.

2.3.3 Parallel Interference Cancellation Detector

An alternative to successive cancellation is to perform parallel cancellation in which
all users simultaneously subtract off all the interference from the received signal.

Thus all users receive equal treatment. The parallel cancellation scheme can be
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done in multiple stages as in [29, 97, 98, 109]. The idea here is that as the number
of stages increases, the accuracy of the tentative decisions will be improved and
hence the PIC detector can remove more and more interference. Now, suppose the
PIC detector performs L interference cancellation stages, then at the n'* stage where

n = 1,..., L. we have the following estimate for the desired signal

70 = r0) =Y A0 G0
J#k
6 = o (sk 70) (2.9)

where cifco)(i) = gx (sIr(i)). Note that with this notation, the initial stage which
involves correlating the spreading sequence with the received signal is not counted
as an interference cancellation stage. For the final stage, a hard decision is used to

determine the transmitted information bit.

2.3.4 Iterative Multiuser Detector

In this section, we describe the iterative multiuser detector presented in [76] where
it iteratively separates the received signal into individual user signals and estimates
the a posterior: probabilities (APPs) of the user’s data symbol. The iterative process
is per-symbol basis. This iterative multiuser detector can also be viewed as a PIC
detector where each iteration corresponds to one interference cancellation stage. In
fact, we will show that for the simple CDMA system considered in this chapter,
where there is no interchip interference, this iterative multiuser detector is exactly
the same as the PIC detector with hyperbolic tangent decision function. However
the advantage of this iterative multiuser detector implementation is its ease in in-
corporating adaptive processing algorithms into the detector as will be shown later
in section 2.4.

This iterative multiuser detector works as follow: Let 7rk p ) denotes the a poste-

riori at the n'® iteration that user k transmits dg(i) = ¢ for ¢ € {£1}. For the
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i = fr,(go) = 0.5 since di (i) € {£1} are transmitted

initial iteration, we initialise ﬁ,(c
with equal probabilities. Assuming at the end of iteration n these fr,“ » have been
calculated, then at iteration n + 1, we then apply the following steps:

Signal Separation: Using the estimated a posteriori probabilities from previous it-

eration, the iterative multiuser detector separates the received signal into individual

user signal component according to

g6 =) - Y V6 (2.10)

i#k
where )75-") (4) is the conditional expectation of y(i) computed by
A;(0) 8559 (1) ¢
J 7 T
pe{£1}
_ Ay(0)s; (20 - 1) (211)

In the equation above, we have used the fact that WJ(T;)( )+ 7r( _)1( )y =1, Vi, n. Let

the soft estimate of the user data be defined as d( (i) = 2m (")( ) — 1, then (2.10)

can be rewritten as

y}(:H-l ZA d(n ) (212)
J#k
Calculation of a posteriori probabilities: By defining z(”+ ) = y(”“), we can
write
A = A(@)di(i) + V) + 3 paads () (46 — AP @) . (219)
J#k

where p;x = sps; is the crosscorrelation between the spreading codes of user k£ and

5(n)

user j. The advantage of using 2’ instead of ¥ yk in the calculation of the a poste-

riori probability is that the uncancelled MAI doesn’t have to be assumed as white
Gaussian (i.e. the variance of 3, y;(%) — y§")(i) does not have to be proportional

to an identity matrix). This is important as this assumption can not be justified for
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general CDMA systems. In the expression above, the first term is the desired signal,
the second term is the background noise and the last term is the unsuppressed mul-
tiple access interference (MAI). The uncanceled interference term of (2.13) can be
approximated as a zero-mean Gaussian random variable [31]. Hence we can model
2,(9"“)(2') as a Gaussian random variable with mean Ay(i)dx(é) and covariance v
where v* > 02, recalling that o2 is true additive Gaussian noise variance. Assuming

the user data dy(i) € {£1} are transmitted with equal probability, the a posteriori

can then be updated according to

A0 = p () = 01270 6)
p (3000 1 de(6) = ¢)
 Soeqen (B0 (i) =0)

This iterative process is terminated when a posteriori probabilities do not change

(2.14)

significantly from one iteration and the next.
To show that this iterative multiuser detector corresponds to the PIC detector
with hyperbolic tangent decision, we first derive the expression for the a posterior:

probability that dy(i) = 1 is transmitted. Using (2.14),

:}>

RIOEICRORST 22”*%‘))
N (2006) - Axiv?)
N(él(cnﬂ) Ay >+N( (n+1) ( )+ Ay )
1

- 1 exp {—2 A(i) 3570 6)} o

where N (z,w) denotes the Gaussian density

N(z,w) = — exp{-ﬁ} . (2.16)

T 2w

;
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Now, substituting (2.15) into the definition of cifc")(z) gives
~ 2
d™ (i) = ~1
1+ exp {2 A4(i) 27() }
L—exp {—2 4(0) 27 (0) |
1+ exp {—— A(i) A(”H)(z‘)}

= tanh (A;( D, 5™ (z)) (2.17)

Hence, we can rewrite (2.12) as

Ft0 () )= > A(i)s;d i (2.18)
J#k
5 A, (i
4™ = tanh( F’;g’) st y,g")(z')> . (2.19)

This expression is the same as (2.9) of the PIC detector where gi(x) = tanh(oyx)
and o = Ak<’l)/’)/2

2.3.5 Successive-Parallel IC Detector: Scheme 1

This proposed detector is a hybrid between the SIC and the PIC detectors. It has a
multistage structure similar to the PIC detector and at each stage it also attempts
to cancel the interference of all interferers. However, the interference cancellation
process is performed successively in the descending order of user’s strength similar
to the SIC detector. In estimating the amount of interference presented in the
received signal, it utilises the decisions of the stronger power users in the current
stage as well as the tentative decisions of weaker users in previous stage. Hence it
always uses the most up-to-date available estimate of the interference. Thus, unlike
the SIC detector which totally ignores the contribution of weaker users and treats
them as background noise, this proposed detector will take them into account. This

hybrid detector is also different from the PIC detector in the way that at each stage
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the PIC detector only uses the tentative decisions from the previous stage, while
the proposed detector utilises the decisions of the current stage as well as from the
previous stage and successively cancels the interference.
Again, we assume the signal amplitudes are ordered as follow: A;(i) > Ax(z) >
. > Ag(i). Thus, the estimate of the individual signal at the n‘* interference

cancellation stage can be computed according to

k—1 K
MG = r(i) - Y A0 dT s — > A sy
j=1 j=k+1
i) = g <s,{y§c">(i)). (2.20)

for 2 < n < L. For the first interference cancellation stage, we will include a
weighting factor to the tentative estimates of the matched filter outputs. The reason
behind this inclusion is that there is no interference cancellation being performed on
these tentative estimates. As a result, they may not be reliable, especially for the
low power users. Since using an incorrect estimate of the MAI of an interferer in the
cancellation process will enhance the contribution of that interferer, the role of the
weighting factor is therefore to reduce this enhancement when the tentative estimate
is incorrect. Thus, the weighting factor is a measure of the reliability of the tentative
estimates of the matched filter, i.e. cZ,(f) (i) = gi (st r(@)). For a very reliable tentative
decision cii,o)(i), this weighting factor will be adjusted close to 1 while for a less
reliable estimate, this weighting factor will be reduced accordingly. Consequently,
we will fully use the correct tentative estimates to cancel the interference while for
a less accurate tentative estimates, we only partially make use of them. We don’t
address the issue of finding the optimal weighting factor in this chapter. Instead,
as an example we use the probability that the decision ci(ko) (i) is correct under the

worse case condition as the weighting factor. That is

Wi(i) = Pr(Ax(e) — Y A;(0) lpsul 2 ), (2.21)
2
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where v is the background noise. Thus, the 1% stage’s estimate of the desired signal

with the weighting factor is

k—1
YO = @) - A dVs; Z W;(5) A;(6) d sy ;
j=1 j=k+1
d06) = g (shr(d)) . (2.22)

After the publication of [71], we become aware that this hybrid PIC-SIC detec-
tor is similar to the detectors examined in [81, 108] where they are shown to be
equivalent to the Gauss-Seidel algorithm. However, there is a slight different to our
proposed detector as those detectors do not have the weighting factor at the first

stage.

2.3.6 Successive-Parallel IC Detector: Scheme 2

In [98], Varanasi and Aazhang looked at the performance of a two-stages PIC detec-
tor (i.e. L=1) in which the first stage is the linear decorrelator. The performance
of this detector is found to be extremely high as compared to the two stages PIC
detector where the conventional matched filter is used as the first stage. However,
it has a disadvantage in term of complexity. That is, it requires to compute the
inverse of the crosscorrelation matrix of the spreading codes. This can be a major
disadvantage in situations where the CDMA system employs long code in which
each symbol is spread by a random code and is different from symbol to symbol.
Thus, in this situation the detector must compute the inverse of the crosscorrelation
matrix for every symbol time interval. In this section we propose an interference
cancellation detector where the first stage performs SIC and subsequent stages per-
form PIC. There are two reasons that we use the SIC in the first stage. Firstly, SIC
has a lower complexity than the linear decorrelator while provides a better estimate
of the individual user’s signal than the conventional matched filter, especially in the

system where no power control is exercised. Secondly, using the SIC in the first
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stage has a potential to help the detector to obtain a faster convergence when power
control is not used.

Since the first stage uses SIC, it will perform interference cancellation in the
descending order of signal power. We will again assume the signal amplitudes are
ordered as follow: A;(z) > Aa(i) > -+ > Ag(i) for the first stage. Thus, the
individual user signal is estimated by the following equations :

At stage n = 1:
700 = x() =Y A0 0
dP() = (st (), (2.23)

and at stage n for 2<n < L
FE) = r@) =Y A dT () sy
7k
a6 = o (sF900) - (2.24)

Note that we count the initial SIC stage as one interference stage since interference

being cancelled within this stage.

2.3.7 Performance Evaluation of IC Techniques

We evaluate the Bit Error Rates (BER) performance of these interference cancel-
lation detectors through extensive computer simulations since the exact analytical
evaluation of the BER is very complex, especially when nonlinear tentative decision
function is used. As shown in [97], the computation of the BER of a two-stages PIC
detector is only possible when the number of users is small as it involves integrating
multidimensional normal distribution. This difficulty arises due to the fact that
the tentative decisions are not independent of one another. Similarly for the SIC

detector, the computation of the BER is difficult because the tentative decisions of
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the stronger users (i.e., users being processed before the user currently considered)
are dependent.

We compare the performance of the proposed detectors with the conventional
matched filter, the SIC detector, the PIC detector and the single user performance
bound for three different scenarios. We consider a CDMA system with 6 active
users and each user is assigned a pseudorandom code sequence of length N = 7.
We examine the performance of these detectors using the hard decision and the

hyperbolic tangent decision functions. The three scenarios that we examine are:
e Ideal power control: where all users have the same power with A7 =1 Vk.

e No power control: where all users have different powers with the following

power distribution: A; = 30, Ay =20, A3 =10, Ay =5, A; =2 and As = 1.

e Non-ideal power control: where the power distribution is A; = 10 and Ay =1

for k=2,...,6.

In the simulation results, we use the postfixes -HD and -HT to indicate whether the

detectors use the hard decisions or hyperbolic tangent decisions, respectively.

Ideal Power Control

We obtained the BER for all six users at the signal to noise ratio SNR = 9dB
where the SNR for user k is defined as A%/o%. Fig. 2.1 shows the BER of different
detectors using the hard decision function while Fig. 2.2 shows the results when
the hyperbolic tangent decision function is used. The BER of the PIC and the
proposed detectors are obtained using three interference cancellation stages (i.e. L
= 3). We find that there is no significant performance improvement after this third
stage. As from the two graphs, we can see that the performance of the proposed
detectors outperforms the conventional matched filter and is closed to the single

user bound. Comparing the performance of the proposed detectors with the SIC
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detector, there is a considerable improvement for the users that are being processed
first. The performance of the proposed detectors is approximately the same as the
PIC detector, except for scheme 2 that uses hard decisions which has a slightly
higher BER. These results demonstrate that in the ideal power control environment

the proposed detectors behave similar to the PIC detector.
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Figure 2.3: Performance of IC detectors with no power control

No Power Control

We examine the performance of these detectors for the no power control scenario
using both hard decision and hyperbolic tangent decision functions. Here we obtain
the BER of the lowest power user for different values of SNR. Fig. 2.3 shows that
all the interference cancellation detectors that we examined achieve near single user

performance bound. However, the PIC detector requires up to three interference
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cancellation stages in order to obtain the same performance as that of the SIC and
the proposed detectors where only one interference cancellation stage is required.
Thus, in the system where no power control is exercised, the proposed detectors are
now behaved similar to the SIC detector. The matched filter performs extremely
poor in this case. The result shows that increasing the SNR does not improve the
BER of matched filter. This is the inherent behavior of the matched filter due to

the near-far effect.

Non-ideal Power Control

In this section, we investigate the performance of these detectors under the non-ideal
power control condition. We examine the performance of the five lower power users
at the SNR = 9dB (SNR of the lower power users). Fig. 2.4 shows the performance
of the five lower power users (user 2 to user 6) when hard decision function is used.
The BER of the PIC and proposed detectors are obtained using three interference
cancellation stages (i.e. L = 3). As one can see the matched filter under this situa-
tion performs extremely poor. This is due to the presence of the strong interference
from user 1. Simulation results show that the SIC detector significantly improves
the BER of lower power users as compared to the matched filter. This is because
the strong signal of user 1 can be reliably detected and removed from the received
signal. However, the performance of those users being processed in the early stage
is still quite far from the single user bound. The BER of the PIC detector is much
better than conventional matched filter. However it is still higher than that of the
proposed detectors. The reason that the PIC detector has a lower performance than
the proposed detectors is due to the unreliable tentative decisions from the matched
filter (as a result of the presence of the strong interference of user 1) in the initial
stage. This unreliable initial estimate is the main cause for this performance lost

since it is well-known that for any multistage interference cancellation (or iterative)
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process, the accuracy of the initial estimates is very important. The performance of
these detectors when employing hyperbolic tangent decision function is illustrated
in Fig. 2.5. It shows a similar performance order as in the case when hard decision

function is used.

2.4 Tterative Multiuser Detection with Parameter
Estimation

In this section we describe an iterative multiuser detector which performs joint
parameter estimation and symbol detection. This detector is an extension of the
iterative multiuser detector presented in section 2.3 where we now include an ex-
tra step into the detection algorithm to estimate the unknown parameters. It will
perform on-line parameters estimation based on the recursive approach described in
[59]. The idea of this method is to use the estimates of the individual signal contri-
bution and the a posteriori probabilitics (APPs) to perform parameter estimation.
These estimated parameters will then be used for symbol detection which involves
separating the received signal r() into individual user signal contribution y(¢) and
computing the APPs. This process is iterated several times per symbol until the

APPs do not change significantly from one iteration to the next.

2.4.1 Detailed Algorithm Description

Step 1 - Initialisation: At the start of the iterative process of each symbol, we need
to perform some initialisations. Let v2™ (i) and A" (3) denote the estimates of the
noise variance (taking into account the unsuppressed interference) and the signal

amplitude of user k& at the n't

iteration, respectively. Assuming that the signal
amplitude does not change significantly from one symbol period to the next, we

set Aio)(i) = Agl*)(i — 1), where n* is the terminating iteration index of symbol
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i — 1. This is a reasonable assumption when the mobile user is moving at low
speed. Although the noise variance fy,(c")(i) varies from one symbol period to the
next due to different combination of the transmitted bits of the interferers, we still
set yk( )( ) = 72( )( 1) as 7,3(”*)(1' — 1) is the only available information that we
have about the noise variance at the beginning of the symbol interval i. For the first
symbol ¢ = 1, we initialize A,(co)(l) = a and 7,%(0)(1) = (3 where o and 3 are arbitrary
positive values.

Since each user k transmits the information symbols dp(:) € {£1} with equal
probability, we initialize the APPs ﬁ,(c?)( ) = 0.5, where 7r,E »(1) denotes the estimate
of the APP at the n* iteration that user k transmits di(i) = ¢ for ¢ € {£1}. Thus,
the initial conditional expectation of y;(i) given the initial estimates for the signal
amplitudes and APPs is

> AP s (i) ¢=0. (2.25)
pe{xl}

Step 2 - Signal Separation: Based on the available estimate of the conditional

(n)

expectation §, (i) at iteration n from step 5, we estimate the k" user signal con-

tribution

yr @) = () - > §V() (2.26)

Jj#k
which can be rewritten as
T () = Ar(d) di(i) sk + v () + Y (y;(0) — 757 () - (2.27)
J#k

Step 3 - Computation of the APPs: Let’s define 2"V (i) = sTy $(3), then

500 () = A(i) i) + T V() + 3 s | A0 di(0) — Y AT A
J#k pe{£1}
(2.28)

1+1) /- .
As discussed in the previous section, we can approximate 2 ( )(z) as a Gaussian

random variable of mean Ag(i)dy(i) and covariance 72" )(i), where v2™ (i) > o2,
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recalling that o? is the variance of the background noise. Since the symbols di(i) €
{#1} are transmitted with equal probability, the a posteriori probability 7r("+1)(z)

can be calculated as follows

#EG) = p (d(d) = 91 50 0))
p (#0601 dui) = 9)
Ve (0 14w =60)

Step 4 - Parameters Estimation: In this step, the signal amplitude and the noise

(2.29)

variance are estimated using the EM algorithm. The E-step involves calculating the
average log likelihoods with respect to the APPs. Thus we have the following cost

function which is then maximized over the unknown parameters 72( (1) and Ak(%) :

S = 3 @l N (V) — e KT 0) (2.30)

pe{£1}

1 n 5 ]- ~(n D AN 0 o 2
= 73 log (27T’Y/3( )(Z>) - 22T)_ Z Wl(c,qjl)('l') (ZIE H)(l) - Zk,as(l)) )

Vi (7’) pe{+1}
where 2 4(2) = Ap(i)di(i)|di(i) = ¢. For the M-step, we use the recursive algo-
rithm introduced by Titterington [94] for parameter estimation using the incomplete

data. The unknown parameter can be estimated according to the following formula

(n+1) /.
(n+1) (n) . N O
: 5 = i)+ uRW T e\ 2.31
L () Pr () iy () d(pk(z) ( )
" . AT () gy ()"
RIG) = (1 p)RPG) +pt 4k U (2.32)

der(i)  dpi(i)
where Lp}cn)(i) is the estimate of the unknown parameter such as the signal am-
plitude and noise variance, and 1 — p is a forgetting constant, usually chosen to be
close to, but slightly less than unity.
Step & - Calculation of the conditional expectation of yi(i): If the APPs don’t

change significantly compared to the previous iteration, we terminate the iterative
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process. Otherwise, we update the approximate conditional expectation of yr(?)
using the newly estimated signal amplitudes and APPs according to

P = 3 AT O smE0 e (2:33)
pe{£1}

2.4.2 Performance Evaluation

We again use simulations to obtain the BER of the iterative multiuser detectors
since the exact analytical evaluation of the BER is very complex as shown in [97].
We examine the performance of the iterative multiuser detector with parameter
estimation and compare it with that of the nonadaptive version where the signal
amplitudes of all users are known at the receiver. In addition, we also compare it
with the performance of the conventional matched filter and the single user bound.
Simulation results are obtained for a CDMA system with 7 active users and each is
assigned a pseudorandom sequence of length 7. In the simulation, the termination
condition is chosen such that if the APPs of all users change by less than 0.005, the

iterative process will be stopped.

Ideal Power Control

We investigate the performance of the iterative multiuser detectors when all users
have equal power. We obtain the BER for different values of SNR where the SNR
for user k is defined as gzi Fig. 2.6 shows that the performance of the iterative
multiuser detector with parameter estimation degrades only slightly as compared to
that of the nonadaptive version. It is evident that both iterative multiuser detectors
outperform the conventional matched filter and achieve a performance which is close
to the single user bound. Fig. 2.7 also shows the average number of iterations that
the iterative multiuser detectors iterate per symbol. As one can see, on average the
iterative multiuser detectors require less than 4.7 iterations/symbol at the SNR =

3 dB and 2.9 iterations/symbol at the SNR = 12 dB.
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Fig. 2.8 and Fig. 2.9 are plots of the estimates of the signal amplitude and the
noise variance (background noise plus unsuppressed MAI) respectively at the SNR
= 12dB for the first 5000 symbols. The result shows that the estimated signal
amplitude converges to the true amplitude Ag(i) = 1 and fy,zc(e)(i) converges to
approximately 0.13 within about 500 symbols. A faster rate of convergence can be
obtained by increasing the value of u however it is found that this would lead to an

estimated amplitude with larger variation.

Signal Amplitude Estimation
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Figure 2.8: Estimated signal amplitude

No Power Control

The near-far resistance property of the iterative multiuser detectors is examined
in this section. We obtain the BER of the lowest power user in the system for two
different cases. In the first case the power of the weakest user is at -20dB relatives to

the others. Asshown in Fig. 2.10, the performance of the matched filter is extremely



Multiuser Detectors for CMDA Systems 40

Noise Variance Estimation
0.5 T T T T T T T T T

0.45

0.4

0.35

0.3

0.25

Estimated Noise Variance

0.2

0.15

L L 1 1
o] 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

01 1 L

Time(symbol)
Figure 2.9: Estimated noise variance

poor in this case. The results show that increasing the SNR does not improve the
BER of the matched filter. This is the inherent property of the matched filter due to
the near-far effect. The BER of the iterative detector with known signal amplitudes
is very close to the single user bound despite the present of strong interferers. This
suggests that the iterative multiuser detector with known signal amplitude is near
far resistant. The iterative multiuser detector with parameter estimation performs
poorly in this case. This is because when the power of the interferers is large,
inaccurate estimation of the signal amplitudes of the interferers results in a large
amount of interference uncanceled. In the second case, the power of the weakest user
is at -6dB relatives to the others. The results in Fig. 2.11 show that the BER of
the matched filter is still unacceptably high while the iterative detector with known
signal amplitude again performs extremely well as expected. The BER of iterative

multiuser detector with parameter estimation, however, is very close to the non-
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adaptive version in this case. This suggests that, although the iterative detector
with parameter estimation is not near-far resistant, it does not require tight power

control in order to perform well.

2.5 Conclusions

In this chapter we have presented a number of interference cancellation detectors.
These include the successive interference cancellation (SIC) detector, the parallel
interference cancellation (PIC) detector and two proposed hybrid PIC-SIC detectors.
Through computer simulations we showed that by combining the PIC and the SIC
techniques, the hybrid PIC-SIC detectors inherit many good behaviours of these two
detectors. We have also presented in this chapter an adaptive multiuser detector
which performs joint symbol detection and parameter estimation in CDMA systems.
Simulation results show that if the relative power difference between users in the
system is not too large, the performance of this adaptive multiuser detector is very
close to the nonadaptive version (i.e where the signal amplitudes are perfectly known

at the receiver).



Chapter 3

Convergence Behaviour Analysis

of the PIC Technique

This chapter analyses the convergence behaviour of the parallel interference can-
cellation (PIC) technique in code division multiple access (CDMA) systems. It
introduces a general PIC detector model where it can be used to describe the inter-
ference cancellation process of the PIC detector with any type of tentative decisions.
With this model, the PIC detector can be viewed as either a feedback system or
an iterated-map neural network. Using the known results from previous stability
analysis in these areas, the chapter develops a general framework for analysing the
convergence behaviour of the PIC detector. This framework permits the derivation
of the sufficient condition for convergence of the PIC detector for a wide range of
tentative decision functions. As examples, the chapter derives the sufficient con-
ditions for convergence of the PIC detector with linear decision, clip decision and
hyperbolic tangent decision functions. The chapter shows that some well-known
conditions for convergence of the PIC detector with linear decision and clip decision
functions can be derived using this general framework. The chapter also examines

the convergence behaviour of the PIC detector with hyperbolic tangent decision
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function via computer simulation and compares it with analytical results.

3.1 Introduction

Since the PIC detector performs interference cancellation in multiple stages, it is
of interest to ascertain what the behaviour would be as the number of interference
cancellation stages L approaches infinity. This behaviour is largely dependent on
the types of tentative decision function that the PIC detector employed for estimat-
ing the multiple access interference (MAI) at the end of each interference cancella-
tion stages. In recent years there are a number of published works addressing the
convergence behaviour issue of the PIC detector for various types of tentative deci-
sion function. However, these works analyse the convergence behaviour of the PIC
detector for each type of tentative decision function separately. The convergence
behaviour of the PIC detector with linear decisions (also known as the linear PIC
detector), receives the most attention [15, 17, 18, 39, 68]. It is found that when the
spectral radius of the matrix (R — I is less than 1, where R is the crosscorrelation
matrix of the spreading codes, the linear PIC detector converges to the decorre-
lator detector as . — oco. The convergence behaviour of the PIC detector with
clip decision function is analysed in [108] using a nonlinear programming approach.
This PIC detector is found to converge to a fixed point if the maximum eigenvalue
of the matrix (R — I) is less than 1. In [100, pp. 363], it has been observed that
the PIC detector with hard decisions does not always converge to a fixed point as
I — oo. Later, it has been shown in [56] that the PIC detector with hard decisions
corresponds to a special case of a Hopfield neural network [46]. The existence of the
period-two limit cycle for this special case is proved in [16]. This cyclic behaviour
is also being observed in [76] for the iterative multiuser detector that utilises the a
posteriori probabilities to estimate the transmitted symbol. For a system with no

interchip interference, this iterative multiuser detector corresponds to the PIC de-
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tector with hyperbolic tangent decisions. Using the theory of contraction mappings,
a sufficient condition for convergence of this particular detector is derived. In [76], it
is shown that when the initialisation is carefully chosen such that the sufficient con-
dition is satisfied, convergence to a fixed point will always occur. On the other hand
when the sufficient condition is not satisfied, it may lead to the cyclic behaviour.
Given that there are many different types of tentative decision function that can
be used by the PIC detector for estimating the MAI at the end of each interference
cancellation stage, our aim in this study is to develop a general framework that
would allow us to analyse the convergence behaviour of the PIC detector for any
type of tentative decision function. In this chapter, we approach the parallel in-
terference cancellation problem from two different perspectives. First, we view the
PIC detector as a feedback system and apply some known results from the stability
analysis of the latter to investigate the convergence behaviour of the PIC detector.
We derive a general condition from which the sufficient condition for convergence
of the PIC detector for a wide range of tentative decision functions can be calcu-
lated. Second, we establish a one to one correspondence between the PIC detector
and an iterated-map neural network. Using this relationship, we apply the stability
analysis of the latter to the convergence behaviour study of the PIC detector. We
prove that the PIC detector with any nonlinear tentative decision function that is
monotonically increasing at a sublinear rate will either converge to a fixed point or
enter a period-two limit cycle. In addition, we derive the sufficient condition which
guarantees that the PIC detector with these types of tentative decision function
will always converge. Our analysis from both approaches reveals that by placing a
bound on the maximum slope of the tentative decision function, the PIC detector
will always converge to a fixed point for a given input and noise realisation. To the
best of our knowledge, there is no such general framework similar to ours has been

known. In [56], a connection between the PIC detector with hard decisions and a
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neural network has been established similar to our second approach. However, the
convergence analysis in [56] is only applied to the case of hard decision function
whereas the analysis in our second approach is more general.

The remaining of this chapter is organised as follows: In section 3.2, a synchronous
CDMA system model is presented. In section 3.3, we introduce a general PIC
detector model where it can be used to describe the interference cancellation process
of the PIC detector with any tentative decision function. Sections 3.4 and 3.5 are the
main parts of this chapter where we analyse the convergence behaviour of the PIC
detector from both feedback system and iterated-map neural network perspectives.
In section 3.6, computer simulation is used to examine the convergence behaviour

of the PIC detector with hyperbolic tangent decision function.

3.2 The System Model

We consider a synchronous CDMA system with K users transmitting simultaneously
to a common receiver over an additive white Gaussian noise (AWGN) channel. Each
user k € {1,..., K} is assigned a normalized signature sequence s of length M,
Sk € {\;—Ai[, ﬁ}M and transmits at symbol rate the information dy(i) € {£1}. We
use the time indices t and ¢ to denote the chip index and symbol index, respectively.

The transmitted signal of the k' user during the t‘* chip interval is

yk(t) = Ap(i) di (i) s (5) | (3.1)

where Ag(7) > 0 is the signal amplitude of user k& over symbol period i, di (i) is the
it symbol and t = Mi + j, for 0 < 7 < M — 1.
Thus, the baseband received signal at the chip rate is the noisy sum of all signals,

which can be written as .

r(t) =) u(t) +v(t) (3.2)

k=1
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where v(t) is a realization at time ¢ of the zero mean white Gaussian noise with
variance o?.

Now, let r(i) consists of M consecutive observations of the received data at the
chip rate t = Mi to M(i+1)—1ie. v(5) = [r(Md) r(Mi+1) -+ r(M(i+1)—1)]"

where T denotes the transpose operation. Similarly, we use

v(i) = [u(Mi) v(Mi+1) - v(M(E+1)—1)]", (3.3)

yi(8) = [ye(M3) ye(Mi+1) -+ yp(M(i 4 1) = D" (3.4)

for the corresponding noise vector and vector of user k contribution signals, respec-

tively. Therefore, the symbol rate version of (3.2) is:

K
r(i) = > y(i) + v (i) with yi(i) = Ag(i) di(d) sk - (3.5)
k=1

3.3 The PIC Detector

The underlying principle of interference cancellation methods is that each user es-
timates the multiuser interference contributed by other users and subtracts it from
the received signal to produce a better estimate of the desired signal. The PIC
detector can be implemented with multiple interference cancellation stages [97, 109
where the tentative decisions at the prior stage (sometime called iteration) are used
to generate the MAI estimates for the current stage. The idea here is that the ac-
curacy of the tentative decisions are presumably improved as the number of stages
increases and hence the PIC detector can suppress more and more interference. A
common feature of this type of PIC detection is that at each stage the detector
performs total interference cancellation where it attempts to completely remove the
interference caused by other users by subtracting all the estimated MAI from the
received signal. An alternative approach is to perform partial interference cancella-

tion as presented in [31] where only part of the estimated MALI is subtracted from
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the received signal at each stage. The idea is that for the earlier stages, the detector
cancels only a small fraction of the MAI since at these earlier stages the tentative
decisions are less reliable. For later stages, the tentative decisions are presumably
more reliable and the detector will attempt to cancel more MAL Tt is shown in [31]
that this detector has a significant capacity gain as compared to the conventional
matched filter. In this chapter, we only examine the convergence behaviour of the
PIC detector which performs total interference cancellation.

Let’s consider a PIC detector that employs any arbitrary tentative decision func-
tion for estimating the MAI at the end of each interference cancellation stage. Sup-
pose the PIC detector performs L interference cancellation stages, then at the nth
stage where n = 1, ..., L the estimate for the desired signal can be calculated by one
of the following set of equations depending on the type of tentative decision function

that is employed.

First form:
yM @) =) — Y A0 d V() sy (3.6)
ik
A6 = 9 (sE90) (3.7)

where czg_o)(z') = g, (sfr(i)) and gp(z) is the tentative decision function of user k.

Examples of the tentative decision functions that can be represented in this form
are: the hard decision function gi(x) = sgn(z) and the hyperbolic tangent decision
function gp(z) = tanh(agz) where oy are positive constants.

Second form:

y @) = @) - > By (3.8)

J#k
B (3) = hy (sg y,g“)(i)) , (3.9)

where B](CO)(‘i) = hy, (sfr(i)) and hy(z) is the tentative decision function of user k.

This second form can be described using the first form by setting gi(z) = 5 he(z),

k
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and vice versa. Since the analysis in this chapter can be applied to any type of
tentative decision functions, it is advantageous to have two different forms as we
find that for some tentative decision functions one form leads to a stronger sufficient
condition for convergence than the other. It should be noted that even though the
second form (3.8) does not explicitly include the signal amplitude Ay, it does not
imply that second form can only be used for PIC detection technique which requires
no knowledge of the signal amplitude since the information of the signal amplitude
can be embedded into the function hy(z). Examples of tentative decision functions
that can be described in this form are: the linear decision function with hg(z) = =

and the clip decision function with

Ay, x> Ag
he(z) = =z Ap >z > —Ag . (3.10)
—Ap < —Ag

In the following sections, we investigate the convergence behaviour of the PIC
detector with an arbitrary tentative decision function from both feedback system and
iterated-map neural network perspectives. To simplify the notation in the analysis,
we drop the symbol time index i since we are only interested in the behaviour of the

PIC detector in relation to the interference cancellation stage index n.

3.4 Convergence Behaviour: A Feedback System
Perspective

In the following, we employ a general method for analysing the stability of feedback
systems which is known as the small gain approach. This method can be used to

study the ¢,-stability of the feedback systems for any value p € [1, 0o].
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3.4.1 Background on Feedback Systems

Let S be the space of sequences in R¥ i.e., the sequence p € S, iff p = (p), p?, ...)

with p(™ € R¥ for n =1, 2, .... The £,-norms of the sequence p are defined as

[o’e] 1/p
Iplly = (Z Ip(”’|”> , for 1 <p < oo (3.11)
n=1

Ipllc = sup [P, (3.12)

n>

where |.| denotes any norms on R¥ or the absolute value of a number in R. Let
PN = (p(l), p?, ...,p™ ) denotes a truncated sequence of p. The corresponding

¢,-norms of the truncated sequence are defined as

N L/p
(Z Ip(”’l”> , for 1< p < oo (3.13)
n=1

Ipvlloo = sup [p™]. (3.14)

1<n<N

Ipw

Let the extended space £ be defined by
¢ ={p e S|VN € Z, |pnllp < 00} . (3.15)

Thus, é{fe is the space of all p € S with the property that VN € Z,, the truncated
sequence py has finite £,-norm.
We now state the small gain and the incremental small gain theorems. The proofs

of these theorems are omitted here and readers are referred to [28] for detailed proofs.

Theorem 3.1 (Sméll Gain Theorem) Consider the feedback system as shown in
Fig. 8.1 and suppose p € [1,00] is specified. Let Hy, Hy : £J5 — £F . Suppose there
are constants v, > 0 and v5 > 0 such that VN € Z and Vv; € fz{g with i = 1,2

I(Hevi)zllp < villvirlly - (3.16)
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Figure 3.1: General feedback system

Under these conditions, if

N2 <1l and (3.17)

lullp , [[uell, < oo, (3.18)

then the outputs w1, Wy of the feedback system as shown in Fig. 3.1 have finite

¢p-norms.

Theorem 3.2 (Incremental Small Gain Theorem) Consider the feedback sys-
tem as shown in Fig. 8.1 and suppose p € [1,00] is specified. Let Hy, Hy : I — LK.
Suppose there are constants y; > 0 and 2 > 0 such that VN € Z, and Vv; € E;’fe
withi=1,2

I(Hyvi)r — (Hv')rllp < Yillvir — Virllp - (3.19)
Under these conditions, if

MY <l, (3.20)

then Yuy, uy € X 3 a unique solution wi, wy € ¢X which can be obtained by
pe pe

iteration.

3.4.2 Application to the PIC Detector

To facilitate the analysis in this section, we will assume that there is no background

noise in the received signal. Now, by substituting r from (3.5) into (3.6), we can
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rewrite the PIC detector of the first form (3.6) as
S f’l(cn) — Apdy = ZAj Pik (dj - cig-n_l)) : (3.21)
itk
Let's denote the estimation error of the k' user’s desired signal on the lL.h.s. of

(3.21) by ei_n). Then

efc") = ij,k A; (dj - 9j(€§'n_1) + 4 dj)) ’ (3:22)
J#k
or in vector form
= (R A (d- g™+ Ad) (329

where g(.) acts componentwise. We thus have a feedback (on index n) system as

shown in Fig. 3.1 with

u” =d; W =Ad; (3.25)
and the output w{" = e™.
Since u&") = d and ug") = Ad Vn € Z,, the ¢,-norms of the inputs sequence

W, U, are not finite for any p € [1,00). Hence uy, uy ¢ €5, and therefore we cannot

analyse the £,-stability of the PIC detector using the small gain theorem for any
p € [1,00). However, their /-norms are finite. Thus, we can use the small gain

theorem to analyse the £-stability of the PIC detector.

Proposition 3.1 Let’s define

@7 = sup —|gk($)| ) (3.26)
w40 |7

For the PIC detector of the first form (3.6), the error in estimating each user’s signal

is bounded if
1

IR —DA[lo

max oy <

(3.27)
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where the o, operator norm is given by
IR~ DAl = max 3 Ayl (3.28)
J#k
Proof: By Lemma 3.1 and Lemma 3.2 in the Appendix, the corresponding values

of v; and 7, which satisfy the conditions

(R =DAX)nloo <M l1xXnloo s (3.29)

1(g(x))nlloo < 72 llxnlloo (3.30)

Vx € (X, and VN € Z, are

n=IR-DA|ew, (3.31)

Yo = mAX ©r - (3.32)

By the small gain theorem, if vy, < 1, the PIC detector is then ¢,-stable and thus
the £ ,-norm of the sequence of errors e™ is finite. A

The above result only ensures that the error in estimating each user’s signal is
bounded and does not guarantee that the PIC detector will converge. We now show
that by imposing an additional restriction on the tentative decision function, we can
ensure that the PIC detector will always converge. As it turns out, this restriction
is to have the maximum slope of the tentative decision function to be less than (or

equal to) its maximum gain.

Proposition 3.2 Let’s define

dgr(x)
g f— —
(I sup =7 = » (3.33)
Under the conditions that
max ¢, < . and (3.34)
k (R —T)Al

Wil < i, Vk, (3.35)
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the PIC detector of the first form (3.6) will converge to a fived point where the soft

estimates d™ — d* as n — oo.
Proof: By Lemma 3.3 in the Appendix, a value of 4; which satisfies the condition
(R -DAx)y — (R —DAX )yl < F1lIxy — x'vloo (3.36)
vx, X' € (K_and VN € Z,, is
=R -DA|lx - (3.37)
As proved in Lemma 3.4 in the Appendix, provided that |9]| < ¢} Vk the condition

I(g())nv — (&8(x))nlloo < F2 llxn = %' wlloo (3.38)
is satisfied Vx, x’ € ¢X_and VN € Z, if

;)'/2 = m]?x SOZ . (339)

Hence, by the incremental small gain theorem, the errors e™ — e*asn — oo if
172 < 1. From the definition of e™ in (3.23), this implies that the soft estimates
d™ approaches a fixed point d*. A

In order to obtain a more intuitive interpretation of the results derived previously,
we will show that these conditions are equivalent to having the tentative decision
function to satisfy a certain sector condition. Let’s define ¢ : R — R with ¢(0) = 0.

The function ¢ € sector (7, 72), where 11, 72 € R with 7 < ny, iff
ma?<zrd(r) <ma®, Vz€R with z #0 (3.40)
Thus, the condition (3.27) given in Proposition 3.1 is equivalent to
gk(z) € sector (=@, Pha) VK, (3.41)

where ¢? . = m. A geometric interpretation of the above result is illus-

trated in Fig. 3.2. It says that if the tentative decision function for all users lies
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Y =X @hax y y=x.08

max

y= gk(x)

Figure 3.2: Geometric interpretation of the sufficient condition for convergence

within the region that includes the x-axis and bounded by the functions g(z) =
—9 -z and g(z) = %, *, then the sequence of errors e is bounded. In addition,
if the tentative decision function of all users has a maximum slope less than (or
equal to) its maximum gain, i.e. |¢x| < @i VE, then the soft estimates d™ — d*
as n — oo. It should be noted that if a function gp(z) € sector (0,¢?,..) leads
to Jﬁ") — d}, then there exists another function in sector (—¥,,,,0), which is a
mirror reflection of the function gi(z) € sector (0, ¢?,,,) on the x-axis, that would
lead to d" — —dj.

Following the previous steps, the PIC detector in the second form (3.8) can be

rewritten as

e =" pi (Aj dj — (el + 4; dj)> ) (3.42)
j#k
or in vector form
e =(R-TI)(Ad—h(e" Y +Ad)) , (3.43)

where h(.) acts componentwise. This is in the feedback form as given by Fig. 3.1
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with
u” = Ad; W’ =Ad; (3.45)
and the output w§”) = e(™. We now state the stability and convergence results of

the PIC detector of the second form in the next two propositions, respectively. The
proofs for these results are similar to those in Proposition 3.1 and Proposition 3.2

and therefore are omitted here.

Proposition 3.3 Let’s define

h" )
O = sup [P ()] . (3.46)
z£0 7]

For the PIC detector of the second form (3.8), the error in estimating each user’s

signal 1s bounded if

1
h
max &L ——— | 3.47
Proposition 3.4 Let’s define
dhy(x)
h k
= , 4
Uy sup — (3.48)
Under the conditions that
max pp < _ and (3.49)
FTE T IR =Tl '
Wil < o VE (3.50)

the PIC detector of the second form (3.8) will converge to a fized point where the

soft estimates b — b* asn — oco.
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3.4.3 Examples

As examples, we apply the results derived previously to obtain the sufficient condi-
tion for convergence of the PIC detector for a number of tentative decision functions.
These tentative decision functions include the hyperbolic tangent decision, the lin-
ear decision and the clip decision functions. In addition, we also compare the new
sufficient conditions for convergence of the PIC detector that employs linear decision

and clip decision functions with some well-known conditions.

Hyperbolic Tangent Decision Function

For the PIC detector with hyperbolic tangent decision function tanh(ay z), we can
put it into the first form (3.6) by having gx(z) = tanh(ay ). For gi(x) = tanh(oy ),

it can be shown that the maximum gain ¢} and the maximum slope 1} are equal

gk(z
vi =l = sup | de)l , (3.51)
= Qg . (3.52)

Thus, by Proposition 3.2 the sufficient condition for convergence to a fixed point is

therefore

1
max o <

k IR —T) Afloo -
This condition is quite different to that presented in [76]. The sufficient condi-

(3.53)

tion for convergence derived in [76] involves finding the initialisations such that the
requirement for contraction mapping is met.
Linear PIC detector

The convergence behaviour of the linear PIC detector is studied in 15, 17, 18, 39, 68].

Suppose the linear PIC detector has L interference cancellation stages, the estimate
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of the desired signal of user k at the n‘® stage is

g =r = sTy" Vs (3.54)
ik
Let’s define 2 = 8,7 '™ and 2™ = | 2™ M 2T the linear PIC detector

can be described in matrix form as [15]

z™ =i — (R —-T)z"Y |

0)

z¢ =T,

drpic = sgn(z™) (3.55)

where ¥ = RAd + v is the K-dimensional matched filter output, R € R¥*¥ is
the symmetric correlation matrix with elements [R];x = pjx = sis;, A € RF*K is
the diagonal matrix of signal amplitudes, d € {£1} is the vector of binary user
symbols and ¥ is the zero mean Gaussian noise with variance E[vv’] = R. Using

(3.54), the decision statistic of the linear PIC detector at the final stage is

L
28 =Y (DR - . (3.56)
=0
It can be shown that :
Jlim (- R-D*=R"", (3.57)
=0

if the spectral radius of the matrix (R —I) is less than 1. The spectral radius of
the matrix © is defined as p(@®) = max{|\| : A € o(©)} where o(®) denotes the
spectrum of © [47, pp. 35]. Thus, as the number of interference cancellation stages
approaches infinity the linear PIC detector converges to the decorrelator detector if
p(R-1I) < L

The linear PIC detector (3.54) can be expressed in the second form (3.8) by

letting hy(x) = x Vk. For hy(z) = z, the maximum gain ¢j and the maximum slope
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i are also equal

B
o = ot = sup D] (3.58)
a0 |2l
~1. (3.59)

Hence, using Proposition 3.4 the sufficient condition for convergence to a fixed point
is
IR —Ifjc < 1. (3.60)

This condition is the same as the diagonal dominance condition

K
> lojkl < lowel =1 ¥k (3.61)
J#k

reported in [17]. For any @ € R¥*¥ it is shown in [28, pp. 27] that
pei[Ill,f(:)o] iL;IO) %’—’ = p(0®) . (3.62)
Thus for any operator norm, p(®) < |©],. This suggests that the well known
condition for convergence p(R — I) < 1 is weaker (less restrictive) than that derived
using this approach.
However, we can obtain the same condition for convergence as the well-known
condition p(R —I) < 1 by noting that for the linear PIC detector case, (3.43) is

equivalent to

e™ = (R —I)e" V. (3.63)

Thus, the errors e™ — 0 as n — oo if p(R — I) < 1. This implies that when there
is no background noise, the soft estimates bW - Adasn — oo if p(R—=1) < 1.
This is what one would expect because for p(R —I) < 1 the linear PIC detector
converges to the decorrelator and it is known that in the absence of background

noise the decorrelator can perfectly recover the transmitted information bits.
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Alternatively, the well-known condition for convergence of linear PIC detector
can also be obtained by realising that (3.63) is in the same feedback form as shown

in Fig. 3.1 with

u’ =0; u” =0; (3.65)

and wi”) = e(®, Since the £,-norms of the sequence uy, uy are finite (equal zero in
this case), we can therefore analyse the £y-stability of this detector. Using the small

gain theorem, it can be shown that if
IR-Ills <1, (3.66)

the linear PIC detector is £5-stable and thus the error sequence e will have finite ¢5-
norm. From the definition of the ¢y-norm, if the error sequence e = (e}, e® ... )
has finite #y-norm, then €™ — 0 as n — oco. Hence by showing that the linear PIC
detector is f9-stable, we can further conclude that the sequence of soft estimates
b™ — Ad as n — oo. Since the matrix (R —I) is real symmetric, p(R — I) =
IR — I||2. Thus, we have the condition for convergence which is the same as the

well-known result.

Clip decision function

The convergence behaviour of the PIC detector with clip decision function has been
studied in [108]. It is found that this detector converges to a fixed point if the
maximum eigenvalue of the matrix (R — I) is less than 1. For the PIC detector with
clip decision function, we can express it in the second form (3.8) with hy(z) defined

as in (3.10). Similar to linear decision function, the clip decision function has equal
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maximum gain and maximum slope

hy
it = ol = sup 12
a0 ||

=1. (3.68)

: (3.67)

Thus, by Proposition 3.4 the sufficient condition for convergence to a fixed point is
therefore

IR ~Iljoo <1, (3.69)

which is stronger than the known condition Ay (R — I) < 1 derived in [108] since

IR~ Il = p(R —1T) (3.70)

> /\maac(R - I) : (371)

We will obtain this known condition using the analysis presented in the next section.

3.5 Convergence Behaviour Analysis: A Neural
Network Perspective

The analysis in the previous section assumes that there is no background noise.
In this section, the presence of background noise is taken into account. We will
firstly prove that the PIC detector with any nonlinear tentative decision function
that is monotonically increasing at a sublinear rate, i.e. magnitude increases less
than linearly, will either converge to a fixed point or enter a period-two limit cycle.
We then derive a sufficient condition which guarantees that the PIC detector with
these types of tentative decision function always converge to a fixed point. Due to
the nonlinearity of the tentative decision function the exact calculation of the fixed
point is intractable. It should also be noted that the results in this section do not
apply to the PIC detector with linear decision function nor hard decision function

as they do not satisfy the condition of monotonically increasing at a sublinear rate.
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3.5.1 Iterated-Map Neural Networks

I 1, llK_l Ig

\
h— H—
[ / II

Figure 3.3: An iterated-map neural network

Consider an iterated-map neural network with K neurons as depicted in Fig. 3.3.
The state of neuron k£ at time n is denoted by ufcn). The input to each neuron k is
the sum of the external input I and the weighted sum of the states of other neurons
at time n — 1. For the iterated-map neural network where the state of the neurons

are updated in parallel, the state of neuron £ is given by

plt = g (Ik +) Tj,kugn)> ; (3.72)

J#k
where Tj ), = Ty ; is the weight on the interconnection which couples neuron j and
neuron k, and fi(x) is a nonlinear input-output transfer function.
The stability of this iterated-map neural network is analysed in [66]. We now
summarise the main results of [66] in the following theorems. The proofs of these

results are omitted here and readers are referred to [66] for the detailed proofs.

Theorem 3.3 Consider the iterated-map neural network as illustrated in Fig. 3.3
with the states of the meurons updated in parallel as described by (3.72). Provided

that the input-output transfer function satisfies the conditions

1. fe(z) is monotonically increasing for all k, and
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2. | fr(x)] < Clx|™ for some constant 0 < 7, < 1 and {y < 00, and all x € R

then the iterated-map network will either converge to a fized point or enter a period-

two limit cycle.

Theorem 3.4 Let denote the maximum slope of the input-output transfer function

fr(x), which satisfies conditions 1 and 2 in Theorem 3.8, by By i.e.,

df
Br = Sl;p % ) (3.73)
Define a diagonal matrix B = diag{0:, s, -+, Bk} and a symmetric matriz

T = [T;,] with Ty = 0 Vk. Under the condition that the matriz (T + B™") is
positive definite, the iterated-map neural network will always converge to a fixed

point.

3.5.2 Application to the PIC Detector

The soft estimate of the information bit of user £ in (3.7) can be rewritten as

d'fcn) = Ok (Sg r— Z Aj ,0j,k d;n—l)) 5 (374)

J#k
= G (Ak SET— > ApAjpix cig-"‘”> ‘ (3.75)
J#k

where Gi(r) = gr(77). Thus, we have arranged the PIC detector of the first form
(3.6) into the same form as that of the iterated-map neural network. Each active
user in the CDMA system can be viewed as a neuron in the neural network with
cigc") represents the state of the neuron k, Ajsi r represents the external input to
neuron £, and —Ay A; p, « is the strength of the connection from neuron j to neuron
k. Similarly, the PIC detector of the second form can also be rewritten into the form
similar to the iterated-map neural network by substituting (3.8) into (3.9). Thus we

have

B = b (sir =D ik Bf,-”"") - (3.76)

J#k
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Therefore by using Theorem 3.3 and Theorem 3.4, we obtain the following corol-

lary and propositions which state the convergence behaviour of the PIC detector.

Corollary 3.1 The PIC detector of the form (3.6) or (3.8) with an arbitrary tenta-
tive decision function that is monotonically increasing at a sublinear rate will either

converge to a fized point or enter a limit cycle of period-two.

Proposition 3.5 (First Form) Denote the largest positive eigenvalues of the sym-
metric matriz (R — 1)A? by Aoz (R — I)A?) and the mazimum slope of the tenta-

tive decision function gg(x) by ¢j i.e.

d gi(x)
de

Pi = sup (3.77)

Under the condition that

Ay
Amaz (R —T)A2)
the PIC detector of the first form (3.6) with any tentative decision function that

Vi, (3.78)

is monotonically increasing at a sublinear rate will always converge to a fived point

where the soft estimates d®™ — d* asn — .

Proof: Since gi(z) = gi(5;), the maximum slope of gi(x) is i—’;gc As shown
previously in (3.75), the PIC detector of the first form (3.6) is equivalent to the
iterated-map neural network (3.72). Hence, by Theorem 3.4 this detector will con-

verge to a fixed point if the matrix

B, -AR-DA (3.79)
- o e . . Ha wg ,l/}g
is positive definite where B, = dlag{f‘—ll, y ORI i L

A sufficient condition for the matrix [B;' — A (R —I) A] to be positive definite
is
Ay
9
<
Vi Aoz (A (R —T) A)
The result immediately follows as the eigenvalues of A (R —1I) A are the same as

the eigenvalues of (R —I) A%. A

k. (3.80)
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Proposition 3.6 (Second Form) Denote the largest positive eigenvalues of the
symmetric matriz (R — 1) by Apae (R —I) and the mazimum slope of the tentative

decision function hg(z) by ¥} i.e.,

h
== _— 81
Uy, sup — - (3.81)
Under the condition that
1
< ——— Yk )
k < )\-maw(R _ I) V ) (3 82)

the PIC detector of the second form (3.8) with any tentative decision function that
is monotonically increasing at a sublinear rate will always converge to a fixed point

where the soft estimates b®™ — b* asn — oo.

Proof: This proposition is proved in a similar way as for Proposition 3.5. By
rewriting the PIC detector of the second form (3.9) into (3.76) and recognizing its
connection with the iterated-map neural network, we can then apply Theorem 3.4.

Thus, the detector will converge if the matrix
B,'-R-1I) (3.83)

is positive definite where By, = diag{yt, &, -, P}, The result immediately
follows which concludes the proof. A

Similar to the results in the previous section, the sufficient conditions for con-
vergence derived using this approach also demonstrate that by placing a bound on
the maximum slope of the tentative decision function, the PIC detector will con-
verge to a fixed point. Moreover, this bound is depended on the correlation between
the spreading codes and the signal amplitudes of the users in the system. We now
compare the bounds derived here with those derived in the previous section to de-
termine which approach would give a weaker (less restrictive) sufficient condition

for convergence.
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For the PIC detector of the first form, the upper bounds on the largest allowable

slope of the tentative decision function are

1
w{:dback - 384
i = R - DAl (3.84)

as given by the feedback approach and

nnet — Ak’
ubl,k )\maz((R - I)Az)

(3.85)

as given by the iterated-map neural network approach. We cannot conclude which
approach would give a weaker sufficient condition for convergence for this general
case because the second approach gives a different bound for each user. However,

for the special case when all users have equal signal amplitude with A, = a Vk, then

we have
N (3.86)
) a|l(R =Dl
= e (387
Since
Amae(R —T) < p(R—T) (3.88)
<R =T (3.89)

the iterated-map neural network approach gives a weaker sufficient condition for
convergence for this special case.
For the PIC detector of the second form, the upper bounds on the largest allow-

able slope of the tentative decision function are

1
pidback — _ — ___ (3.90)
- IR — Il

for the feedback approach and

Jnnet 1

s — 3.91
ub2 )\ma,z(R - I) ) ( )
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for the iterated-map neural network approach. For this second PIC detector form,
wiggac’“ < Y€t and therefore we can conclude that the iterated-map neural network

approach gives a weaker sufficient condition for convergence.

3.5.3 Examples
Hyperbolic Tangent Decision Function

Let’s consider the PIC detector with hyperbolic tangent decision function, tanh (o)
where oy, are some constants. This PIC detector can be expressed by the first form
(3.6) with gx(z) = tanh(akz). As previously shown in section 3.4, the maximum

slope of the function tanh(oyz) is

dg,c(:c)
o =y .92
(Ut Sl;p s Xy, (3.92)

Using Proposition 3.5, the sufficient condition for convergence to a fixed point is

therefore

ap < vk. (393)

Clip Decision Function

The PIC detector with the clip tentative decision function can be expressed into the
second form (3.8) by having hy(x) defined as in (3.10). The maximum slope of the

clip function is
vr =1, (3.94)
Thus, using Proposition 3.6, the sufficient condition for convergence is
Amaz(R—I) < 1. (3.95)

This sufficient condition for convergence turns out to be exactly the same as that

derived in [108].
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3.6 Simulation

We use computer simulation to examine the convergence behaviour of the PIC detec-
tor with hyperbolic tangent decision function in this section. We consider a CDMA
system with 4 active users. All four users have equal power with Ay = 1. Each user
is assigned a spreading code sequence of length M = 5 where the correlation matrix
is ~ _
1 06 06 06
06 1 02 02
R= . (3.96)
06 02 1 02

06 02 02 1

With these system parameters, the corresponding sufficient condition for conver-

gence derived using the feedback approach is

1

fdback __

max o < Qpar = 70— (397)
k IR — If|oo

and the iterated-map neural network approach is

nnet __ 1

< - @@
. amaz )\mam(R - I)

Vk, (3.98)

where ||R —I|loc = 1.8 and A0 (R —I) = 1.2583. As mentioned previously, the
sufficient condition derived using the latter approach is weaker than the former.

In order to find the largest allowable ay for which the PIC detector with hyper-
bolic tangent decision function still converge to a fixed point via simulation, we ran
a series of Monte Carlo simulations for different values of ay. The following results
are obtained at the signal to noise ratio SNR = 0dB, where the SNR is defined as
AZ/c?. Fig. 3.4 shows the probability that the detector enters the period-two limit
cycle for different values of cy. The result is obtained by averaging the number
of times the detector enters a limit cycle over 250,000 different realisations of the

received signal vector r. As shown in Fig. 3.4, the detector converges to a fixed
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Figure 3.4: Percentage of entering the period-two limit cycle for different ay

point for all ap < 0.8 and starts to exhibit cyclic behaviour of period two when
the value of oy is greater than 0.8. This suggests that the upper bound on the
largest allowable ay for which the PIC detector still converges to a fixed point is
af™ = ().8. This bound is very close to the analytical bound ¢ = 0.795 derived
by using the iterated-map neural network approach. Simulation result also indicates
that as the maximum slope of the hyperbolic tangent decision function increases,
the probability that the detector enters a limit cycle also increases.

Fig. 3.5 shows the soft estimate of individual user symbol at the end of each
interference cancellation stage, J,ﬁ”’(i), when o = 0.5 Vk. With this value, the
soft estimates of the transmitted symbol of all users converge to a fixed point after
several interference cancellation stages as expected. We also find that for «y with
values that is slightly smaller than "¢ it may require more than 100 interference

cancellation stages for the estimates of the user symbols to converge to a fixed value

as being shown in Fig. 3.6.
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The simulation results in Fig. 3.7 and Fig. 3.8 are obtained for the cases when
ap = 1 Vk and oy = 2.5 Vk, respectively. They illustrate the behaviour of the PIC
detector when the tentative decision function does not satisfy the sufficient condition
for convergence. As one can observe, the detector exhibits a cyclic behaviour of
period two for both cases. However, for the case ay, = 1, it requires more number of
interference cancellation stages before it enters the limit cycles and also the estimated
values of the data symbols are not closed to £1 as compared to the case oy = 2.5.
These observations can be explained by the fact that as «p becomes large, the

hyperbolic tangent decision function approaches the hard decision.

3.7 Conclusions

In this chapter, by introducing a general PIC detector model, we have developed a
general framework for analysing the convergence behaviour of the PIC detector. This
framework permits the derivation of the sufficient condition for convergence of the
PIC detector for a wide range of tentative decision functions. We have shown that
some well-known conditions for convergence of the PIC detector with linear decision
and clip decision functions can be obtained using this framework. We analysed the
convergence behaviour of the PIC detector by using known results from the stability
analysis of feedback systems and an iterated-map neural network. Both approaches
lead to the same conclusion that that by placing a bound on the maximum slope of
the tentative decision function, the soft estimates of the information bits produced
by the PIC detectors approach a fixed point as n — oo. Analytical results derived
from the second approach also shows that the PIC detector with any nonlinear
tentative decision function that is monotonically increasing at sublinear rate will
either converge to a fixed point or enter a limit cycle of period-two. Computer
simulation was also used to examine the convergence behaviour of the PIC detector

with hyperbolic tangent decision function. The simulation and analytical results
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obtained were found to be in close agreement.

3.8 Appendix

Lemma 3.1 Let H € RF*K gndx ¢ 81{{6 where E{f; 15 the extended space of sequence

in RE as defined by (3.15). A walue of v which satisfy the condition
I(Hx)nll, < vllxnll, YN € Zy (3.99)
18
v=I[Hlp , (3.100)
where p € [1,00] and ||H]|, denotes the operator norm of the matriz H.
Proof: Note that the value 7 is not uniquely defined by (3.99). However, we are

interested only in the value of v that can be calculated from the matrix H. From

the definition of the operator norm, we have

H
IH][, = sup | Fx], (3.101)
0 [l
Hence by choosing
v=IHl,, (3.102)

the condition in (3.99) will be satisfied. A

Lemma 3.2 Let x € ¢X, where €5, is the extended space of sequence in R¥. Let
Hx = f(x) where £(.) = [f1(.) fo(l) -+, fr()]? acts component. Let’s define
P, = sup @) Ve e R . (3.103)
20 7]

A wvalue of v which satisfy the condition

[(HX)wlloo < 7|

Xnlloo VN € Zy (3.104)
18

Y = max gy (3.105)
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Proof: Now
[(Hx) vl[oo = () y[loo (3.106)
= max_ [f(x™)le (3.107)
= max max |fi(z{")] , (3.108)

where |.|o, denotes £o-norm on R¥ and |.| denotes the absolute value of a number

in R. Since
|fe(@)| < prlz| VZ ER, (3.109)
we then have
(n)
<
I(Hx)nlloo < max max g fz;"| (3.110)
(n)
< .
< max; max m]?,x|:rk | (3.111)
= Max %N || oo - (3.112)

Thus, by choosing v = max;, ¢y the condition in (3.104) will be satisfied. A

Lemma 3.3 Let H € RF*K gnd x, x' € é{fe where é{fe s the extended space of

sequence in RE. A wvalue of 7 which satisfy the condition
[(Hx)y — (Hx)nllp < vllxy — X'nll, YN € Z4 (3.113)
15
v=Hl - (3.114)
where p € [1,00] and |H||, denotes the operator norm the matriz H.
Proof: Since H is a linear mapping,
I(Hx)y — (Hx )y l, = [[H(x — x') ]|, - (3.115)

Now, if x, X' € £, then (x—x') € £K. Thus by Lemma 3.1 the results immediately

pe>
follows. A
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Lemma 3.4 Let x,x’ € (X where X is the extended space of sequence in RX. Let

Hx = f(x) where £(.) = [f1(.) o) -+, fx()]T acts component. Let’s define
o = sup LN (3.116)
w40 ||
Py = Sl;p de—g(:) . (3.117)

Provided that Y| < wr Yk, a value of ¥ which satisfy the condition

|(Hx)y — (HX)y|loo < Allxy — X'n]loo YN € Zy

18

5= max gy
Proof: Now

1(Hx)y — (HxX ) vlloo = (%) y — £(x) ylloo
= max |f(x™) — £(x'™)|w

1<n<N

= (n) - 1(n)
= max max |fu(2}”) = fule"),

(3.118)

(3.119)

(3.120)

(3.121)

(3.122)

where |.|o, denotes £o-norm on R¥ and |.| denotes the absolute value of a number

in R. Now, if |t < ¢k, we then have
|fe(z) — fu(@)| < p |z — 2| Vz, 2" €R.
Hence, if || < ¢k

(n)
() x — (Hx)wlloo < max max gy o — 2"

< max ¢; max max |x£") = x',(cn)l
; 1<n<N  k

= max ¢, %y — % wlloo -

(3.123)

(3.124)
(3.125)

(3.126)

Thus, if |¢k| < @k, then by choosing ¥ = max;, ¢y the condition in (3.118) will be

satisfied. A



Chapter 4
Space-Time Coding

This chapter addresses the issues of designing space-time codes in spatially correlated
fading channels. Analytical upper bounds and asymptotic tight expression for the
pairwise error probability of space-time coded systems in spatially correlated fading
channels are derived. Based on the performance analysis, the chapter presents the
rank determinant and the trace design criteria for constructing space-time codes to
operate in spatially correlated flat Rayleigh fading channels. Furthermore, some new
space-time trellis codes based on a new design criterion, which involves minimising
the sum of the pairwise error probability of all distinct pairs of codewords, are
also presented. These new space-time trellis codes are found through systematic
computer search. Simulation results support the claim that these new codes are
superior to other known codes constructed using the rank determinant and the

trace criteria.

4.1 Introduction

Wireless communication systems operating in flat fading environments can increase

their capacity significantly by employing multiple transmit and multiple receive an-

76
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tennas [36, 93]. In [35], a layered space-time architecture for wireless communication
in flat Rayleigh fading environment with multiple antennas is designed. It demon-
strates that when the fading coefficients are statistically independent and known at
the receiver, the capacity of the link increases linearly with the smaller of the num-
ber of transmit and receive antennas. Following these works, Tarokh, Seshadri and
Calderbank [89] propose a space-time trellis code modulation scheme to exploit this
potential increase in capacity promised by multiple transmit and multiple receive
antennas. It is found in [41, 89] that the pairwise error probability of the space-time
codes in quasi-static Rayleigh fading channels is determined by the rank and the
determinant of the distance matrix. Using this analysis, a rank determinant design
criterion is proposed which involves maximising the minimum rank and the mini-
mum determinant of the distance matrix over all distinct pairs of codewords. Based
on this criterion, a number of QPSK and 8PSK codes are constructed by hand in
[89]. These codes achieve the maximal possible diversity gain, but not the full coding
gain. Subsequently, some other QPSK codes with better performance are found by
computer search in [12]. Recently another design criterion for constructing space-
time trellis codes in quasi-static Rayleigh fading channels is derived in {21, 110]. It is
found that when the product of the minimum rank r of the distance matrix and the
number of receive antennas is greater or equal to 4, the pairwise error probability
is determined by the squared Euclidean distance between two codewords (i.e. trace
of the distance matrix). Thus, the code design criterion is then to maximise the
minimum squared Euclidean distance. It has been shown by simulation that a code
with a smaller determinant can still achieve better performance than the one with a
larger determinant, provided that its minimum squared Euclidean distance is larger
[110].

The rank determinant and the trace design criteria in [21, 89, 110] are derived

based on some upper bounds of the pairwise error probability of the space-time
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coded systems in independent fading channels. Such spatially independent fading
only occur if the multipath reflections are uniformly distributed around the receiver
and that the multiple antennas at the receiver are sufficiently spaced apart. This
assumption is often hard to satisfy in practice. At the mobile unit (MU) end,
even thought it is frequently immersed in a complex scattering environment where
the received signals are linear combination of several multipaths reflected from the
nearby local scatterers, the antennas at the MU cannot be sufficiently spaced apart
due to the limited size of the MU. In the isotropic scattering environments where the
MU receives signals from all directions with equal probabilities, the received signals
at two MU antennas can be assumed to be spatially uncorrelated if the two antennas
are separated at a distance greater than \/2 where \ is the carrier wavelength.
However, it has been experimentally demonstrated in [37] that the scattering at
the MU is more likely nonisotropic, resulting in a nonuniform distribution of the
angle of arrival (AOA) of the multipath components at the MU. This nonuniform
distribution of AOA significantly increases the cross-correlation among the antennas
at the MU. In addition, the base station (BS) antennas in land radio systems are
typically placed highly above the ground and are not surrounded by many local
scatterers. As a result, spatial correlation also arises among the antennas at the BS.

In this chapter, we derive new upper bounds for the pairwise error probability
of the space-time coded systems in spatially correlated fading channels. Based on
these analytical pairwise error probability bounds, we derive the equivalent rank
determinant and trace design criteria for constructing space-time codes in correlated
fading channels. The rank determinant and the trace design criteria have a common
theme in which they minimize only the probability of error of the dominant error
event. In particular, for each of these design criteria there exists many space-time
trellis codes and they don’t necessary have the same performance. For example, it is

found in [107] that there are over 250 different 4 states QPSK space-time trellis codes
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for 2 transmit antennas that would satisfy the rank determinant design criterion.
These observations motivate us to construct new space-time trellis codes based on
the criterion of minimising the sum of the pairwise error probability of all possible
error events. Since all codewords are likely to be transmitted with equal probability,
it is expected that the sum of the pairwise error probability of all possible error events
is a better measure of the error performance than the pairwise error probability of
the dominant error event. Through computer search, it is found that only a limited
number of space-time trellis codes exist that would satisfy this criterion. This sum
of pairwise error probability criterion is similar to the distance spectrum criterion
reported in [6]. There are some codes constructed based on this distance spectrum
criterion have been presented in [54]. However they all use BPSK modulation and
achieve a bandwidth efficiency of 1 bit/s/Hz. The space-time trellis codes presented
in this chapter all use QPSK modulation and achieve a bandwidth efficiency of 2
bits/s/Hz.

This chapter is organised as follows: In section 4.2, a general space-time coded
system with multiple transmit and multiple receive antennas is presented. The per-
formance of the space-time system in spatially correlated Rayleigh fading channels
is analysed in section 4.3. Based on the analytical expressions of the pairwise error
probability, codes design criteria are derived in section 4.4. In section 4.5, the con-
struction of space-time trellis codes is described. Computer simulations are used to
compare the performance of the newly constructed codes with other known codes.
The following notation is used throughout the chapter: The superscript 7 and # de-
note the transpose and conjugate transpose operations, respectively. The Kronecker
product operation is denoted by ®. The zero-mean, circular-symmetric, complex
Gaussian distribution with variance of o2 is denoted by CA(0, ¢?). The matrix Iy

(Oy) is the N x N identity matrix (matrix of all zeros).
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Figure 4.1: The block diagram of the transmitter and receiver
4.2 The System Model

Consider a wireless communication system with np transmit and ng receive an-
tennas as depicted in Fig. 4.1. At each time ¢, the encoder produces nr outputs
x1(t), To(t), ..., Tnp (t) where z;(t) is a signal from a certain signal constellation with
unit average energy. These outputs are then simultaneously transmitted by nr

antennas. At the receiver, the received signal at the j** receive antennas is
nr
ri(t) = hiz z(t) VEs +14(t) (4.1)
i=1

where F, is the transmitted power per symbol at each transmit antenna and n;(t)
is the additive noise component at the receive antenna j. The additive noise is
white and CA(0, 1) distributed. The coeflicient h; ; is the fading gain for the path
from transmit antenna i to receive antenna j and is assumed to be CN(0,[X],,4)
distributed where X is the channel correlation matrix defined later in this section
and the index g = (j — 1)ny+1i. We assume the channels undergo quasi-static fading
(i.e. the fading coefficients remain constant during one frame of 7" symbol periods
and change independently from one frame to another). Thus, the received signals

at the receive antenna j during T' symbol periods can be written in vector form as:

r; =/ ES X hj + n;, (42)
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where hj = [th h27j OO hnT’j]T, l’lj = [’I"Lj(l) TLJ(Q) OO0 ’I’LJ(T)]T and

[ 611) @) - (1) ]
| au(T) 25(T) -+ 2an(T) |

Stacking the T observations per receive antenna yields the Tng sufficient statistics
r=[{ry - r)]"=\E, Xh+n, (4.4)

whereh = [h] h] --- hl [¥,n=[nf n --- nl |"and X = L,, ® X. The additive
noise is assumed to be white in space and time (i.e. Ennf] =1Iz,,). However, we
allow the fading process to be spatially correlated with covariance E[hhf] = X (i.e.

3 need not be proportional to the identity matrix).

4.3 Performance Analysis

In this section, we first review the derivation of the pairwise error probability pre-
sented in [14], which is asymptotically tight to the true pairwise error probability.
We then derive two upper bounds for the pairwise error probability of the space-time
coded systems in correlated fading channels. These upper bounds are more accurate
than the asymptotic expression [14] at low SNRs. The derivations of these upper
bounds follow closely to those presented in [89, 110]. However, the difference is that
the upper bounds derived in [89, 110] are for independent fading channels while the
upper bounds derived here are for spatially correlated fading channels.

Assuming ideal channel state information (CSI) is available at the receiver and
a maximum likelihood receiver is employed, the receiver will erroneously select the

codeword X when the codeword X is transmitted if

nR nr 2 T ng nr 2
SN @) = Y higEiVES <D i) =D himt)VE| . (45)
=1 j=1 =1 =1 j—1 =1




Space-Time Coding 82

This is equivalent to

|t — v/E;Xhl|? < ||r — /E.Xh|*. (4.6)

4.3.1 Asymptotic Tight Pairwise Error Probability

As from (4.6), the pairwise error probability P(X — X) of mistaking X for X is
P(X — X) = Pr(f < 0| X is transmitted ) , (4.7)
where f = ||r — v/Es&h|2 — ||r — vE;Xh|%. By defining the vector

Z = VEh (4.8)

and the Hermitian matrix

PHY —xHy XxH _xH
F = ) _. (4.9)
X - X Orny,

the test statistic f can be written in the quadratic form as
f=2z"Fz. (4.10)

The characteristic function of the distribution of the test statistic f as derived in
[83] is

1
[T o (s + o )n

where N is the number the distinct nonzero eigenvalues o, of R, xF with multi-

Gy(s) = Ele™*] = (4.11)

plicity p, and R,z x is the covariance matrix of the random vector z given that the

codeword X is transmitted

" EX Exx?
R, x = E [zz"|X] = . (4.12)
EXE EXSXT+1
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Suppose R xF has {a,}5_, negative eigenvalues and {a,}i_;,, positive eigenval-

ues, the exact pairwise error probability is given by [14]
/ /Joo+e SfG ds df ,
joote 271']
joo+e d s
_ / s (s)— |

L 1 -1
= — ZRGS (SHT]:[ lan (S 5 1/an) , 81 = E) . (413)

The residue of a function f(s) at a pole s; with multiplicity of 1 can be calculated

as [82]

1 gt

Res(f(s), i) = =1 sh_’rrslz W[(S — s f(s)] . (4.14)

The expression of the exact pairwise error probability above does not give any insight
into the structure of the codes. In this section, we are interested in the case when the
SNR — oo (or equivalently Fs — 00) as this leads to a closed form expression for
the pairwise error probability which shows its dependency on the system parameters

such as codewords employed, fading correlation and system diversity.

Proposition 4.1 Assuming X is full rank, as E; — 0o half of the nonzero asymp-
totic eigenvalues of R, xF are equal to minus unity with multiplicity of rng where
7 is the rank of the distance matriz Ax ¢ = (X — X)H(X —X) . The other half are
positive and equal to the eigenvalues of Fs%(X — /f’) (X — é\?)

Proof: To see this, let us first begin by expanding the expression of R, xF:

EX ExXH XX —xHxy xH_xH
11zz|XF = ~
EXY EXTXT 41 X —X Orn g
ES(XEX — XPX) + E,ZXH (X - X) E,(xH — pH)

EXS(XEX —XHX + EXSXH(X —X)+ X - X EAX(X - &H)
(4.15)
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and defining the following matrices:

IT'L n
U= o (4.16)

X
V=S@X-2)[ -2 I, | (417)
7 — OnTnR OnTnRxTnR (4 18)

(X — &) (1
Thus, R,zxF can be expressed in term of U, V and Z as:

R, xF=E,UV+7Z. (4.19)

Using [14, Appendix B, Theorem 2|, the nonzero eigenvalues of E,UV + Z are
arbitrary close to the nonzero eigenvalues of E;VU and Z(I — U(VU)~'V) as E
approach infinity if

A

VU=% (¥ - X)(x - &) (4.20)

has full rank. Since Ay 3 = (X — X)# (X — X) is nonnegative definite Hermitian
matrix and VU is assumed to be full rank, it follows that the number of eigenvalues
of E,VU are nrng. These eigenvalues are real and linearly proportional to the F,.
Let’s define Ay g =1, ® Ay i and through simple manipulation, it can be shown

that

Z(I-U(VU)'V) =

OnTHR On.TnR XTng

. . o R . . (4.21)
(X —X)— (X — X)A;(}X(X - X —(X - X)A;(}X(X — )

Thus, the nonzero eigenvalues of Z (I — U(VU)~1V) are the nonzero eigenvalues of
—(X - X)A;(lx(X — X)H with multiplicity ng. For a negative projection matrix,
its eigenvalues are minus one or zero [64, pp. 14]. Since —(X — X)A;(IX(X - X)H

is a full rank negative projection matrix, its eigenvalues equal to minus one with
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multiplicity of np. Therefore, the eigenvalues of Z (I — U(VU)~1V) are equal to
minus unity with multiplicity of nrng.
When Ay g is not full rank (i.e. r = rank(Ax ) < nr), VU will has rank rng.

The number of positive eigenvalues of E;VU and the multiplicity of the eigenvalue

minus one of Z (I — U(VU)~V) will then be rng. A

Proposition 4.2 The asymptotic pairwise error probability is equal to

Eo 2rng — 1
( X) ™™g
P(X — = o . 4.22
Hl:f Al ( )
where \; are nonzero eigenvalues of 3(X — /\?)H(X — X).

Proof: By the Lebesgue’s dominated convergence theorem, the limit and the

integral commute. Therefore, using (4.13)

R i joo+e ds
lim B P(X — X) = lim E"R / s Gy(s)

Ei—o0 Es—o00 —joote % !
joote ds
_ / lim E7™ s Gils) =2 . (4.23)
_joo+6 Es—o0 27l'j

Since half of the nonzero eigenvalues of R,,xF are equal to minus unity with

multiplicity of rngr and the other half are positive which equal to the eigenvalues of

EX(X — /'f’)H(X — X), it is obvious that

. 1
lim E™® s Gy(s) =

By =00 s (s—1)mr (=1)m= T[T Ais

(4.24)
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where \; are the nonzero eigenvalues of (X — X )H(X — X). Thus,
N joote 1 ds
lim EI""P(X — X) =
Fanbo 3 (X —X) /_J-OOJre s (s —1)me (=1)mr [[[27 Ns 2w

= —Res ( L 8 = 1)
s (s —1)mr (—=1)m= Hgf A d
-1 drnr—1 1
(rng — DITT2T g dsmmr—1 grmetl (—1)mnn

1

s=1
1 2rnp — 1
= TR ) (4.25)
Hz:i{ Al ™R

where the (rnp — 1)th derivative is calculated using Leibniz’s rule of differentiation.
The asymptotic pairwise error probability in the proposition is then immediately
followed. A

This expression for the pairwise error probability is asymptotically tight to the
true error probability as compared to the standard Chernoff bound at high SNRs.
However at low SNRs, this asymptotic expression very loose. A similar asymptotic

tight bound on the pairwise error probability is also derived in [87].

4.3.2 Pairwise Error Probability Upper Bound

Through simple manipulation, the condition given by (4.6) can be shown to be

equivalent to
VE; B (X =) (X —X)h < 2Re{n (X — X) h}, (4.26)

where Re{.} means the real part of an argument. The term on the left hand side
of (4.26) is a constant and the term on the right hand side of (4.26) is a zero mean
Gaussian random variable with variance 4d?(X, X) where
T ngp | nr
X K) =D Ry (malt) — ()
t=1 j=1 |i=1

—hi (X - X)X - X)h. (4.27)

2
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Assuming ideal CSI is available at the receiver, the pairwise error probability con-

dition on h is upper bounded by [89]

. E, (X, X
P(X — X | h)<exp (——El—l) . (4.28)
The correlated fading channels can be written as
h=xY2h, (4.29)

where X is the nyng x nyng fading channel correlation matrix and h is an nrng

zero mean i.i.d complex vector with covariance E [flﬁH | = Luyng. Thus,

(X, X) = ! (V) (x — X)H(x — X) /?h (4.30)
Let’s define the nonnegative definite Hermitian matrix

GX, X, )= (ZTVHE (x - ) (x — &) B2, (4.31)

Then by using eigenvalue decomposition, we can represent G(X, X, %) by a unitary

matrix W and a real diagonal matrix A
G(X,X,Z) = WAWH | (4.32)

The columns of W, {wy, Wy, ..., Warnp } are a complete orthogonal basis of C"T"x.
They are given by the eigenvectors of G(X, X, 32) with the corresponding eigenvalues
A; > 0, which are the diagonal elements of A. Let ¢ denote the rank of G(X, X, 3)
and hence the number of nonzero eigenvalues \;. Equation (4.30) can be rewritten

as

q
(X, X) =Y A I8 (4.33)
=1

where

B =h" w (4.34)
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Since h is zero mean complex Gaussian random vector with covariance E[hhf] =

I

ngng and {Wi, wo, ..., Wpn.} is an orthogonal basis of C""& [, are zero mean

independent complex Gaussian random variables with variance one. Thus, |G| are

independent Rayleigh distributions with pdf

p(IBil) =2 |G| exp(—IAiI") - (4.35)
Hence, by averaging the conditional probability of error
R Es q A 2
P(X — X | h) <exp (— Zl:ﬁl 16 ) (4.36)

with respect to independent Rayleigh distributions of ||, we get the following upper

bound of the pairwise error probability

. 1
X=X i
1
et (Tupmg + (Bo/4) (SV2) (X — B)i(X — &) 312

= : (4.37)

A~

 det (T + (Bo/4) = (X — D) (X - )

The second and third lines in (4.37) follow from the following matrix properties

det(I + By =[]0 + p), (4.38)

det(I + A B) =det(I + B A) (4.39)

respectively, where p; are eigenvalues of B. It follows from the inequality in (4.37)

that for high SNR
1

7 .
I=1 i

This asymptotic bound is different from the asymptotic tight expression in (4.22)

P(X — X) < (E,/4)7¢ (4.40)

by only a constant of

1 2q—1
10log(4) — ?Olog i (4.41)

q
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decibels. As the diversity ¢ — oo, this difference approach 0 dB.
When the fading channels are independent, i.e 3 = I, the pairwise error proba-
bility is
P(X - X)< : — . (4.42)
det (Lupns + (Bo/4) (X = 2)%(X - B))

Since (X — X) = I, ® (X — X), equation (4.42) can be rewritten as

nr

1

PX - X) < . -
det (InT + (B,/4) (X - X)H(X — X))

(4.43)

which is the same as [89, Eq. (8)]

4.3.3 Pairwise Error Probability Upper Bound for Large ¢

When ¢ = rank(G(X,X,3)) is large, this implies that d?(X,X) is the sum of a
large number of independent variables. Thus, according to the central limit theorem,

the distribution of D = d?(X, X) approaches a Gaussian distribution with mean

q
[p = Z A (4.44)
]

and variance .
05 =) M. (4.45)
1=1
Note that since \; are nonzero eigenvalues of a nonnegative definite Hermitian ma-
trix, D is always positive. Hence by averaging (4.28) over the Gaussian distribution
of D, the pairwise error probability can be upper bounded by
- oo E, D
P(X - X) < exp | ———— ) p(D)dD (4.46)
D=0 4
where p(D) is the pdf of the Gaussian random variable D. Using the identity

‘00 1 92 _
/ exp(—yD)p(D)dD = exp (5729% - wm) Q (——~7 D9D a D) >0 (4.47)
D=0
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the upper bound of the pairwise error probability in (4.46) can be rewritten as

= 1 q E q (Es/4) q AZ_ZQ /\l
P(X — X) < exp (—Ef Z)\l?__s Z)‘1>Q< 1=1 "l I=1
AR SRS Npopy

(4.48)

where Q(z) is the complementary error function. For high SNR (i.e. large Ej)

q ‘ q
B/) D X — 2w B |0 (4.49)
Vi M 4\G
Consequently, by using the inequality
1 .
Q) < 3 e x>0 (4.50)

the bound in (4.48) can be further approximated by

L1 By <
PX —X)< 5 exp <—Z IZ—I:)\Z> (4.51)

When the fading channels are independent, the upper bound of pairwise error

probability in (4.51) is reduced to

~

P(X —X) <

N | =

E, :
exXp (— ZR Z O'l)
=1
T nm
1 ES’TLR i =
=5 exXp (— 3 Z Z |y — xt|2> (4.52)

t=1 i=1

where r and g, are rank and nonzero eigenvalues of the distance matrix Ay ¢ =
(X — X)#(X — X), respectively. This expression is the same as one derived in

[21, 110].

4.4 Space-Time Code Design Criteria

In this section, we describe the rank determinant, the trace and the sum of pairwise
error probabilities design criteria for constructing the space-time codes to operate

in spatially correlated fading channels.
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4.4.1 The Rank Determinant Criterion

From (4.40), the pairwise error probability is exponentially dependent on the rank ¢
and inversely proportional to the determinant [] A; of the matrix G(X, X, %) . Thus
in order to minimised the error probability, we need to maximise the minimum rank
q and the minimum determinant [] A; of the matrix G(X,X,X) over all pairs of
distinct codewords. When G(X, X, Y) is full rank, the upper bound of the pairwise
error probability in (4.40) can be written as

1
|5 (X = X)H (X~ X)[re

P(X — X) < (E,/4) "= (4.53)
The above criterion is then equivalent to:

1. Ensure Ay ¢ is full rank for all pairs of distinct codewords.

2. Maximise the minimum determinant det(Ay %) along all pairs of distinct code-

words.

Thus when G(X,X,X) is full rank, the rank determinant design criterion is inde-

pendent from the fading channel correlations.

4.4.2 The Trace Criterion

This trace criterion is only applicable when ¢ = rank(G(X,X, X)) is large (i,
g > 4) since it is based on the performance analysis for large ¢. As from (4.51),

minimising the pairwise error probability is equivalent to maximise the sum of the

eigenvalues of G(X,X, ). Since

q
Z A = trace{G(X, X, )}, (4.54)
=1

the trace criterion is then to maximise the minimum trace of the matrix G(X, X, %)

over all pairs of distinct codewords. It can be noticed that the trace criterion does not
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guarantee full diversity space-time codes to be constructed. In addition, the design
criterion is dependent on the channel correlation matrix even when the channel

correlation matrix and the distance matrix Ay ¢ are full rank.

4.4.3 Sum of PEP criterion

Both the rank determinant and the trace design criteria aim to miminise the error
probability of the dominant event. We now describe a design criterion which involves
minimising the sum of all pairwise error probabilities. From (4.40), the pairwise error
probability is inversely proportional to [[/_,; \;. Hence, to minimise the sum of the

pairwise error probability of all error events we need to minimise

E-1
f(E) = ZZ%M , (4.55)
=17

e=1 d>e

where )\f'd are the nonzero eigenvalues of G(X,, Xq,X)) and F is the total number
of codewords. For a space-time code with rate of R bit/sec/Hz, the total number of
codewords F = 277 which is generally very large. For example, if the space-time
code has a rate of 2 bit/sec/Hz and the frame length is 100 symbols, there would be
E = 2°% possible codewords. When G(Xe, X4, 2)) is full rank, the pairwise error
probability is upper bounded by (4.53). Thus, minimising f(F) (and hence the sum

of the pairwise error probability of all error events) is now equivalent to minimising

-1

- L -
KE) = Z Z |(Xe — Xa) (X, — Xg)|"= .00y

e=1 d>e

Note that d(E) depends on the number of receive antennas but is independent of

the fading channel correlation. The codes design criterion is then equivalent to:

e Ensure that Ax_x, is full rank for all pairs of distinct codewords.

e Minimise the metric d(F).
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4.5 Space Time Trellis Codes
4.5.1 The Space-Time Trellis Encoder

Ag i).l
e A &),

u
=
o

Il(‘)

TR RS (? /
g l mn

(x)
KT/ g :),IFI

Figure 4.2: Space-time trellis encoder

We consider a space time trellis encoder with MPSK modulation as shown in Fig.
4.2. This space time trellis encoder achieves a bandwidth efficiency of m = log, M
bits/s/Hz. We use the same encoder representation as described in [21, 110]. At
each time ¢, m binary inputs I1(t), I5(t), ..., I,(t) are fed into the encoder which
consists of m feed forward shift registers, each with a memory order of v. The &k
input bit I;(t), which is fed to the k' shift register, and the delayed bits in the kth

shift register’s memory are then multiplied with the i** encoder coefficients set

gi: - [ g(i),kv gi,kv g g;i/k,k ] ) (4'57)
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where gh €{0,1,.. M -1} withk=1,2,..,m; 1 =0,..,vand i = 1,...,n7. The
multiplier outputs are added modulo M and mapped into signals from the MPSK

constellation, giving the encoder output to the i** transmit antenna

zi(t) = M (ZZ iy Te(t—1) mod M) , (4.58)

k=1 =0
where M(z) = exp(2mjz /M) is the mapping function that maps integer values to the
MPSK constellation. The memory order of the k** shift register, v, is determined
from the total memory order v by
v+k—1
= — 4.59
o) (49

where |z] the maximum integer not larger than z.

4.5.2 Construction of the Space-Time Trellis Codes

Using the sum of pairwise error probabilities design criterion, we perform a system-
atic search to construct new QPSK space-time trellis codes for two transmit and
two receive antennas. We perform a search over all possible pairs of error event with
a path length of T' = 4 + maxy v,. The values of d(E) in Table 4.1 are computed for
this path length. We have tried with a longer path length but the same codes are
found. Even though these codes are designed for two receive antennas, simulation
results show that they also perform well for other number of receive antennas. The

newly found codes with 4, 8, 16 and 32 states are summarized in Table 4.1 where

8k = [ (90 Toser 1 90000y (Gug o Tog s -+ i) 1 - (4.60)

The codes that are found in [89] (TSC) by the rank determinant criterion and in
[21] (CYV) by the trace criterion are included as references. All these codes achieve
full diversity. Their corresponding minimum determinant and minimum trace (i.e.

squared Euclidean distance) are also shown.
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Table 4.1: QPSK space-time trellis codes for correlated flat Rayleigh fading

95

| Code | v | g1 and gy | det(Ax x) | trace(Ax ¢) | d(E) |

g1 = [(07 2)) (2, 0)]

TSC |2 | g = _(0, 1), (1, 0)] 4 4 95.72
g1 = (07 2)7 (1’ 2)]

CYV |2 |ge= (2, 3), (2, 0)] 4 10 30.97
g1 = :(2> 3)7 (2> 2)]

New | 2 | go = [(l, 2), (2, O)] 8 8 29.41
g1 = [(07 2>a (2v O)]

TSC | 3| g = [(07 1), (1, 0), (2, 2)] 12 8 17.76
g1 = [(2a 2)1 (2a 1)]

CYV |3 |g= (2, 0), (1, 2), (0, 2)] 8 12 15.18
g1 =[(2,3),(0,2)]

New | 3| g2 = (0, 2), (1, 0), (2, 2) 16 10 9.96
g1 = (O’ Z)a (27 0)» (Oa 2)

TSC | 4| ga= (0,1),(1,2),(2,0)] 12 8 11.50
g1 = (L 2)7 (17 3): (3’ 2)]

CYV |4 | g = [(2, 0), (2, 2), (2, 0) 3 16 7.89
g1 = [(27 Q)a (3a 2)’ (O’ 2)

New | 4| g = (2, 0), (2, 3), (2, 2)W 32 12 5.40
g1 = (Or 2)a (2a 2)’ (3’ 3)

TSC | 5| g2 =[(0,1),(1,1),(2,0), (2, 2)] 12 12 5.28
g1 = (Oa 2), (2a 3)a (1, 2)]

CYV |5 | g= _(2,2),(1,2), (2,3), (2,0)] 20 16 3.83
g1 = (Ov 2).’ (37 2>= (2’ O)]

New | 5| g9 = [(2, 2), (2, 1), (0, 3), (2, 2)] 36 14 2.98

4.5.3 Performance of Space-Time Trellis Codes

This section compares the performance of the new codes with the TSC and CYV
codes for both independent and correlated flat Rayleigh fading. All these codes
achieve a bandwidth efficiency of 2 bits/s/Hz. At the receiver, a maximum likelihood
Viterbi decoder with ideal channel state information is employed. We simulate for
different number of receive antennas. In the simulation, each frame consists of 130

coded symbols transmitted out of each transmit antenna. The frame error rate
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Frame Error Rate

SNR (dB)
Figure 4.3: Performance of 4 states QPSK codes with 2 and 4 receive antennas

(FER) performance of these codes are obtained and plotted against the signal to
noise ratio (SNR). We define SNR = nyFE,/Ny where Ny is the variance of the
additive noise at the receiver. For independent fading channels where the fading
coefficient h; ; is a complex random variable with variance of 0.5 per dimension, this
SNR is equal to the average received signal to noise ratio per receive antenna.

The performance of the 4, 8 and 16 states QPSK space-time trellis codes with 2
and 4 receive antennas in quasi-static Rayleigh fading is shown in Fig. 4.3, Fig. 4.4
and Fig. 4.5, respectively. The transmitted signals from different antennas are as-
sumed to undergo independent fades. For the 2 receive antennas case, the newly
found codes outperform the TSC codes by approximately 0.6 dB to 1.5 dB and the
CYV codes by 0.1 dB to 0.5 dB. For the 4 receive antennas case, the new QPSK
codes perform better than the TSC codes by 0.7 dB to 2.2 dB. The new 8 and 16
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Figure 4.4: Performance of 8 states QPSK codes with 2 and 4 receive antennas

states QPSK codes perform equally well as the CYV codes while the new 4 state
code performs slightly poorer than the corresponding CYV code by 0.1 dB.

The simulation results in Fig. 4.3, Fig. 4.4 and Fig. 4.5 all show that the CYV
codes achieve a better performance than the TSC codes despite having smaller
(or equal) minimum determinant. This further demonstrates the weakness of the
rank determinant criterion. As shown in Table 4.1, all new codes have smaller
minimum square Euclidean distances (i.e. minimum trace) than the corresponding
CYV codes. However simulation results show that the new codes still perform better
than the CYV codes for 2 receive antennas case in spite of smaller minimum squared
Euclidean distances. This suggests that by taking into account all the possible error
events into the design process, additional performance gain can be obtained, and

that the metric d(F) is a better measure of the code error performance than the
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Figure 4.5: Performance of 16 states QPSK codes with 2 and 4 receive antennas

determinant and the trace metrics. For 4 receive antennas, the new codes do not
outperform the CYV codes like for the 2 receive antenna case because the new codes
are designed for 2 receive antennas. More importantly, when 4 receive antennas are
employed, the system doesn’t need to operate in the high SNR region to obtain a
reasonable FER. Hence the metric d(E) is no longer closely related to the code error
performance because it is based on the asymptotic (high SNR) analysis.

The performance of these space time trellis codes in correlated fading environment
is shown in Fig. 4.6. The results are obtained for 4 and 8 states codes with two
receives antennas. The correlation factor between any two propagation paths is 0.5.
As shown in Fig. 4.6, the new 4 and 8 states codes have the same performance as
the corresponding CYV codes, while perform better than the 4 and 8 states TSC
codes by 1.2 dB and 0.4 dB respectively.
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Figure 4.6: Performance of 4 and 8 states QPSK STTCM in correlated Rayleigh

fading with 2 receive antennas
4.6 Conclusions

In this chapter, we analysed the performance of the space-time coded systems
that employ multiple transmit and multiple receive antennas in spatially correlated
Rayleigh fading channels. We presented an asymptotic tight expression and two
upper bounds for the pairwise error probability. A number of new QPSK codes
for two transmit antennas based on a new criterion of minimising the sum of the
pairwise error probabilities were found. Simulation results showed that these new
codes are superior to the other codes found by the rank determinant and the trace

design criteria.



Chapter 5

Joint Space-Time Trellis Decoding

and Channel Estimation

This chapter addresses the issues of joint space-time trellis decoding and channel
estimation in time-varying fading channels that are spatially and temporally cor-
related. A recursive space-time receiver which incorporates per-survivor processing
(PSP) and Kalman filtering into the Viterbi algorithm is proposed. The channel
time-evolution is modeled by a multichannel autoregressive process, and a bank of
Kalman filters is used to track the channel variations. Computer simulation results
demonstrate that a performance close to the maximum likelihood receiver with per-
fect channel state information (CSI) can be obtained. The effects of the spatially
independent fading channel assumption on the performance of a receiver operated

in spatially correlated time-varying channels are examined.

5.1 Introduction

The works described in the previous chapter on space-time coding assume that the

receiver has perfect channel state information of the wireless fading channels. This

100
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assumption is only applicable to wireless applications that have limited mobility
where the channels can be accurately estimated by using pilot symbols inserted pe-
riodically during transmissions. In this chapter, we consider the problem of decoding
space-time trellis codes in time-varying fading channels. In recent years, there are a
number of published works addressing this issue [23, 24, 60, 106]. In [23], an iterative
space-time receiver that performs joint channel estimation and detection based on
the expectation-maximization (EM) algorithm has been described. It requires the
insertion of pilot symbols at the start of each frame. The performance of this receiver
is reasonably good when the length of the frame is relatively short, but degrades
significantly as the frame length increases. Thus for very fast time-varying channels,
many pilot symbols would be needed and hence reduce the system throughput. In
[60], Liu et al. proposes an iterative receiver based on Kalman filtering for decoding
the Alamouti’s space-time block code [7]. It models the time-varying channels as
autoregressive (AR) processes and uses a Kalman filter for channel tracking. Al-
though this receiver can accurately track the fading channels, it is very sensitive to
channel estimation errors. Even small channel estimation errors can cause a con-
siderable performance loss. In recent years, per-survivor processing (PSP) has been
known as an effective approach for simultaneous estimation of the data sequence
and the unknown channel parameters in single-input-single-output (SISO) systems
[79]. In [106], a PSP based receiver for decoding space-time trellis codes is pro-
posed which uses an accelerated self-tuning least mean square (LMS) algorithm for
tracking the fading channels. It provides good performance for both slowly and
moderately time-varying channels. Similarly to [106], a PSP based receiver which
combines the Viterbi algorithm with data-aided channel estimation is proposed in
[24]. However, the difference is that it uses a bank of Kalman filters to track the
channel variations. Simulation results in [24, 106] show that these PSP based re-

ceivers generally offer superior performance than other competing receivers such as
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the Wiener Interpolation Filter (WIF) [41], the iterative Kalman filter [24] and the
iterative EM based receiver [23].

All the works mentioned previously are based on the assumption of independent
and identically distributed (i.i.d) fading channels. However, in real propagation
environment, spatial correlation in the fading channels can arise due to the insufli-
cient spacing of the antennas at the mobile station and the lack of local scatterers
around the base station antennas [2, 20, 86]. Such spatial correlation can consider-
ably reduce the performance of the receiver if it is not properly incorporated into
the design of the receiver. In [72, 73|, we introduce a general state space model for
general diversity communication systems and propose a number of receiver struc-
tures for joint channel estimation and decoding in time-varying correlated diversity
channels. The application of these receivers to OFDM systems, where the diversity
is obtained from the redundancy in the frequency domain, is discussed in [72, 73, 50].
The approximation of the correlated time-frequency channels by the multichannel
AR processes is detailed in [72, 50]. In this chapter, we apply the PSP receiver
derived in [72, 73] to the problem of joint space-time trellis decoding and channel
estimation in a wireless communication system with multiple transmit and receive
antennas. This PSP receiver incorporates the per-survivor processing and Kalman
filtering into the Viterbi algorithm similar to that in [24]. However our proposed
PSP receiver implicitly includes the channel estimation errors into the path metric
of the Viterbi algorithm while the PSP receiver in [24] computes the path metric as
if there is no channel estimation error. More importantly, we do not assume i.i.d fad-
ing channels and allow the channels to be spatially and temporally correlated. The
proposed PSP receiver accounts for such spatio-temporal correlation in the channels
when performing the channel estimation and the decoding steps. Simulations in
section 5.5 demonstrate that in fast time-varying fading channels, the performance

of a receiver can degrade to an unacceptable level if the spatial correlation in the
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channels is ignored. To our knowledge, there is no other work on receiver structure
design which performs joint space-time trellis decoding and channel estimation in
spatially correlated time-varying fading channels.

This chapter is organized as follows. In section 5.2, the system model for trans-
mission using multiple transmit and receive antennas is introduced. In section 5.3,
the wireless fading channels and their spatio-temporal correlation is reviewed. The
approximation of the physical wireless fading channels by the AR processes is pre-
sented. This approximation method is differed to one in [50, 72] for the OFDM
systems. In section 5.4, the proposed PSP receiver for joint space-time trellis de-
coding and channel estimation is described. Some simulation results to compare
the performance of proposed receiver to the maximum likelihood (ML) receiver with
perfect CSI is presented in section 5.5. In addition, the effects of the i.i.d fading

assumption on a receiver’s performance are examined.

5.2 The System Model

Consider a wireless communication system with np transmit and ng receive anten-
nas. At each time #, the encoder produces ng outputs zy(t), z2(t), ..., Tn, () where
x;(t) is a signal from a certain signal constellation with unit average energy. The nr
coded symbols are chosen by the encoder so that a certain criterion is satisfied. The
ny coded symbols output from the encoder are then simultaneously transmitted by

th

nr antennas. At the receiver, the received signal at the j** receive antenna, is

ri(t) = Z hij(t) 2:(t) VEs +n(t) .

= /E, x(t)hy () + n;(t) (5.1)

where F, is the transmitted power per symbol at each transmit antenna, x(t) =

[21(t) 22(t) ++ Tup ()], hy(t) = [h1;(t) hoj(t) -+ hag;(£)]T and n;(t) are inde-



Joint Space-Time Trellis Decoding and Channel Estimation 104

pendent samples of a zero-mean complex Gaussian process with variance Ny. It is

further assumed that the additive noise is white in space and time

N05 T), =k
Blng) nyft 41 = 4 ) 52)

0, j#k
where the superscript * denotes the complex conjugate operation and 6(.) denotes
the Dirac delta function. The coefficient h, ;(t) is the fading gain for the path
from transmit antenna i to receive antenna j. The gain h;;(t) is modeled as a
complex Gaussian random process with zero-mean and variance one. We assume
that the information is transmitted in a frame of T' coded symbols per transmit
antenna. It is further assumed that the fading gains are independent from frame
to frame. However, within each frame the fading gains can be temporally and
spatially correlated. The spatio-temporal correlation between any two fading gains
is discussed in more details in the next section. Stacking the observations from the

receive antennas yields the ng sufficient statistics

r(t) = [ri(t) ra(t) - 1an (0] = VEs x(8) h(t) + n(t) (5.3)

where h(t) = [T (£) W (2) -+ W (BT, 0(e) = [m1(6) ma(t) -+ may (BT and x(t) =
L., ®x(t).

5.3 The Channel

5.3.1 The physical channel model

In this chapter, the channel model developed in [2] is used to characterize the fre-
quency nonselective multiple-input-multiple-output (MIMO) wireless fading chan-
nels with multiple transmit and multiple receive antennas. We consider a wireless
communication channel between the base station (BS) and a mobile unit (MU) as

depicted in Fig. 5.1.
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Figure 5.1: Channel model with local scatterers around MU

This multiple antennas configuration is initially proposed in [86] to investigate
the effect of the spatial correlation on the capacity of multielement antenna systems.
Subsequently, it has been extended in [2] to include the effect of the motion at the
MU. We consider only the Rayleigh fading channels in this work. Hence, the fading
channel model described in this section is a special case of that presented in [2]. The
BS has no local scatterers as it is typically situated well above the city buildings,
while the MU is immersed in a complex scattering environment. The BS receives
signals through a narrow beamwidth A = arctan(R/D) where D is the distance
between the BS and the MU, and R is the radius of the scatterer ring. Let the BS
be equipped with ngg antenna elements and the MU with n,;; antenna elements.
Let 1 <p, g <nggand 1 <[, m < nyy denote the indices of the BS antennas and
MU antennas respectively.

Suppose there are IV independent scatterers, .S;, around the MU. The normalized

complex path gain h,,(t) connecting the BS antenna element p (BS,) and the MU
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antenna element [ (MU;) can be described mathematically by

N :

hp(t) = —\/I_N_ ;gi X exp {jd)i — %[fip + &) + g2 fp[cos(pMY — ')f)]t} , (5.4)
where g; is the amplitude of the wave scattered by the ith scatterer toward the MU
such that N~ Zfil Elg?] =1 as N — oco. Thus, in the limit case the fading gain
h,(t) constructed according to the model represents a Rayleigh fading. The phase
shift introduced by the ith scatterer is denoted by ;. It is assumed that {4},
are i.i.d. random variable and is assumed to be uniformly distributed over [—m, 7).
The maximum Doppler shift is denoted by fp = v/\ where v is the speed of the
MU. The direction of motion of the MU is v. &, and §; are the distances from the
ith scatterer to BS, and MU, respectively. These distances depend on the angle of
arrival (AOA) ¢MY of the traveling wave from the ith scatterer toward the MU . By
assuming that D > R > max(6,4, di ), which is applicable for many practical cases
of interest, it has been shown in [2] that the cross correlation between the gains of

two arbitrary communication link h,,(t) and kg, (t) can be expressed as

1270, cos(
ﬂpz,qm<7>=E[hp,z<t>hi;,m<t+T>J=eXp{J . <pq>}

X /7r exp{j%[(quA sin(ap,) sin(MY) + dypm, cos(pMY — Bim)]

-

— j2m forleos(¢™” — )} f (")™Y (5.5)

where f(¢™V) is the pdf of the AOA seen by the MU. It is often assumed that the
MU receives signals from all direction with equal probability, i.e. the AOA seen by
the user is uniformly distributed over [—m, ) with f(¢MY) = 1/(2) [20, 51, 86].
However, empirical measurements in [37] have shown that the AOA distribution are
likely to be nonuniform. In [1], the von Mises angular distribution has been used
for modeling the nonuniform AOA distribution at the MU and the validity for the

use of the von Mises angular distribution has been verified with the measured data.
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The von Mises angular distribution pdf is given by

eXP|[K COS -
f(¢NIU) — p[ ZWE(?(KI) /J‘)]’ ¢MU c [_ﬂ_’ 7T) (5.6)

where Io(.) is the zeroth-order modified Bessel function, u € [—w, 7) accounts for
the mean direction of AOA seen by the user, and x > 0 controls the spread of the
AOA. For k > 3, the spread of the AOA of the scatter components at MU is roughly
equal to 2/+/k. Using this distribution, a closed-form and mathematically tractable
expression for the space-time cross-correlation between the two links, hy,;(t) and

hgm(t) of the MIMO wireless fading channel has been derived in [2]

ppl,qm(T) _ eXP[JC‘,;Z(C;)S(Oqu)] Io({/e2 — a2 bl2m - Cf;qAQ Sin2(apq)

+ 2abyy, cos(Bim — ¥) + 2¢pgAsin(ogg)[asin(y) — by sin(Bin, )]

— j2k[acos(i — ) — bm cos(pt — Bim) — Cpg sin(ayg) sin(p)]}?) , (5.7)

where a = 21 fpT, byn = 27dpn/\ and cpq = 2m0pq/ A

5.3.2 Autoregressive Channel Model

It has been shown in [88, 103] that the time varying Rayleigh fading channels can
be well described by a hidden Markov model. As has been done in [25, 95] for
channel equalization problems, the time varying fading channels can be modeled by
a multichannel autoregressive (AR) process of order P

P

h(t) =Y A(p) h(t —p) + (1), (5.8)

p=1

where the matrices A(p) are the time invariant matrices which are determined from
the second order statistic of the fading channels and v(t) is a zero mean complex
white Gaussian noise process with the correlation matrix E[v(¢)vZ(t+7)] = Qd(r).

By postmultiplying (5.8) with h¥ (¢ — 7) and taking the expectation on both sides
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we arrive at [78]

P

R(-7) =) A@R(p—7)+Qi(r), r=0,..,P (5.9)

p=1

where R(7) = E[h(t)h# (¢t + 7)] is the cross-correlation matrix. Provided that the
correlation matrices R(7) is available, the matrices A(p) and Q can then be obtained
by solving the above equations. This technique for determining the AR coefficients
is similar to [11, 22] and those in [25, 95] for channel equalization problems. In this
chapter, the proposed receiver uses Kalman filters for estimating the fading channel.
Thus, in order to keep the complexity of the receiver at a reasonable level, we use
the first order AR process to model the fading channels. For P = 1, the channel

fading process has an AR representation:
h(t)=Ah(t—-1)+v(t) . (5.10)
The matrices A and Q are evaluated by solving (5.9) for 7 =0, 1

A=R(-1)R7}0),
Q = R(0) — AR(1) . (5.11)

Let the BS and the MU assume the roles of the transmitter and receiver respectively.
Thus, nr = ngs and ng = nyp. With this role assignment, [R(7)]e,f = ppi,qm(T)
is the cross-correlation between two fading gains h,,(t) and hqm(t + 7) where 1 <
p, g <npand 1 <[, m < ng. Due to the arrangement of h(t) in (5.3), the indices
e = p+(I-1)ng and f = g+(m—1)ny where 1 < e, f < nrng. The cross-correlation
term Py gm(7) is computed using (5.7).

For the spatially independent channel, the channel autocorrelation is then given
by the Jake’s formula pyip(7) = E[hu(t)hiy(t + )] = Jo(27 fpTs7) where Jo(.) is
the zeroth-order Bessel function of the first kind as in [23, 24, 57, 60, 106]. The
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matrices A and Q are then given by

A=Jy2rfpTy)I (5.12)

Q=(1-J4@rfpT))I. (5.13)

This turns out to be the same approximation method as used in [57, 60] for MIMO

systems.

5.4 Receiver Structures

Equations (5.3) and (5.10) can be seen as the state-space equations which describe
a linear time varying system. The state of the system is the gain of the fading
channels and A is the state transition matrix. Given A, Q and x(t¢), a minimum
variance unbiased estimate of the channel gains can be obtained recursively via a
Kalman filter [9]. However, the matrix x(¢) is the transmitted coded symbols by ny
transmit antennas at time ¢ and is therefore unknown to the receiver. Thus, this
problem can be posed as the channel estimation with unknown signal model, where
the unknown model parameter x(¢) belongs to a known discrete set. This problem
can also be viewed as joint channel estimation and decoding of the space time trellis
code in time-varying fading channels. At the receiver, the matrices A and Q can
be estimated from the received signals using the technique described in [95] for the
SISO case. In this work, we assume that these matrices are known at the receiver

and focus on the problem of joint decoding and channel tracking.

5.4.1 Maximum Likelihood Sequence Estimation (MLSE)

When the ideal channel state information CSI h(¢),t = 1, ..., T are available, the
problem of decoding the space time trellis codes in the time-varying fading channels

can be easily achieved by using the Viterbi algorithm which minimizes the following
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metric

T
JME=N"x() — VEs xm(t) BO|? (5.14)
t=1

where the subscript m denotes the mth hypothesized sequence {x,,(t)}_, being
transmitted. Since the perfect CSI is not available at the receiver, we need to per-
form joint channel estimation and decoding. Assuming each sequence is transmitted
with equal probability, this problem can be solved by finding the sequence {x,(t)}7_,
which maximizes the likelihood function p(r(1),--- ,v(T) | {xm(t)}_,). This can be
achieved by using a bank of Kalman filters to track the time-varying channels, one
for each of the possible sequence. Given a sequence of the received signals {r(¢)}L |,
the channel estimate and its associated error covariance for the sequence {x,,(t)}1_;
can be computed recursively via the measurement and time update equations of the

Kalman filter modeled to that sequence:

Measurement Update Equations:

b (£[t) = B (£t = 1) + Gin(®) (x(8) = v/ Bxn(£) Bun (2]t — 1))
1) = VEZn(tlt — DXE(E) (Boxm(t) Sltlt — 1) X2 () + Nolup) ™
Snltlt) = Sntlt = 1) = VE;Gu(t)xm(t) Sm(tlt —1) . (5.15)

Time Update Equations:

2t 1) = A flm(tlt)

I,
St +1t) = A B, (tHAT 1+ Q. (5.16)

Using these channel estimates, the receiver recursively computes the log likelihood
metric for the hypothesized sequence m according to

T
TNESE = — N el (1) Q! (Hem(t) + log det (L) (5.17)

t=1
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where €,,(t) and 2,,,(¢) are the innovation sequence and its associated covariance for

the Kalman filter tuned to the hypothesized sequence m:

6m(t) = I‘(t) - \/EsXm(t) flm(tlt - 1) ) (518)
Qm(t) = EsXm(t) Em(t|t - 1) XTFTIL(t) + NOInR . (519)

The receiver then chooses the sequence that maximises the log likelihood metric
JMLSE -
g :

5.4.2 A Per-Survivor Processing (PSP) Approach

For a space time trellis code with the rate of R bits/sec/Hz, there are 28T possi-
ble sequences {x,,(t)}_;. Hence we would need a bank of 2#7 Kalman filters to
implement the MLSE receiver. This direct implementation of this optimal receiver
is prohibited to be used in practical applications as the frame length T is gener-
ally large. In recent years, per-survivor processing [79] with Kalman filtering has
been seen as an attractive approach to performing maximum likelihood sequence
estimation over mobile radio channels that are rapidly time-varying [25, 74] (with
nr = ng = 1). In [72, 73], wé have extended these methods to perform joint
channel estimation and decoding of block codes in general diversity time-varying
correlated fading channels. In this chapter, we extends this work further to per-
form joint channel estimation and space-time trellis decoding by incorporating the
per-survivor processing and Kalman filtering into the Viterbi algorithm.

Let S denotes the total number of states in the trellis. This PSP receiver works
as follow: At the symbol interval ¢ — 1, we assume that each state, u (t — 1) for s =
1,...,S, retains a survivor path. Associated with this survivor path are the channel
estimate b, (t — 1|t — 1) and the cumulative log likelihood path metric I',,,(t — 1).
At the ¢! symbol interval, for all valid transitions to state g, (t), us(t —1) — g, (¢),
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Figure 5.2: PSP receiver with Viterbi algorithm

the following branch metric is computed:

A (ot = 1) = pay(8) = =€ (1) Q71(E) €5y (2) — log det Ry (1) (5.20)

where

€sy(t) =1(t) — \/EsXs.y(w ﬁus (tlt - 1) (5.21)
Qs y(t) = Boxsy(t) S, (1t — 1) X35, () + Nolng (5.22)

and x;,(t) are the coded symbols that are output by the encoder during the tran-
sition ps(t — 1) — py(t). The predicted channel estimate h,,(t|t — 1) and its error
covariance is computed using the time update equations in (5.16).

Once the branch metric of all valid transitions js(t —1) — p,(¢) is computed, the
survivor path sequence to the state f,(t) and its cumulative path metric [', (t) are
determined by performing a maximization over the previous valid states p(t — 1)

Dho(t) = mex [ Tunlt = 1)+ A (et = 1) = py(t)) ] (5.23)
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The channel estimate associate with this survivor path is then updated by a Kalman
filter tuned to the coded symbols for the survivor transition. Let the predecessor
state of p,(t) which maximizes the cumulative path metric ', (t) be denoted by
flopt(t — 1). The channel estimate at time ¢ of the survivor path at state p,(t) can
be estimated by the Kalman filter tuned to xop,(t) (i.e. the coded symbols for the

survivor transition fiep(t — 1) — (%))

ﬁy<t|t> Bope (116 = 1) 4 Gty (1) (¥(t) — VBoxenns (8) Bepe(tlt = 1))

—1
O;Dty =V EsXopt ([t — Xopty( ) (Eonpty(t) Eopt(t|t - 1) Xi,t,y(t) =l NOInR)
By (tt) = Bope (1t — 1) — v/ EsGopty (t) Xopty (t) Bope(t[t — 1) (5.24)

Thus, this receiver requires only one Kalman filter for each state in the trellis. A
pictorial description of the per-survivor processing with Viterbi algorithm is given in

Fig. 5.2, assuming the 4 states space-time trellis codes with the rate of 2 bits/sec/Hz.

5.5 Performance Evaluation

The performance of the proposed PSP receiver is evaluated by using computer sim-
ulations. We consider the downlink of a single user system where the BS is equipped
with two transmit antennas and the MU has two receive antennas. The four-states
QPSK space time trellis codes in [89] is adopted. This space time code achieves a
bandwidth efficiency of 2 bits/sec/Hz. We assume information is transmitted at the
rate of 20 Ksps at the carrier frequency of 2.4 GHz. The information is transmitted
in frame of 130 coded symbols per transmit antenna. At the beginning of each frame,
each antenna transmits an orthogonal sequence (with length of 2 symbols). These
orthogonal pilot sequences are used by the receiver to obtain the initial fading chan-
nel estimate to initialize the Kalman filters. We assume perfect time and frequency
synchronization, and that the received signals are sampled at the symbol rate T.

The fading channels used for the simulation will be generated according to (5.10).
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The matrix A and Q are determined by the space-time correlation (5.7) with the
following physical parameters: The transmit antennas at the BS are separated by a
distance of 10\ while the receive antennas of the MU are separated by 0.5\. With
the assumed carrier frequency, these antenna spacings correspond to 1.25 metres
and 6.25 centimetres respectively. The MU is moving in the direction v = 45°. For
the macrocells in urban, suburban and rural areas, the angular spread A at the BS
is often less than 15° and in some cases less than 5°. We choose A = 10° in this
simulation. The angle spread at the MU is set to 2/\/k = 66° (i.e. k¥ = 3) with
the mean AOA p = 180°. The antenna array at the BS is assumed to be in parallel
position to the MU antenna array (i.e. aj = 90°, (12 = 90°).

We examine the performance of the PSP receiver for two scenarios. The first
scenario corresponds to moderate time-varying channels where the MU is moving at
the speed of 9 km/h. With this speed, the fading rate fpT, = 0.001. The second
scenario is when the speed of the MU is 90 km/h. This scenario corresponds to fast
time-varying channels with the fading rate fpTs = 0.01. We plot the frame error
rate (FER) of the PSP receiver for different values of signal to noise ratio (SNR).
We define the SNR as the ratio between the total power transmitted and the total
noise power per receive antenna, i.e. SN R = npFEs/Np. In addition, we compare the
performance of the PSP receiver with that of the maximum likelihood (ML) receiver
which has perfect knowledge of the channels. For a fairer performance comparison
with the double differential space-time coding scheme proposed in [61] which offers
robust means of handling time-selectivity of the channels, we also examine the bit
error rate (BER) of the proposed PSP receiver. Fig. 5.3 shows the FER and BER
of the PSP and the ML receivers for fpT, = 0.001. At the FER = 1072, the FER
performance of the PSP receiver is within 0.1 dB of the ML receiver with ideal CSI.
Simulation results of the BER for this system however show a larger gap between the

performance of the PSP receiver and the ML receiver with perfect CSI. This effect
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Figure 5.3: Performance of the PSP receiver for fpT, = 0.001
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has been also observed in [23]. An explanation for this is that when there is an error
occurred, it causes error propagation which results in more errors in the subsequence
symbols of that frame. However this gap is still small when compared to the double
differential scheme which has a 6 dB performance loss. At the BER = 1073, the
proposed PSP receiver is only 1.2 dB worse than the ML receiver with perfect CSI.
Fig. 5.4 shows the FER and BER of the PSP and ML receivers for the fast time-
varying channels with fading rate [pTs = 0.01. As expected, the performance gap
between the PSP receiver and the ML receiver is larger for this case as compared
to the moderate time-varying channels case. This is due to the increase in the
amount of uncertainty in the predicted channel estimate. However, the increase in
performance gap is not significant. At the FER = 1072 and BER = 1073, the
respective FER and BER performance gaps between the proposed PSP receiver and
the ML receiver with perfect CSI are 0.8 dB and 1.6 dB.

We also examine the effect of the spatial correlation in the channels on the per-
formance of the PSP receiver which assumes an i.i.d fading channel model. The
space-time correlated fading channels used for the simulations are generated using
the setup described previously. We compare the performance of the PSP receiver
which adopts the i.i.d fading channel model to one which adopts the true channel
model. Fig. 5.5 and Fig. 5.6 show the error performance degradation that results
when the i.i.d. channel model is adopted by the PSP receiver for moderately and
fast time-varying cases, respectively. For moderately time-varying channels, the per-
formance of the PSP receiver which assumes the i.i.d fading channel model degrades
by 1 dB as compared to the one with true channel model. However under fast
time-varying channels, this channel model mismatch due to the spatial correlation
causes large channel estimation errors at the receiver and results in large perfor-
mance degradation. This result indicates that under fast time-varying channels,

it is very important for the receiver to account for such spatial correlation in the
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channels.
In the previous simulations, we use the AR channel model to generate the fading
channels. We now examine the performance of this PSP receiver under realistic

situations. Let’s define the following ny ngTr x ny ngTr matrix

R(0) R(1) oo R(Tr—1)
| R(-Tr+1) R(-Tr+2) .- R(0) |
R(7) = Eh(t)hf(t + 7)) (5.26)

where h = [h"(1) h(2) - -hT(Ty)]Y, Tr = T + T, is the total frame length, T,
is the length of the pilot sequence, and [R(7)]e.; = ppr,gm(7) is the cross-correlation
between two fading gains h,;(t) and hqm(t +7) given by (5.7). The fading channels

with the cross-correlation (5.7) can then be generated by having
1/2
h=Ry’h, (5.27)

where h,, is an ny ng Tr zero mean i.i.d complex vector with covariance E[h,, h] =
I. For a 2 transmit and 2 receive antennas system, if a frame contains 130 coded
symbols per transmit antennas, the size of the matrix R will then be 4(130 +T,,) x
4(130 + T,). Due to the complexity involved in finding the square root of such
large matrix, the size of the frame is now reduced so that it contains only 25 coded
symbols per transmit antenna. An orthogonal pilot sequence (with length of 2
symbols) is still used so that the receiver can obtain the initial channel estimate.
At the receiver, we approximate the fading channel with a first order AR process
(5.10). The matrices A and Q required by the Kalman filters for estimating the
fading channel are given by (5.11).

Fig. 5.7 compares the performance of the PSP receiver with that of the ML
receiver which has ideal CSI at the fading rate fpT, = 0.001. At the FER = 1072,
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the PSP receiver is about 0.8 dB worse than the ML receiver with perfect CSI. This
performance gap is slightly larger than the previous case when the AR model is used
for generating the fading channel. The BER performance gap, however, is about
the same as the previous case. At the BER = 1073, the performance gap between
the two receivers is about 1.2dB. The performance comparison of these two receivers
under fast time-varying channels with fading rate fpTs; = 0.01 is shown in Fig. 5.8.
At the FER = 1072 and BER = 1073, the performance gaps between these two
receivers are 2.0 dB and 2.7 dB, respectively. These gaps are again only slightly
larger than the corresponding case when the fading channel is generated using the
AR model. This suggests that the PSP receiver is quite robust to modelling error
and that the first order AR model can provide a reasonably accurate approximation
of the time-varying channel at these fading rate. Using higher order AR model
therefore can only increase the performance of the receiver slightly, albeit at the
cost of increased receiver complexity. For this reason, we will not investigate the

performance of the PSP receiver with higher order AR model.

5.6 Conclusions

This chapter proposes a PSP based receiver for joint space-time trellis decoding
and channel estimation in spatially correlated time-varying fading channels. The
physical channel model of the MIMO wireless fading channel with multiple transmit
multiple receive antennas is approximated by a statistical channel model. This sta-
tistical channel model permits Kalman filtering to be used for tracking the channel
variations. Simulation results have suggested that the proposed PSP receiver with
first order AR channel approximation performs very well. In addition, these simu-
lation results also confirm the importance for the receiver to account for the spatial

correlation in the channel.
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Chapter 6

Recursive Recelvers for General

Diversity Channels

This chapter addresses the design and performance of time recursive receivers for
diversity based communication systems with flat Rayleigh or Ricean fading. It
introduces a general state-space model for such systems where there is temporal
correlation in the channel gains. Such an approach encompasses a wide range of
diversity systems such as spatial diversity, frequency diversity and code diversity
systems which are used in practice. The chapter describes a number of noncoherent
receiver structures derived from both sequence and a posteriori probability based
cost functions and compare their performance using an orthogonal frequency division
multiplex example. In this example, the chapter shows how a standard physical
delay-doppler scattering channel model can be approximated by the proposed state-
space model. Simulations are used to show that significant performance gains can
be obtained by exploiting temporal as well as diversity channel correlations. The
chapter argues that such time-recursive receivers offer some advantages over block
processing schemes such as computational and memory requirement reductions and

the easier incorporation of adaptivity in the receiver structures.

121
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6.1 Introduction

In recent years there has been an increasing emphasis on exploitation of differ-
ent types of diversity in communications systems, particularly those which utilise
a wireless transmission medium. Examples of types of diversity which have been
exploited to improve the performance of digital communications systems are time
diversity (also known as fractional sampling) [52], spatial diversity via the use of
several transmitter and/or receiver antennae ({93, 36], code diversity (as used in
spread spectrum communications), and frequency diversity such as used in orthog-
onal frequency division multiplexing (OFDM) systems. Also, these different types
of diversity can also be combined, for example, a multicarrier code-division multi-
ple access (CDMA) system. In these types of systems, the presence of a number
of different diversity channels can be used to improve the system performance by
transmitting and/or receiving the same information symbols simultaneously across
a number of channels. This goal can be achieved by introducing coding in both the
temporal and diversity dimensions. This chapter is concerned with the design of
receivers for such diversity systems.

Given that there are many different types of diversity which may be exploited, it
is desirable to develop a generalised and unified taxonomy for system modelling and
signal processing for such systems. This framework can be used to derive various
types of receiver structures which are applicable to any type of diversity system. In
particular, we will consider systems where the channel is modelled by vector time
series where each element of the vector represents the complex gain of a different
diversity channel. We will assume that these gains are correlated in both the diver-
sity dimension (ie the gains of different channels are statistically dependent at each
time), and the temporal direction. Temporal correlation can arise from doppler ef-
fects [51] and from oversampling as examples. We particularly focus on state-space

channel models which lead naturally to time recursive receiver structures. These
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structures generally tend to offer reduced computational complexity and memory
requirements when compared to block processing systems. Another potential ad-
vantage of time recursive receivers is the ease of development of adaptive processing
algorithms, however we don’t address this issue in this chapter.

Since the computational complexity of the optimal receiver is generally too large
to be feasible, we focus on the derivation and comparison of a number of sub-
optimal receivers which have computational complexity which is linear in the size
of the transmission codebook. In this chapter, we will tend to focus on single-user
systems where the general aim of the receiver is to exploit the temporal and diversity
correlation to improve performance. Much of what is considered here also applies to
the multiuser case, where the diversity correlation leads to undesirable interference
between users. The task of the receiver is then to mitigate this interference.

In this chapter, we address only flat fading channels. Related work which ad-
dresses, in a different way, the frequency selective space-time case, can be found in
[85]. Recent work in the space-time coding context [14] utilises fading models where
correlation between the diversity channels is included. Of course, such correlation
is an inherent feature in CDMA systems, and the main focus of various multiuser
detection schemes (see [33, 71} for an overview) is the mitigation of the detrimen-
tal effects of such correlation. However, there has been significantly less published
concerning the presence of, and exploitation of temporal correlation in the channel.

We believe that this work makes the following contributions :
e A generalised state-space model for diversity communication systems,

e Development of a number of time-recursive receiver structures which exploit

temporal correlations in the channel, and
e A performance comparison of these proposed receivers.

In addition, we examine the issue of matching our proposed model to a physical cor-
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relation model for delay-doppler channels [49], [50]. Some of the proposed receivers
are well-known, but others are novel, especially in the context of their application
in this problem.

There has been considerable interest also in the code design issue for diversity sys-
tems, particularly space-time diversity systems (see eg [14, 89, 44, 4, 104]). We don’t
directly address the design issue in this chapter, but we will make some pertinent
observations regarding code design in the context of the OFDM example presented
in section 6.4.

The layout of the chapter is as follows : In section 6.2, we introduce our model of
a general diversity system in complex number form, and then in a real quadrature
signal form. The latter will form the basis for the receiver design. The model for
the received signal constitutes the measurement equation for a time varying state
space system. Our model for the diversity path gains is cast as a quadrature Gauss-
Markov process which constitutes the state equation for the state space system.
We also give some examples, which are by no means exhaustive, of how some well-
known examples of diversity systems may be cast within our framework. Some
issues relating to partial diversity and an associated model reduction method are
discussed. In section 6.3, we introduce a number of candidate noncoherent receiver
structures which are based on the state-space diversity model from 6.2. In section
6.4, we detail a specific application of our techniques to the OFDM system. The
diversity dimension here is frequency. We examine a general physical delay-doppler
scattering model for path correlations as a function of time and frequency, and detail
a technique which permits approximation of this correlation function by the signal
model introduced in 6.2. Finally we present some simulation results for the OFDM
case, which compare the performance of our candidate receivers to the coherent case
(path gains known by the receiver), and to standard approaches which do not exploit

the time correlation.
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6.2 The Communication System Model

We consider a communication system consisting of I, > 1 diversity paths. These
diversity paths are assumed to undergo Rayleigh/Ricean flat fading. The path
gains are correlated with each other and are also temporally correlated. At each
time ¢, we map p bits of the input data stream onto one of the codewords of the
set © = {XI, X® XU} where X®) ¢ CM*L and K = 2P. The codeword is
then transmitted serially across the L channels, ie column ¢ of the selected code is
transmitted serially across diversity path £. We assume that the receiver measures
a linear superposition of the £ diversity paths. Thus the received signal in block of

M complex samples (M is the temporal dimension) can be written as
y. =X, h, + A, (6.1)

where h; € CF is the channel gains and n, € C" is a zero mean, complex, circular,

white Gaussian noise sequence with covariance 20%1,;.

6.2.1 Examples

We now give several examples of how this model may be applied to represent different
diversity systems.

Space-time coded systems

By examining (4.4) and (5.3), it is evident that space-time coded systems in quasi-
static fading channels or in time-varying fading channels can be easily cast into this

general diversity system model (6.1).

Orthogonal frequency division multiplexing (OFDM)

Here the diversity dimension is frequency, so we can regard OFDM as a frequency-

time coded system. Suppose we seek to transmit n complex symbols in a vector
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s; for time period t. We use a pre-coder matrix C € CX*" to map the n symbols
onto the L orthogonal frequency channels. Here M = L. The signal transmitted on
channel £ will be the £** element of the vector Cs,. The cyclic prefix which is added
at the transmitter and stripped off at the receiver turns the time and frequency
selective fading into a time fading on each carrier, see [49]. Thus the received signal
for symbol period ¢ is the superposition

L-1

Felm =[] [Csile ™" + [ (6.2)

=0

o

where [flt]g denotes the complex gain of channel ¢, and n; is additive Gaussian
white noise. Thus we have the form of (6.1) where the code matrix has the form
X, = FZS, where S, is a L x L diagonal matrix with its diagonal elements being
the entries of the vector Cs;, and F is the Fourier matrix [F],,; = e~ 2™™/L. More

details on OFDM as a diversity system are given in section 6.4.

Code division multiple access (CDMA) - uplink

This is an example of a multiuser diversity system. In this case, column ¢ of the
code matrix is the spreading code for user ¢ multiplied by the complex modulation
symbol for user ¢ at symbol time ¢t. Thus if W € CM*L denotes a matrix of the
length M spreading codes for active users, and S; is a diagonal matrix of size L x L
with the diagonal elements being the modulation symbols of the active users for
symbol period ¢, then the associated diversity code is X, = W S;. The path gains in
this case are the propagation gains from each user mobile station to the base station.

In this case, our receiver designs will constitute noncoherent multiuser detectors.

6.2.2 Real Quadrature Model Form

It will be convenient for the resulting receiver derivations, to utilise a real quadrature

model for the signal. Let denote the real and imaginary part of an arbitrary complex
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matrix (or vector) @; by 67 and 6!, respectively. The complex received signal (6.1)
can be modelled into quadrature form by

Vi
Y = tz = X; hy +n, (6.3)

Yi
where y; € R?M  h, ¢ R* and X, € R?M*2L gre given by

hy n; X; -X
ht = . 3 n; = ) ) Xt = ) i (64)
h} n; X Xi
The transmitted codeword X; is now selected from the corresponding set © =
(=]
(XM X® XEN Here n, € R*M is a zero mean, Gaussian white noise vec-

tor with covariance o2 Ipy.

6.2.3 Time-Correlated Rayleigh/Ricean Flat Fading Chan-
nel Model

In this section, we define the model for the diversity path gains h; in both complex,
and real quadrature form. The channel gains are modelled as a first-order vector

Gauss-Markov process expressed in complex form by
flt+1 e A flt —|- \N/'t y (65)

where A € CF*L is a known, stable matrix and v, is a complex Gaussian white noise
process with mean i and covariance QQ. We assume that at the initial time ¢ = 0

that hy is chosen to be Gaussian with the steady state statistics
E{hy} =(T1-A)" i, (6.6)

and Cov{ﬁo} = P where P satisfies the Lyapunov equation APA¥ + Q = P. Thus
h, will be a stationary process with mean given by (6.6) and with autocorrelation

matrix
P T>0

. . A7
Ehehil }=¢ _ /,  (-r (6.7)
P ( ”) 7<0.
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This channel model is general and permits both temporal and diversity correlations
in the gains. Several channel models considered in [14, 44, 60] and previous chapters
for the space-time coded systems can be considered as special cases of this model.
The quasi-static independent and identical distributed (i.i.d) fading model used in
[44] can be represented by this general model with A =0 and P = I where 0 is the
matrix of all zeros. Setting A = 0 and P = E{h, h¥} # I, this model corresponds
to the quasi-static correlated fading channel model in [14] and in chapter 4. The
time-varying i.i.d fading channel model in [60] can be cast into this general model
by having P =Iand A = ol where a < 1. By having A and Jor P not proportional
to an identity matrix and A # 0, we then have a time-varying correlated fading
channel similar to that in chapter 5.

The analogous real quadrature form for (6.5) is

ht+1 =A ht + vy, (68)
where
AT A v
A = ) , Vi = ) . (69)
A AT vy

The process v; € R?L is a Gaussian white noise process with mean u and covariance

matrix Q given by

N’T Qr-r Qm’
1= . Q= . , (6.10)
A v Qui

with Q. + Qi = Q" and QI — Q,; = Q. The mean and autocorrelation sequence

for h; are then given by

v=E{h}=01-A)"p,

E{h, hl } = AP Tzl (6.11)
t vy — —F .
P (A7) T<0,
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where
Prr Pri
P = , (6.12)

with P, + P; = P" and PL, — P,; = P’. Equations (6.3) and (6.8) are respectively
the observation and state equations for a state space model of our received signals.
The mean and autocorrelations for h; can be shown to be identical to the analogous
means and autocorrelations of the complex sequence h;. Thus the magnitude gain
of the channels is Ricean (if 1 # 0) or Rayleigh (if © = 0) with joint correlations in
the diversity and time dimensions given by (6.11). Equation (6.11) shows that the
autocorrelation sequence has the form of a mixture of decaying complex exponentials

(determined hy the eigenvalues of the stable matrix A).

6.2.4 Model Reduction

In the general diversity model (6.1), we made the assumption that the covariance
matrix P of the channel gains h, was strictly positive definite. This is equivalent to
the assumption that full diversity gain L is achieved. As observed in [49], for some
systems the effective amount of diversity can be less than L. This is manifested by
the resulting covariance matrix P not being strictly positive definite. In this case,
we can reduce the dimension of the problem to L (< L), the effective diversity of the
channel, which is given by the number of non-zero eigenvalues of P. This permits a
reduction in the computational complexity of the various receivers presented later.
We proceed as follows : Let P =& A ®F denotes an eigenvalue decomposition,
where ® is unitary and A is a diagonal matrix of the form
Ao
A= , (6.13)
0 0
where A is L x L and is strictly positive definite. Here L represents the true diversity

of the model. Partition ® = [® ®] conformally with A, ie ® is of size L x L. Let
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h, = 3" by, then if E{flt} = 0, the following model is equivalent to one described
previously by (6.5) and (6.1), however, with a reduced state dimension as shown in

the Appendix:

hy = A +v,

ye = X;h 40y, (6.14)
where

A =3 A3

Vy = EH {’t

X, = X, @ (6.15)

6.3 The Receivers

In this section, we describe a number of noncoherent receiver structures for esti-
mating the code sequence X, in the absence of knowledge of the channel gains.
The first class of receivers, which includes the Generalised Likelihood Ratio Test
(GLRT)[14, 104, 101], Noncoherent Maximum Likelihood (NCML) [14, 44] and MAP
receivers, are well-known and do not exploit the temporal correlation in the signal.
The NCML and MAP receivers however do exploit the correlation in the diversity
dimension. The second class are Kalman filter based receivers which includes the
Per-survivor processing (PSP), M-algorithm, A posteriori probability (APP) and
iterative Expected-Maximisation (EM) receivers. These receivers are based on the
state space model from section 6.2. The PSP, APP, M-algorithm and EM algorithms
are all well-known. However, the novelty of these receivers is that we incorporate
Kalman filtering into these standard algorithms to exploit the temporal correlation

in the signals, and track the channel variations.
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6.3.1 Generalised Likelihood Ratio Test (GLRT) Receiver

When the probability distribution of the diversity path gains is unknown, a GLRT
receiver can be used. The GLRT receiver computes the joint maximum likelihood
estimate of the channel and the transmitted codeword. Thus, the transmitted code-

word estimated by the GLRT receiver is

XM = arg max sup p(y:| X, = X, hy) (6.16)

hy
where p(y: | X¢, hy) = N (y;—X:hy, 0%1) is the data likelihood function, which is a

Gaussian with mean X, h; and covariance ¢%I. Here, N/ (x,P) denotes the Gaussian

density
1

(27)N72 (det P) 172

where N is the dimension of the vector x. Now, maximising p(y; | X;, h;) is equiv-

N(x,P) = e XPTIN/2 (6.17)

alent to minimising

JELET (y,| Xy, hy) = ||y — Xohy|[? (6.18)

So maximising JELET over hy yields the estimate
b= (X7 X)) Xy (6.19)
Substitute this estimate into (6.18) gives
JEET (3 Xy, hy) = [lye — Xo(XT X)X el P (6.20)
Thus, the GLRT receiver estimates the transmitted codeword according to
XELET — arg min [P y.l?, (6.21)

where P = I — X® (X®T X®Y=L(XENT s the projector orthogonal to the sub-

space spanned by the columns of the codeword X ®),
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6.3.2 Noncoherent Maximum Likelihood (NCML) Receiver

In the situation where the probability distribution of the fading channel is known,
one can use the NCML receiver. The NCML receiver maximises the marginal density

p(y:|X;) over X;

SNCML _ _
X, = arg r)x(lggp(yt | X, = X)

= argmax En, {p(ys, b/ Xy =X) 1}, (6.22)

where the expectation is with respect to the channel h;. This is equivalent to

choosing the codeword which minimises the following cost function:

JNOML(X) = (v, — X)X P XT + 0T) Ny, — Xv) + logdet(X P XT + 621 .
(6.23)
where v and P are the mean and covariance of h;. This receiver does not exploit the
temporal correlation as it operates independently from codeword period to codeword
period. However, it can be extended to account for the temporal correlation by
incorporating multiple codewords into the decision metric (6.23), albeit at the cost

of exponential increase in processing complexity.

6.3.3 Maximum A Posteriori Probability (MAP) Receiver

Another receiver which can be used when the statistics of the fading channel is
known is the MAP receiver. The MAP receiver works by maximising over h; and
Xt, the a posteriori probability p(Xs, hy|y:) o« p(y:lh:, Xs) p(hy), assuming the

codes are chosen from the codebook with uniform probability. That is
Xé”AP = arg IDI(lé%(SEPp(Yt’ h, | X; = X)),

= arg 1£ggsupp(yt | hy, X) p(hy) (6.24)

h;
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where

p(y:| X, hy) p(hy) = N(y: ~ X hy; ) T) N (h; — v; P) . (6.25)

Using the Gaussian Product Lemma, p(y: | X, hy) p(h;) can be expressed as
p(y: | X, he) p(hy) = N(y; — Xv; XPXT + 02 I) N(h, — hy(X); Py(X)), (6.26)

where

h(X)=v+PXT(XPXT 4+ o) (y, — X 1)

A

P,(X)=P-PX' XPX" +4%I)"'XP. (6.27)
Clearly hy(X) maximises p(y; | X, hy) p(h;) over h, and the maximised value is
p(y: | X, hy(X)) p(1y(X)) = Ny, — Xv; XP X+ o’ ) V(0; Py(X)) . (6.28)

Thus, the cost function that the MAP receiver needs to minimise is the same as that
of the noncoherent ML receiver plus an extra term logdet P, (neglecting constant
terms):

JMAP (XY = JNOML(X) 4 1og det f)t(x) _ (6.29)

More detailed description of the GLRT, NCML and MAP approaches can be found
in [55].

The receivers described above do not exploit the temporal correlation of the fading
channels and operate on each symbol period independently. In the following sections,
we describe several receivers which take this temporal correlation into account when

performing the detection.

6.3.4 Sequence Estimation Approaches

Consider a sequence of codewords {Xg, X1, ..., X7_1} being transmitted during T
codeword intervals. In order to obtain an optimal solution which maximises the

likelihood p(yo, ..., yT—1/Xo, ..., X7-1), there must be a Kalman filter for each of the
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possible sequence (model). This direct implementation of the optimal receiver has
a complexity of O(KT) which grows exponentially with the length of the sequence.
Thus, even for small T, it may not be practical to use this method. Therefore,
we need to examine other suboptimal methods. In this section, we describe two

receivers which approximately optimise the likelihood of the transmitted sequence,

iep(yo, ..., yr-1|Xo, ...y Xr_1).

Per-Survivor Processing (PSP) Receiver

In this section, we describe a receiver which approximates the optimal receiver by
using the per-survivor processing method [79]. This method can be implemented via
the Viterbi Algorithm. In this method, there will be K Kalman filters (KF's), each

tuned to one of the K codewords. Fig. 6.1 illustrates the structure of this receiver.
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Figure 6.1: Structure of PSP Receiver



Recursive Receivers for General Diversity Channels 135

At time ¢, for each codeword the receiver calculates the log likelihood from the
possible paths. After computing the path metric, it retains the path with the largest
log likelihood and computes the channel estimate for this path. The approximately
optimal log likelihood at time t of the k** KF tuned to X, = X*) can be evaluated

according to

3 ] AV =1 (s ,
6 = max (6, — V7 QFF T Y —log det M), (6.30)

J:lvyl(
where (5t(J_ )1 is the cummulative path metric at time ¢ — 1 of the survivor path ending
at X, 1 = X0, " i5 the innovation sequence of the path from X;_; = X@ to

X; = X® and ng k) is its associated covariance

e =y, - X®O Rl (6.31)

QUk) — X® ngg_l X®T 4 52y

The predicted channel estimate fliijt)—1 and its covariance ngg_l of the path from
X, 1 = X9 are determined from the filtered channel estimate flgj_)”t_l and its

covariance Zg)” .1 via the KF' time update equations

hiljt.)—l = Aht(fj—)1|t_1 + U, (6.32)

Uy _ (7 T
Ztljt—l - Aztim—lA +Q.

Once the survivor path at X, = X® is determined, the KF then estimates the
channel associated with this path using the received signal at time t. Let the pre-
decessor of X; = X®*) which maximises the log likelihood 5£k) be denoted by (k).
The filtered channel estimate of the survivor path at time ¢ ending with X, = X

can be evaluated by the KF measurement update equations

h® = R®) . gk (Yt _ X (k) ﬁ(%(k))) ’

¢t ti—1 t)t—1
A L 5 -1
G = sl X (X0 B X7 4 1)
k k k k
o) = g _ g X pin® (6.33)
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This method has a complexity of O(K) which is a huge reduction as compare to the
optimal detector. It is possible to develop an O(K?) version of this approach, in
which each Kalman filter which tunes to X;, produces K filtered channel estimates,
one for each survivor paths from time ¢ — 1. Once the channel estimates are made,
it computes the path metric and selects the one which maximises the log likelihood.
The computation of the path metric is the same as in (6.30), with the predicted
channel estimate and its covariance replaced by the filtered channel estimates and
its associated covariance.

The space-time coded system in time varying fading channels from (5.3) can be
cast into this general diversity form (6.1) by letting X, = /E,x(t). Since x(t) =
In, ® [z1(t) - -+ Zn,](t), the total number of possible X, is K = N where § is
the size of the modulation constellation in which z;(t) is belonged to and ny is the
number of transmit antennas. Thus, this PSP receiver can be used for joint channel
estimation and space-time trellis decoding similar to that in chapter 5. However,
it should be noticed that this PSP receiver is not the same as that presented in
chapter 5. Firstly, the number of KFs in this PSP receiver is K (which is dependent
on 3 and nr) while the number of KFs in the PSP receiver in the previous chapter
equals to the number of states of the space-time trellis code (which is independent
of 8 and ny). Secondly, this PSP receiver does not exploit the trellis structure of
the space-time trellis code and hence it would lead to a lower performance than the
PSP receiver in the previous chapter. Nevertheless, this PSP receiver might be a
preferable receiver in a situation when K is much smaller than the number of states
of the space-time trellis code. Using this PSP receiver will then significantly reduce

the processing complexity.
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M-Algorithm Receiver

The PSP method offers a much lower complexity than the optimal receiver. However,
there are situations in which the codebook size, K, is too large which may prevent the
PSP method from being used. Also the PSP receiver retains only one survivor path
for each codeword at time ¢t. This could be a disadvantage as the discarded paths at
some codewords could have a much larger likelihood than the survivor paths at other
codewords. Motivated by this observation, we developed a receiver which is based
on the M-algorithm [42] for detecting the transmitted codeword. The complexity of
this receiver can vary from O(1) to O(K') depending on the computation complexity

that can be afforded at the receiver terminal.
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Figure 6.2: Structure of M-algorithm Receiver

The M-algorithm receiver is implemented using a bank of S Kalman filters where
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1 < S < K. A pictorial description of the M-algorithm receiver is depicted in Fig.
6.2. This receiver works as follow: At the end of each symbol period, the receiver
retains S channel estimates with the largest log likelihood. Suppose at the end of
time ¢t — 1, the S survivor channel estimates are flii‘i”_l form=1,..,5. At time
t, for each codeword X, the receiver computes S path metrics using the predicted
channel estimates fli{?_)l = Aflir_ni“_l + p. The log likelihood of the path from the

mt* survivor at time ¢ — 1 and X, = X is calculated by
B AT ) —1 :
5t(m’k) = 5t(7_n1) - egm’l”) ng””) egm’k) — log det ng’k) . (6.34)

where 5;:”1) is the log likelihood of the survivor path m at time ¢ — 1 and

™ = y, — XW R
Q™ = XW o, X 1071, (6.35)

are the innovation sequence and its covariance, respectively. Thus, there are SK
candidate paths in total and the M-algorithm selects S paths with the largest log
likelihood. Let the path from the m!* survivor at time ¢ — 1 and X; = X©*) being
selected by the M-algorithm as the s** survivor path at time ¢. The filtered channel
estimate of this s* survivor path can then be updated by using a Kalman filter

tuned to X; = X®) | Thus,

B — R | glm (Yt _ xc ) >

tt tjt—1 tjt—1

G{™# = £ x®" (X0 5, xO" 4 021)_1

tlt—1 tlt—1
(5) _ so(m) (m.k) ~ (k) s2(m)
S = Sy — Gi X (k) e (6.36)

In both the PSP and M-algorithm, the optimal sequence is extracted by backtracking

through the survivor paths. On-line versions can also be derived.
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6.3.5 Codeword by Codeword Estimation

The receivers described previously are used for sequence estimation. In this section,
we describe two other techniques which detect the transmitted codeword at each
codeword interval. Thus, these receivers can be used in applications which can’t
tolerate the delays associated with the Viterbi algorithm backtracking, or when we

desire to incorporate adaptivity to the channel statistics.

The A Posteriori Probability (APP) Receiver

Unlike the receivers described previously which retain several estimates of the fading
channels at the end of each codeword interval, this receiver produces a single channel
estimate which is the weighted sum of all the estimates. This receiver is implemented
by using a bank of K Kalman filters where each Kalman filter is tuned to one of the
codewords. Fig. 6.3 illustrates the structure of this receiver.

Based on the assumed signal model, each Kalman filter gives a conditional channel

estimate.

9 = By 4 G (30— X

G = Ty XBT (XB 2y, X 4 021)“1 ,

S =S - G X® Ry, (6.37)
where ﬁt|t_1 . Aﬁt_1|t_1 + 1t is the predicted channel estimate. These channel

estimates will then be weighted and summed to yield the mean channel estimate.
The weighting coefficient of the channel estimate flgll”t) is the a posterior: probability
that X; = X® ie. p(X; = X® |yq,...,y¢). Using the Bayes rule, the a posteriors

probability that X, take on each value in © is computed according to

Ht(k) b p(Xt =X® |}’o, ey Yt) . Ctp(Yt | Vo, Y1, X¢ = X(k)) ) (6-38)

PYe | Yoy s Vi1, Xe = XB) = M () )y | (6.39)
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Figure 6.3: Structure of APP Receiver

¢ is the normalised factor such that >, ILi(k) = 1, ng) =y — X(k)flﬂt_l is
the innovations sequence from the Kalman filter tuned to X, = X*) and ng) =
X (k) Zt|t_1X(k)T + 0?1 is its associated covariance. Thus, the mean channel estimate

and its associated covariance at time ¢ are
by =Y ML (k) B | (6.40)
k
k ~ (k) o (k i B
Sy = 3Tk {6 + B4 () — by, B,
k

In effect we collapse the K Kalman filters’ estimates back to one each time. The
estimated transmitted codeword at time ¢ is that which maximises the a posterior:
probability.

From observation, we notice that most of the a posteriori probabilities that X; =

X&) for k =1, .., K are very small. In fact, most of them are almost zero. Thus, the
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contribution of the channel estimates after being weighted by the small a posterior:
probabilities to the mean channel estimate will be insignificant. Motivated by this
observation, we will modify this receiver so that it will not compute the filtered
channel estimate for the codeword with small a posterior: probability. Thus we
can reduce the complexity of the receiver with little penalty on performance. The
modified receiver will works as follow. After computing the a posterior: probability
that X; takes on a value in © as in (6.38), S codewords which have the greatest a
posteriori probabilities will be selected, where 1 < § < K. Lets s denotes a member
of the set of S survivors. The a posteriori probabilities are then normalised so that

>, II;(s) = 1. For each of these survivor paths, a filtered channel estimate, flgrt) and

(s)

its associated covariance X i Bre calculated. These estimates are then combined to

yield a single channel estimate and its covariance for time ¢{. Thus,

hy = > My(s) By, (6.41)
S = 3 1i(s) {2§f2 + hg,?(hgfg)T} — iy, b7, .
S
This receiver has the flavour of the M-algorithm technique but it is not the same
since at the end of each codeword period, this receiver retains only one channel
estimate while the M-algorithm retains S channel estimates. The complexity of this

receiver is O(S). When S = K this receiver corresponds to the unmodified APP

receiver as described previously.

Iterative EM Receiver

Another receiver which we proposed is the iterative receiver. In this approach, we
use the Expectation-Maximisation algorithm to iteratively maximise the log likeli-
hood function, log p(y¢ | Yo, .-, Yi—1, X¢ = X*)). The iteration is per-codeword basis.

When the channel is known, the log likelihood is

L(t) = logp(yt | ht, Xt> = —0"2 HYt — Xt 1115”2 - M lOg 0'2 , (642)
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Since the knowledge of the channel h, is not available at the receiver, the conditional
expectation of this log likelihood given the present and past measurements is used

instead as the objective cost function,
Jt(Xta fltltv Zt]t) = E{L(t) iyO, ...,yt} = — 6? Qt_l € — 10g det Qt s (643)

where ¢, = y; — Xy fltlt and €, = X, Et|tXtT + 021. This motivates the iterative
scheme whereby the conditional expectations is computed using X; = X () and
then maximised J; over all codewords to yield X(ket1) The iterative process for
determining the transmitted codeword at time ¢ can be described in details as follow:

Initialisation: At the start of each iteration process, the channel estimate and its

associated covariance are initialised to the Kalman filter one step prediction
BEO) . flt|t—1 o Aﬁt—l|t—1 + u
250) e Zt]t—l == Azt_”t_l AT + Q . (644)
The initial codeword is chose to maximise the cost function
XEO) = arg max J(Xt,flgo), i:ﬁo)) ) (6.45)
X:€0
Iteration Update: We update from iteration ¢ — 1 to £ for ¢ > 1 via

b = hy—y + K (Yt - XY fltlt—l)

-1

K = Ty ()T (Xge—l) Sy (XETH)T 407 I)
ige) == Zt|t—1 - ng)X,ge_l) Zt|t—l
X = arg max Jy(X, n{?, £y . (6.46)

The algorithm terminates when the maximising codeword is unaltered. We then set
the values of flm and Xy to the final values of BE‘” and iﬁ“ respectively and progress
to codeword t 4+ 1. In [60], an iterative receiver based on Kalman filtering similar
to ours is also proposed. However, this receiver is designed specifically for decoding
the Alamouti’s space-time block code with two transmit and one receive antenna.

Our proposed iterative EM receiver is more general.
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6.4 Application to OFDM systems

One important example of a diversity system is (OFDM) which is used in various
wireless local area networks. In an OFDM system data is transmitted over L or-
thogonal frequency channels using a discrete Fourier transform (DFT). Within our
context, we can regard the DFT operation as a type of “time-frequency” coding.
Generally, a number of different data symbols (from a single user, or a number of
different users) are transmitted simultaneously on subsets of the available channels.
Here we will consider the single-user case, where one data symbol is transmitted
on all L channels simultaneously. This approach offers the maximal diversity gain.
This is equivalent to using the precoder matrix C equal to the L-vector of all 1s.
Thus corresponding to each data symbol (regarded as a member of a finite complex
alphabet) s; we transmit a segment of M = L time samples containing all L carriers,

and given by
il
Tipgm = » 8 e (6.47)
=0

form =0,...,L — 1. In a standard OFDM system, a cyclic prefix is added to
mitigate against inter-symbol interference, and this is stripped off in the receiver.

The recovered received samples then have the form

L—1
2rimdé/ L
TtL+m — E St ht,@ € mimé/ + Vir4m (648)
£=0

where h; ¢ denote the channel path gains as a function of symbol time ¢ and frequency
channel ¢. Using this model, the frequency channels are spaced by an amount equal
to the symbol rate. Here v, is a zero mean white Gaussian noise process. Now
blocking the received samples into a vector of length I corresponding to the symbol
s; we have

yi=X; by + 1y (6.49)
where X, is a L x L matrix with elements [Xt]m_g =5, 2L gnd hy isan L x 1

vector with elements [flt] ¢ = hyp. We thus have placed this OFDM system model
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in the general diversity form (6.1). Note that the assumption that only one user

symbol is transmitted over the L channels is not restrictive as indicated in 6.2.1.

6.4.1 A Physical Model for Delay-Doppler Spread Channels

In this section we relate our statistical channel gain model to a commonly used phys-
ical model for multipath propagation. This provides a parameterisation of our state
space model in terms of specified physical parameters such as delay and doppler
spreads for the channel. In [49], a physical model is used to characterise the cor-
relation between the time-frequency gains f,, in (6.48). This model is using the
statistics of the channel and uses a block representation of the channel based on
its autocorrelation matrix. For a classical Doppler power spectrum and exponential
multipath intensity profile, the correlation between two symbols spaced in time and

frequency respectively with At and Af is given by [51]:

H(ALAS) = do ¢e(AL) dp(Af) (6.50)

with (bo > 0,

1

i (At) = Jo(mB4At) , dp(Af) = T4 j2n AT

(6.51)

Here Jy is the zero-order Bessel function of the first kind, with By and T, being
the Doppler and delay spreads respectively of the propagation channel. From (6.7),
we can thus see that the P matrix represents by itself the frequency correlation and
Ati~t2 ig the time correlation between two symbols separated by a time shift equal

to (t; — t3). Thus immediately,

= Po
Pl., =
[Ples 1+ j2rTn(k — )F,

(6.52)

F; being the frequency spacing between two OFDM subcarriers.
Due to the separable nature of the physical channel correlation function (6.50),

we take our state transition matrix A to be of the form A = a I, where a is a
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complex constant. Comparing the time correlation between two OFDM symbols
separated by k symbol periods, we need to have a* = Jy (7w B4k Ts) for every k, where
T, is the symbol period. This is theoretically impossible, so an approximation has to
be made for the {a,} P~ to fit the {Jo(n BakTs)} ooy, D being the number of OFDM
symbols corresponding to the time-length after which the correlation is considered
to be insignificant, see [50]. This approximation is given by solving the least squares

problem:
D-1

min Y _ [Jo(wBekT,) — a*|* . (6.53)

k=0

This problem can be solved for various values of normalised Doppler spreads (ByT5)
and the corresponding values of a used in the state space model. One could also
choose to include additional “modes” in A to obtain a better approximation, but

we do not provide details here.

6.5 Simulation

We considered a single user OFDM system with 16 carriers. The data sequence is
arranged into a block of 16 OFDM symbols. Each symbol is transmitted over the
16 orthogonal frequency channels using the DFT. The first symbol of each OFDM
block will be used as pilot symbol to generate an estimate to initialise the Kalman
filters. We assumed that the fading channels are independent from block to block.
However, within each block, the time-frequency covariance of the fading channels
between any two symbols is given by the model in section 6.4. We assumed the
channel is undergone Rayleigh fading, (i.e., ¢ = 0). In this simulation, we used
B4T, = 0.25. This Doppler spread value corresponds to a fast time-varying channel
where the temporal correlation between any two consecutive symbols is only 0.852.
Even with such low temporal correlation in the channels, a significant performance

gain can be attained by exploiting this time correlation as will be shown later in the
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simulation results. We examined two cases when T,,F, = 0.5 and T,,F; = 0.025.
These values of T, F, represent fading channels that are highly decorrelated and
highly correlated in frequency dimension, respectively.

In this simulation we compared the performance of the proposed techniques with
the NCML, MAP and GLRT receivers. In addition, we also compared them with
the performance of the coherent Maximum Likelihood (ML) receiver which has ideal
channel state information (CSI). The performance of the coherent ML receiver will
be used as the benchmark and we will see how close the performance of the proposed
receivers can approach this bound. The PSP and the M-algorithm receivers perform
sequence estimation on the whole OFDM block of 16 symbols while the APP and
the iterative EM receivers perform symbol by symbol detection. The M-algorithm
receiver with two survivors (i.e. S = 2) and the unmodified APP receiver (i.e. the
channel estimate is the weighted sum of the estimates from all the Kalman filters)
are used in the simulation.

As from (6.49), the codeword X, has elements [X]m¢ = s¢ ¢*™™/L. In this
simulation we considered the case where the data symbol s, € {£1}. Thus, the
codebook consists of two codes which are +F where F is the Fourier matrix. Fig.
6.4 shows the performance of the receivers for the fading channel with BT = 0.25
and T, F, = 0.5. The symbol error rate (SER) is plotted for different values of Signal-
to-Noise Ratio (SNR) where the SNR is defined as the average received SNR per
symbol. The standard GLRT, MAP and NCML receivers all have an SER = 0.5 for
all SNRs. This is because by using two codes which are scalar multiple of each other,
the decision metrics of these receivers are indistinguishable (for the Rayleigh fading
channels) between the two codewords as discussed in [44, 104]. Since the proposed
receivers exploit the time correlation, then by using a pilot symbol to provide an
estimate to initialise the Kalman filters, the proposed receivers do not suffer the

same problem as those conventional noncoherent receivers. As shown in Fig. 6.4,
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Figure 6.4: Codes = +F' with ByTs = 0.25 and T,,Fs = 0.5

at the SER = 1072 the performance of the proposed receivers is within 5 — 7dB of
the coherent ML receiver. However, as the frequency correlation is increased, the
performance of the proposed techniques is significantly reduced as shown in Fig. 6.5
for the highly frequency correlated channel with T;,Fs = 0.025. The reason for this
huge degradation in performance is that as the channel become highly correlated
in frequency, the diversity provided from the frequency domain is reduced. Thus,
the probability that most of the channel coeflicients faded at the same time is high,
resulting in higher probability of error in detecting the transmitted code. Since the
proposed receivers perform joint data detection and channel tracking, once an error
is occurred it is likely to cause error propagation resulting in further error for the
subsequence symbols in the block. The performance of the coherent ML receiver is

also reduced in this case. However, this is mainly due to the loss in the diversity
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Bd = 0.25, Tm = 0.025
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Figure 6.5: Codes = +F with ByT; = 0.25 and T,,Fs; = 0.025

rather than the error propagation problem since it has ideal CSI. This suggests that
using codes which are scalar multiples of each other is not optimal for noncoherent
detection.

To prevent the above problem, we chose two codes which are not scalar multiple of
each other. The two codes are F' and U F' matrices where U is an arbitrarily unitary
matrix. Fig. 6.6 shows the performance of the receivers using the new codebook
for the fading channel with ByTs = 0.25 and T,,Fs = 0.5. The GLRT receiver
still has-the SER = 0.5 for this case since the orthogonal projector P{ to the
codeword X is equal to zero for both codewords. The performance of the MAP
and the NCML receivers are still very poor. However with this set of codes, the
proposed receivers perform very well. At the SER = 1073 the proposed techniques

obtained a performance which is within 4dB of the coherent ML receiver. Unlike
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Figure 6.6: Codes = F and UF' with B;T; = 0.25 and T}, F; = 0.5

the former set of codes, using these new codes reduces the performance gap between
the proposed receivers and the coherent ML receiver when the fading channels are
highly frequency correlated as shown in Fig. 6.7 for T,,, Fs = 0.025. We also note an
interesting observation that the performance of the MAP and NCML is improving
as the fading channels are more correlated. This can be explained by examining the
decision metrics of these receivers.

The simulation results for all the scenarios considered above confirm the supe-
riority of the proposed receivers to other standard noncoherent receivers. They
demonstrate the usefulness of exploiting the temporal and diversity correlations in
the channels at the receivers. Simulations above show that even in fast time-varying
channels where the temporal correlation is low, by exploiting such correlation could

significant improve the receiver’s performance. By utilising the temporal correlation,
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the proposed receivers obtain a performance which is within few dB of the coherent

receiver.

The above observations are pertinent from the point of code design for incoherent

systems with temporal channel correlations. It appears that an approach consist-

ing of modulation followed by a fixed diversity code will perform poorly. Such an

observation is supported by previous work such as [14] as an example which does

not seal with such correlation. We believe there is a deeper issue at hand here when

temporal correlation is included in the signal model.
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6.6 Conclusions

We have introduced a general state space model for a general diversity communica-
tions system with time correlated flat fading. Examples of diversity systems which
fall within this framework include space-time coded systems, orthogonal frequency
division multiplex (OFDM) systems, code division multiple access systems and hy-
brids of these systems. The model permits the design of a number of time recursive
noncoherent receivers based either on sequence estimation or on symbol by symbol
estimation. The receivers considered include Per-survivor processing, M-algorithm,
two a posteriori probability techniques and a per-symbol iterative technique based
on the EM algorithm. As an example of the utility of the approach, we exam-
ine an OFDM system model based on a physical delay doppler spread propagation
medium, and we have shown how to approximate the resulting channel statistics by
our model. The various receivers are compared to conventional designs which do
not exploit the channel time correlations. These simulations have suggested that
there can be significant gains in performance by incorporating time correlation into
the signal model and the resulting receiver designs. Some implications for diversity

code design in the noncoherent case are also briefly noted.

6.7 Appendix: Derivation of The Reduced State
Model

In this appendix, we derived the reduced state model for diversity systems which do
not have full diversity gain.

Using the eigenvalue decomposition, we can express the channel covariance P =
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d A ®H where ® is unitary with ® o = o ® =1, and A is diagonal of the form

A0
N = i (6.54)
0 0
Let g, = o flt, this implies:
e The covariance of g;, Cov{g:} = A,
e If we partition g; into the form of
_ h;
g =1 . . (6.55)
by

where I, € CP¥! and h; € CE=Dx1 then the corresponding covariances are:
) 1Y g

Cov{h,} = A, Cov{flt} = 0, and Cov{h,, flt} =0.

e Since Cov{flt} = 0, this implies b, is a constant. Thus, if h; has zero mean,
g; will also has zero mean and hence h; = 0. The resulting g, can be then
represented by

i hy
g = ; (6.56)
0

The measurement equation from (6.1) can be now expressed in term of h; as:

h,

=X, dh, +n,. (6.57)
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The state equation of h, can be derive as follow:

g1 = O hyyy
=& (Ah,+ 1, ),

= o A &g, + 07 ¥, ,

— —H = =H , 2 = —H
h 37AT T7Ad h 3"
1| vaAe 9 A L : t (6.58)
0 SHAT BHAD 0 4y,
Thus,
h =0 ATh + B . (6.59)

Equations (6.57) and (6.59) therefore represent the reduced state model of (6.1) and
(6.5), respectively.



Chapter 7

Conclusions

7.1 Summary of Contributions

In this thesis, we have developed signal processing and space-time coding tech-
niques to overcome the multiple access interference and channel fading impairments
in wireless communication systems. We focused on the use of interference cancel-
lation methods to mitigate the multiple access interference in CDMA systems, and
the use of multiple transmit and multiple receive antennas for providing diversity
to combat the effects of channel fading. The major contributions of the thesis are

listed below:

Chapter 2: Multiuser Detectors for CDMA Systems

¢ Two new interference cancellation detectors, which are hybrid of the successive

and parallel interference cancellation detectors, are proposed.

o We developed an adaptive multiuser detector which performs joint parameter

estimation and symbol detection for CDMA systems.

154
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Chapter 3: Convergence Behaviour Analysis of the PIC Technique

e We developed a general framework for analysing the convergence behaviour of

the PIC detector for any type of tentative decision function.

e We derived general conditions from which the sufficient condition for conver-
gence of the PIC detector for a wide range of tentative decision functions can
be calculated. Several well-known conditions for convergence of the PIC detec-
tor with linear decisions and clip decisions can be obtained from this general

framework.

e We proved that the PIC detector with any tentative decision function that is
monotonically increasing at sublinear rate will either converge to a fixed point

or enter a limit cycle of period-two.
Chapter 4: Space-Time Coding

e We derived two new upper bounds for the pairwise error probability of space-
time coded systems with multiple transmit and multiple receive antennas in

the presence of spatially correlated fading.

o We found new QPSK space-time trellis codes for two transmit antennas based
on the design criterion of minimising the sum of the the pairwise error proba-
bility of all distinct pairs of codewords. Simulation results showed that these

new space-time trellis codes are superior to other known codes.
Chapter 5: Joint Space-Time Trellis Decoding and Channel Estimation

e We showed how the physical model of the MIMO wireless fading channels
with multiple transmit and multiple receive antennas can be approximated by

a statistical channel model.
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e We developed a space-time receiver for joint channel estimation and space-time

trellis decoding in spatially correlated time-varying Rayleigh fading channels.
Chapter 6: Recursive Receivers for General Diversity Channels

e We introduced a general state space model for a general diversity communica-

tion system with time and diversity correlated flat fading.

e We developed a number of time-recursive receivers which exploit the temporal

correlation in the fading channels.

7.2 Suggestions for Further Study

The works that we presented on the area of multiuser detection mainly assume that
the CDMA systems are synchronous and there is no chip interference. However
in a practical CDMA system, users transmit information independently and hence
the signal of different users will arrive asynchronously at the receiver. In addition,
since the chips are sent at a much faster rate than the symbol rate, it is likely
to yield interchip interference and neighbouring symbol interference. Therefore it
would be of practical interest to include those issues into our works. In addition,
the convergence behaviour analysis in this thesis is only applied to the PIC detector
that performs total interference cancellation. It would be of further research interest
to investigate the convergence behaviour of the PIC detector that performs partial
interference cancellation.

So far, all the works presented on the area of space-time coding have mainly
focused on the narrowband flat fading case where only spatial diversity is avail-
able. However, future wireless communication systems will transmit information
with symbol duration much smaller than the channel delay spread and consequently
frequency-selectivity arises. In [90], theoretical analysis reveals that space-time

codes designed for flat fading still provides at least the same diversity advantage even
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in frequency-selective channels. Coding advantage however might decrease consid-
erably due to the presence of intersymbol interference unless additional processing
is employed [38]. Future work will look at developing space-time coding schemes for
frequency selective channels that can exploit both spatial and multipath diversity.
It will focus at coding schemes which allow low decoding complexity at the receiver
while at the same time achieve full diversity advantage. Low decoding complexity
is quite essential as mobile terminals are supposed to be small, light weight and
low cost. The main technical challenge for designing space-time codes in frequency-
selective fading channels is that signals are mixed both in space (due to the multiple
transmit antennas) and time (due to the multipaths). Thus, optimal space-time cod-
ing for dispersive multipath channels is very complex and requires highly complex
processing at the receiver. Since mobile terminals are required to small, light weight
and low cost, suboptimal approaches which allow simple processing at the receivers
would be needed. One approach is to combine space-time coding with orthogo-
nal frequency division multiplexing (OFDM) which converts the frequency-selective
fading channels into a set of flat fading channels. Another approach is to combine
space-time coding with single carrier frequency domain equalization (SC-FDE) tech-
nique. Both OFDM and SC-FDE approaches have the advantage of lower processing
complexity than the single carrier time domain equalization counterpart [34]. In [5],
space-time codes are combined with OFDM to provide high data rate transmission
over broadband channels. However, the codes being used are constructed for flat
fading. Hence, it can only exploit the spatial diversity while fails to exploit the
multipath diversity. In [8, 113], space-time block coding schemes based on single
carrier frequency domain equalization approach are proposed for frequency selec-
tive fading channels. However, they follow the Alamouti’s space-time block coding
scheme and are restricted to only two transmit antennas case. It is of interest to

seek for more general space-time codes that can exploit the full diversity advantage
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using the OFDM and SC-FDE approaches.



Bibliography

4]

[3]

A. Abdi, J. A. Barger and M. Kaveh, “A parametric model for the distribution of
the angle of arrival and the associated correlation function and power spectrum
at the mobile station”, IEEE Trans. Veh. Technol., vol. 51, no. 3, pp. 425-434,
May 2002.

A. Abdi and M. Kaveh, “A space-time correlation model for multielement an-
tenna systems in mobile fading channels”, IEEE J. Select. Areas Commun., vol.

20, no. 3, pp.550-560, Apr. 2002.

F. Adachi, M. Sawahashi and H. Suda, “Wideband DS-CDMA for next-
generation mobile communications systems”, IEEE Commun. Magz., pp. 56-69,

Sept. 1998.

D. Agrawal, T. J. Richardson and R. Urbanke, “Multiple-antenna signal con-
stellations for fading channels”, IEEE Trans. Inform. Theory, vol. 47, no. 6, pp.
2618-2626, Sept. 2001.

D. Agrawal, V. Tarokh, A. Naguib and N. Seshadri, “Space-time OFDM for high
data-rate wireless communication over wideband channels”, Proc. Veh. Technol.

Conf., pp. 2232-2236, ON, Canada, May 1998.

K. Aktas and M. P. Fitz, “Computing the distance spectrum of space-time trellis

codes”, Proc. WCNC’00, Chicago IL, Sept. 2000.

159



Bibliography 160

[7] S. M. Alamouti, “A simple transmit diversity technique for wireless communi-
cations”, IEEE J. Select. Areas Commun., vol. 16, no. 8, pp. 1451-1458, Oct.
1998.

[8] N. Al-Dhahir, “Single-carrier frequency domain equalization for space-time block
coded transmission over frequency-selective fading channels”, IEEE Commun.

Letters, vol. 5, no. 7, pp. 304-306, Jul. 2001.

[9] B. D. O. Anderson and J. B. Moore, Optimal Filtering, Englewood Cliffs, NJ,
Prentice-Hall, 1979.

[10] C. Anton-Haro, J. A. R. Fonollosa and J. R. Fonollosa, “Blind channel esti-
mation and data detection using Hidden Markov Model. IEEE Trans. Signal
Process., vol. 45, no. 1, pp. 241-247, Jan. 1997.

[11] K. E. Baddour and N. C. Beaulieu, “Autoregressive models for
fading channel simulation”, Proc. GLOBECOM 2001, Available at
http://www.it.iitb.ac.in/ it612/resources/repository/ GLOBECOMO01/vol12/

[12] S. Baro, G. Bauch and A. Hansmann, “Improved codes for space-time trellis

coded modulation”, IEEE Commun. Lett., Vol. 4, No. 1, pp. 20-22, Jan. 2000.

[13] Q. Bi, G. . Zysman and H. Menkes, “Wireless mobile communications at the

start of the 21st century”, IEEE Commun. Magz., pp. 110-116, Jan. 2001.

[14] M. Brehler and M. K. Varanasi, “Asymptotic error probability analysis of
quadratic receivers in rayleigh fading channels with application to a unified anal-
ysis of coherent and noncoherent space-time receivers”, IEEE Trans. Inform.

Theory, vol. 47, No. 6, pp. 2383-2399, Sept. 2001.



Bibliography 161

[15] D. R. Brown III, M. Motani, V. V. Veeravalli, H. V. Poor and C. R. Johnson, Jr.,
“On the performance of linear parallel interference cancellation”, IEEE Trans.

Inform. Theory, vol. 47, no. 5, pp. 1957-1970, July 2001.

[16] J. Bruck and J. W. Goodman, “A generalized convergence theorem for neural
networks”, IFEE Trans. Inform. Theory, vol. 34, no. 5, pp. 1089-1092, Sept.
1988.

[17] R. M. Buehrer, S. P. Nicoloso and S. Gollamudi, “Linear versus non-linear
interference cancellation”, IEICE J. on Commun. Networks, vol. 1, no. 2, pp.

118-133, June 1999.

[18] R. M. Buehrer, “On the convergence of multistage interference cancelation”
Conf. Rec. 33rd Asilomar Conf. Signals, Systems and Compuers, vol. 1, pp.
634-638, Pacific Grove, CA, Oct. 24-27, 1999.

[19] CellularOnline, “Latest global, handset, base station, & regional cellular statis-

tic”, Jan. 2003, available at http://www.cellular.co.za.

[20] T-A. Chen, M. P. Fitz, W-Y. Kuo, M. D. Zoltowski and J. H. Grim, “A space-
time model for frequency nonselective rayleigh fading channels with application

to space-time modems”, IEEFE J. Select. Areas Commun., vol. 18, no. 7, pp.

1175-1190, July 2000.

[21] Z. Chen, J. Yuan and B. Vucetic, “Improved space-time trellis coded modula-
tion scheme on slow Rayleigh fading channels”, Electronics Letters, Vol. 37, No.

7, pp. 440-441, March 2001.

[22] G. Colman, S. D. Blostein and N. C. Beaulieu, “An ARMA multipath fading
simulator”, Proc. 7th Annual Virginia Tech. Symposium on Wireless Personal

Commun., Blacksburg, VA, Jun. 11-13, 1997.



Bibliography 162

[23] C. Cozzo and B. L. Hughes, “Joint channel estimation and data symbol de-
tection in space-time communications”, in Proc. Int. Conf. on Communications,

New Orleans, LA, June 18-22, 2000, pp. 287-291.

[24] C. Cozzo and B. L. Hughes, “An adaptive receiver for space-time trellis codes
based on per-survivor processing”, IEEE Trans. Commaun., vol. 50, no. 8, pp.

1213-1216, Aug. 2002.

[25] Q. Dai and E. Shwedyk, “Detection of bandlimited signals over frequency se-
lective rayleigh fading channels”, IEEE Trans. Commun., vol. 42, no. 2/3/4, pp.
941-950, Feb./Mar./Apr. 1994.

[26] E. Dahlman, B. Gudmundson, M. Nilsson and J. Skold, “UMTS/IMT-2000
Based on wideband CDMA”, IEEE Commun. Magz., pp. 70-80, Sept. 1998.

[27] R. T. Derryberry, S. D. Gray, D. M. lonescu, G. Mandyam and B.
Raghothaman, “Transmit diversity in 3G CDMA systems”, IEEE Commun.
Magz., pp. 68-75, Apr. 2002.

[28] C. A. Desoer and M. Vidyasager Feedback Systems : Input-Output Properties,
Academic Press, 1975.

[29] D. Divsalar and M. Simon, “Improved CDMA performance using parallel in-
terference cancellation”, IEEE MILCOM., New York, USA, 1994, vol. 3, pp.
911-917.

[30] D. Divsalar, M. Simon and D. Raphaeli, “ A new approach to parallel interfer-
ence cancellation for CDMA. IEEE GLOBECOM, New York, NY, USA; 1996
vol. 3, pp. 1452-1457.



Bibliography 163

[31] D. Divsalar, M. Simon and D. Raphaeli, “Improved parallel interference can-
cellation for CDMA”, IEEE Trans. Commun., vol. 46, no. 2, pp. 258-268, Feb.
1998.

(32] A. Duel-Hallen, “Decorrelating decision-feedback multiuser detector for syn-
chronous code-division multiple access channel”, IEEE Trans. Commun., vol.

41, no. 2, pp. 285-290, Feb. 1993.

[33] A. Duel-Hallen, J. Holtzman and Z. Zvonar, “ Multiuser detection for COMA

systems”, IEEE Personal Communications, vol. 2, no. 2, pp. 46-58, April 1995.

(34] D. Falconer, S. L. Ariyavisitakul, A. Benyamin-Seeyar and B. Eidson, “Fre-
quency domain equalization for single-carrier broadband wireless channels”,

IEEE Commun. Magz., pp. 58-66, Apr. 2002.

[35] G. J. Foschini, “Layered space-time architecture for wireless communication
in fading environment when using multi-element antennas”, Bell Labs Technical

Journal, pp. 41-59, Autumn 1996.

[36] G. J. Foschini and M. J. Gans, “On limits of wireless communications in a
fading environment when using multiple antennas”, Wireless Personal Commu-

nications, vol. 6, no. 3, pp. 311-335, Mar. 1998.

[37] J. Fuhl, J-P. Rossi and E. Bonek, “High-resolution 3-D direction of arrival
determination for urban mobile radio”, IEEE Trans. Antennas Propagat., vol.

45, no. 4, pp. 672-682, Apr. 1997.

[38] Y. Gong and K. B. Lataief, “Performance evaluation and analysis of space-time
coding in unequalised multipath fading links”, IEEE Trans. Commaun., vol. 48,

no. 11, pp. 1778-1782, Nov. 2000.



Bibliography 164

[39] A. Grant and C. Schlegel, “Convergence of linear interference cancellation mul-
tiuser receiver”, IEEE Trans. Commun., vol. 49, no. 10, pp. 1824-1834, Oct.
2001.

[40] S. D. Gray, M. Kocic and D. Brady, “Multiuser detection in mismatched
multiple-access channels”, IEEE Trans. Commun., vol. 43, no. 12, pp. 3080-
3089, Dec. 1995.

[41] J. C. Guey, M. P. Fitz, M. R. Belland W. Y. Kuo, “Signal design for transmitter
diversity wireless systems over Rayleigh fading channels”, Proc. IEEE Vehicular

Technology Conference, pp.135-140, Atlanta, US, 1996.

[42] T. Hashimoto, "A list-type reduced-constraint generalization of the Viterbi
algorithm”, IEEE Trans. Inform. Theory, vol. I'T-33, pp. 866-876, Nov. 1987.

[43] B. M. Hochwald and T. L. Marzetta, “Unitary space-time modulation for

multiple-antenna communications in rayleigh flat fading”, IEEE Trans. Inform.

Theory, vol. 46, no. 2, pp. 543-564, Mar. 2000.

[44] B. M. Hochwald, T. L. Marzetta, T. J. Richardson, W. Sweldens and R. Ur-
banke, “Systematic design of unitary space-time constellations”, IEEE Trans.

Inform. Theory, vol. 46, no. 6, pp. 1962-1973, Sept. 2000.

[45] B. M. Hochwald and W. Sweldens, “Differential unitary space-time modula-
tion”, IEEE Trans. Commun., vol. 48, no. 12, pp. 2041-2052, Dec. 2000.

[46] J. J. Hopfield, “Neurons with graded response have collective computational
properties like those of two-state neurons”, Proc. Natl. Acad. Sci. USA, vol. 81,
pp- 3088-3092, May 1984.

[47] R. A. Horn and C. R. Johnson, Matriz Analysis, Cambridge University Press,
1985.



Bibliography 165

[48] B. L. Hughes, “Differential space-time modulation”, IEEE Trans. Inform. The-
ory, vol. 46, no. 7, pp. 2567-2578, Nov. 2000.

[49] E. Jaffrot, M. Siala and I. Fijalkow, “Maximum a posteriori semi-blind channel
estimation for OFDM systems operating on highly frequency and time selective

channels”, submitted to IEFE Trans. Communications, February 2002.

[50] E. Jaffrot, V. K. Nguyen, M. Soamiadana, L. B. White, and L. Fijalkow, “Sym-
bol by symbol reduced complexity highly selective OFDM channel estimation”,
Proc. EUSIPCO 2002, Toulouse, France, September 2002.

[51] W. C. Jakes Jr. (Ed.), Microwave Mobile Communications, New York : Wiley,
1974.

[52] C. R. Johnson, Jr., et al, “Blind equalisation using the constant modulus cri-

terion : A review”, Proc. IEEE, vol. 86, no. 10, Oct. 1998, pp. 1927-1949.

(53] G. K. Kaleh and R. Vallet, “Joint parameter estimation and symbol detection
for linear or nonlinear unknown dispersive channels”, IEEE Trans. Commun.,

vol. 42, No. 7, pp. 2406-2413, July 1994.

[54] G. Kang, P. Zhang, H. Haas and E. Schulz, “Good space-time codes in terms
of distance spectrum”, Proc. VTC Fall-2002, Vancouver, Cannada, pp. 252-255,
Sept. 2002.

[55] S. M. Kay, Fundamentals of statistical signal processing: Estimation Theory,

Prentice-Hall signal processing series, 1993.

[56] G.I. Kechriotis and E. S. Manolakos, “Hopfield neural network implementation
of the optimal CDMA multiuser detector”, IEEE Trans. Neural Networks, vol.
7, no. 1, pp. 131-141, Jan. 1996.



Bibliography 166

[57] C. Komninakis, C. Fragouli, A. H. Sayed, and R. D. Wesel, “Adaptive multi-
input multi-output fading channel equalization using kalman estimation”, Proc.

ICC 2000, pp. 1655-1659, New Orleans, Louisiana, Jun. 18-22, 2000.

[58] D. N. Knisely, Q. Li and N. S. Ramesh, “cdma2000: A third-generation radio
transmission technology”, Bell Labs Tech. Journal, pp. 63-78, Jul.-Sept. 1998.

[59] V. Krishnamurthy and J. B. Moore, “On-line estimation of hidden Markov
model parameters based on the Kullback-Leibler information measure”, I[EEE

Trans. Signal Process., vol. 41, no. 8, pp. 1557-1572, Aug. 1993.

[60] Z. Liu, X. Ma, G. B. Giannakis, “Space-time coding and kalman filtering for
time-selective fading channels”, IEEE Trans. Commun., vol. 50, no. 2, pp. 183-
186, Feb. 2002.

[61] Z. Liu, G. B. Giannakis and B. L. Hughes, “Double differential space-time block
coding for time-selective fading channels”, IEEE Trans. Commun., vol. 49, no.

9, pp. 1529-1539, Sept. 2001.

[62] R. Lupas and S. Verdu, “Linear multiuser detectors for synchronous code-
division multiple-access channels”, IEEE Trans. Inform. Theory, vol. 35, no.

1, pp. 123-136, Jan. 1989.

[63] U. Madhow and M. Honig, “MMSE interference suppression for direct sequence
spread spectrum CDMA”, IEEFE Trans. Commaun., vol. 42, no. 12, pp. 3178-3188,
Dec. 1994.

[64] J. R. Magnus and H. Neudecker, Matriz Differential Calculus with applications

in statistics and econometrics, New York: McGraw-Hill, 1999.



Bibliography 167

[65] L. Mailaender and R. A. Iltis, “Multiuser detectors with single user parameter
estimation on Quasi-Synchronous CDMA channels”, IEEE Trans. Commun.,

vol. 48, no. 2, pp. 200-203, Feb. 2000.

[66] C. M. Marcus and R. M. Westervelt, “Dynamics of iterated-map neural net-
works”, Physical Review A, vol. 40, no. 1, pp. 501-504, July 1989.

[67] T. L. Marzetta and B. M. Hochwald, “Capacity of a mobile multiple antenna

communication link in rayleigh flat fading”, IEEE Trans. Inform. Theory, vol.

45, no. 3, pp. 139-157, Jan. 1999.

[68] M. Motani and D. R. Brown, “On the convergence of linear parallel interference

cancellation”, ISIT 2001, Washington DC., June 24-29, 2001.

[69] R. D. Murch and K. B. Letaief, “Antenna system for broadband wireless ac-
cess”, IEEE Commun. Magz., pp. 76-83, Apr. 2002.

[70] V. K. Nguyen and L. B. White, “Iterative multiuser detection with parameter
estimation”, Digital Signal Processing, vol. 12, no. 2,3, pp. 145-158, Apr./July
2002.

[71] V. K. Nguyen and L. B. White, “Interference cancellation schemes for CDMA
systems”, Information, Decision and Control 2002 Conf., Adelaide, Feb. 2002.

[72] V. K. Nguyen and L. B. White, E. Jaffrot, M. Soamiadana, I. Fijalkow, “Re-
cursive receiver structures for general diversity channels with time correlated flat

fadings”, IFEE J. Select. Areas Commun., vol. 21, no. 5, pp. 754-764, June 2003.

[73] V. K. Nguyen and L. B. White, “Recursive receiver structures for general di-
versity channels with time correlated flat fadings”, Proc. Third Australian Com-

munications Theory Workshop, Canberra, Australia, pp. 48-52, Feb. 2002.



Bibliography 168

[74] M. J. Omidi, S. Pasupathy, P. G. Gulak, “Joint data and Kalman estimation
of fading channel using a generalized viterbi algorithm”, International Conf. on

Commun. pp. 1198-1203, June 1996.

[75] P. Patel and J. Holtzman, “Analysis of a simple successive interference cancel-
lation scheme in a DS/CDMA system”, IEEE J. Select. Areas Commun., vol.
12, No. 5 pp. 796-807, June 1994.

[76] S. Perreau and L. B. White, “Nonlinear iterative multiuser detection and equal-
ization for CDMA receivers in the presence of interchip interference”, Digital

Signal Processing, vol. 11, no. 2, pp. 94-109, Apr. 2001.

[77] E. Pittampalli, “Third-generation CDMA wireless standards and harmoniza-
tion”, Bell Labs Tech. Journal, pp. 6-18, Jul.-Sept. 1999.

[78] M. B. Priestley, Spectral Analysis and Time-Series, Academic Press, London,
1981.

[79] R. Raheli, A. Polydoros, C. Tzou, " Per-survivor processing: a general approach
to MLSE in uncertain environments”, IEEE Trans. Commun., vol. 43, pp. 354~
364, Feb./Mar./Apr. 1995.

[80] T. S. Rappaport, Wireless Communications: Princles and Practice, Prentice

Hall, New Jersey, 1996.

[81] L. K. Rasmussen, T. J. Lim and A. Johansson, “A matrix-algrebraic approach
to successive interference cancellation in CDMA”, IEEE Trans. Commun., vol.

48, no. 1, pp. 145-151, Jan. 2000.

[82] E. B. Saff and A. D. Snider, Fundamentals of complex analysis for mathematics,

science, and engineering. New Jersey: Prentice-Hall, 1976.



Bibliography 169

[83] M. Schwartz, W. R. Bennett, and S. Stein, Communication Systems and Tech-
nigues. New York: McGraw-Hill, 1966.

[84] N. Seshadri and J. H. Winters, “T'wo signaling schemes for improving the er-
ror performance of frequency-division-duplex (FDD) transmission systems using
transmitter antenna diversity”, Int. J. Wireless Inform. Networks, vol. 1, no. 1,

Jan. 1994,

[85] N. Sellami, L. Fijalkow and M. Siala, “Low-complexity iterative receiver for
space-time coded signals over frequency selective channels”, EURASIP Journal
on Applied Signal Processing, special issue on space-time coding and its applica-

tions, No. 5, pp.517-524, May 2002.

[86] D-S. Shiu, G.J. Foschini, M. J. Gans and J. M. Kahn, “Fading correlation
and its effect on the capacity of multielement antenna systems”, IEEE Trans.

Commun., vol. 48, no. 3, pp. 502-513, Mar. 2000.

[87] S. Siwamogsatham, F. P. Fitz and J. H. Grimm, “A new view of performance
analysis of transmit diversity schemes in correlated Rayleigh fading”, IEEE

Trans. Inform. Theory, Vol. 48, No. 4, pp. 950-956, April 2002.

[88] F. Swarts and H. C. Ferreira, “Markov characterization of channels with soft

decision outputs”, IEEE Trans. Commaun., vol. 41, no. 5, pp. 678-682, May 1993.

[89] V. Tarokh, N. Seshadri and A. R. Calderbank, “Space-time codes for high
data rate wireless communication: performance criterion and code construction”,

IEEE Trans. Inform. Theory, vol. 44, no. 2, pp. 744-765, Mar. 1998.

[90] V. Tarokh, A. Naguib, N. Seshadri and A. R. Calderbank, “Space-time codes
for high data rate wireless communication: performance criteria in the presence
of channel estimation errors, mobility and multipaths”, IEEE Trans. Commun.,

vol. 47, no. 2, pp. 199-207, Feb. 1999.



Bibliography 170

[91] V. Tarokh, H. Jafarkhani and A. R. Calderbank, “Space-time block codes from
orthogonal designs”, IEEE Trans. Inform. Theory, vol. 45, no. 5, pp. 1456-1467,
Jul. 1999.

[92] V. Tarokh and H. Jafarkhani, “A differential detection scheme for transmit
diversity”, IEEE J. Select. Areas Commun., vol. 18, no. 7, pp. 1169-1174, Jul.
2000.

[93] 1. E. Telatar, “Capacity of multi-antenna Gaussian channels”, Technical Report,

AT&T Bell Laboratories, Lucent Technologies, 1995.

[94] D. M. Titterington, “Recursive Parameter Estimation using Incomplete Data”,

J. R. Statist. Soc. B, vol. 46, no. 2, pp. 257-267, 1984.

[95] M. K. Tsatsanis, G. B. Giannakis and G. Zhou, “Estimation and equalization
of fading channels with random coeflicients”, Signal Processing 53, pp. 211-229,

1996.

[96] D.N. C. Tse and S. V. Hanly, “Linear multiuser receivers: effective interference,
effective bandwidth and user capacity”, IEEE Trans. Inform. Theory, vol. 45,
no. 2, pp. 641-657, Mar. 1999.

[97] M. K. Varanasi and B. Aazhang, “ Multistage detection in asynchronous code-

division multiple-access communications”, IEEE Trans. Commun., vol. 38, no.

4, pp. 509-519, Apr. 1990.

[98] M. K. Varanasi and B. Aazhang, “Near-optimum detection in synchronous
code-division multiple-access systems”, I[EEFE Trans. Commun., vol. 39, no. 5,

pp. 725-736, May 1991.



Bibliography 171

[99] S. Verdu, “Minimum probability of error for asynchronous gaussian multiple-
access channels”, IEEE Trans. Inform. Theory, vol. 32, no. 1, pp. 85-96, Jan.
1986.

[100] S. Verdu Multiuser Detection, Cambridge University Press, 1998.

[101] E. Visotsky and U. Madhow, “Noncoherent multiuser detection for CDMA
systems with nonlinear modulation: a non-Bayesian approach”, IEEE Trans.

Information Theory, vol. 47, no. 4, pp. 1352-1367, May 2001.

[102] A. J. Viterbi, “Very low rate convolutional codes for maximum theoretical
performance of spread-spectrum multiple-access channels”, IEEE J. Select. Areas

Commaun., vol. 8, No. 4, pp. 641-649, May 1990.

[103] H. S. Wang and N. Moayeri, “Finite-state Markov channel - a useful model
for radio communication channels”, IEEE Trans. Veh. Technol., vol. 44, no. 1,

pp. 163-171, Feb. 1995.

[104] D. Warrier and U. Madhow, ”Spectrally efficient noncoherent communica-

tion”. IEEE Trans. Inform. Theory, vol. 48, no. 3, pp. 651-668, Mar. 2002.

[105] F. R. Waugh and R. M. Westervelt, “Analog neural networks with local com-
petition. I. Dynamics and stability”, Physical Review E, vol. 47, no. 6, pp. 4524-
4536, June 1993.

[106] Y. Xue and X. Zhu, “PSP decoder for space-time trellis code based on accel-
erated self-tuning LMS algorithm”, FElectronic Letters, vol. 36, no. 17, pp.1472-
1474, Aug. 2000.

[107] Q. Yan and R. S. Blum, “Optimum space-time convolutional codes”, Proc.

IEEE WCNC’00, Chicago, IL, pp. 1351-1355, Sep. 2000.



Bibliography 172

[108] A. Yener, R. D. Yates and S. Ulukus, “CDMA multiuser detection: a nonlinear
programming approach”, IEEE Trans. Commaun., vol. 50, no. 6, pp. 1016-1024,
June 2002.

[109] Y. C. Yoon, R. Kohno and H. Imai, “A spread-spectrum multiaccess system
with cochannel interference cancellation for multipath fading channels”, IEEFE

J. Select. Areas Commun., vol. 11, no. 7, pp. 1067-1075, Sep. 1993.

[110] J. Yuan, Z. Chen, B. Vucetic and W. Firmanto, “Performance analysis and
design of space-time coding on fading channels”, Submitted to IEEE Trans.
Commaun., Sept. 2000.

[111] M. Zeng, A. Annamalai and V. K. Bhargava, “Recent advances in cellular

wireless communications”, IEEE Commun. Magz., pp. 128-138, Sept. 1999.

[112] L. Zheng, D. N. C. Tse, “Packing spheres into the Grassmann manifold: A ge-
ometric approach to noncoherent multi-antenna channels”, IEEFE Trans. Inform.

Theory, Submitted for publication.

113] S. Zhou and G. B. Giannakis, “Space-time coding with maximum diversit
B
gains over frequency-selecitve fading channels”, IEEE Signal Process. Letters,

vol. 8, no. 10, pp. 269-272, Oct. 2001.





