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Abstract
The dernands for wireless communication services are growing at a rapid rate.

Meeting these demands is challenging since the avaiiability of the radio spectrum

at the frequencies of interest is limited. Furthermore, wireless communications also

must cope with several other difficulties such as multiple access interference (MAI),

channel fading, and limitations on the power and size of the mobile terminals. This

thesis investigates the problems of IVIAI and channel fading in wireless communi-

cations, and focuses on developing spectrally efficient coding and signal processing

techniques to rnitigate the effects of these problems.

The first part of the thesis discusses the use of rnultiuser detection techniques to

overcome the problems of N,IAI in code-divisiorr rnultiple access (CDIVIA) systems.

The thesis clevelops two new interference cancellation detection techniques and an

aclaptive mnltiuser detector for joint parameter estimation and symbol detection.

In addition, the thesis derives a novel framework for analysing the convergence

behaviour of an interference cancellation technique which is commonly known as

parallel interference cancellation.

In the second part of the thesis, the effects of channel fading on the performance

of r,vireless cornmunication systems are considerecl. The thesis examines the use

of mlltiple transmit and rnultipie receive antennas in conjunction with coding for

providing diversity to combat channel fading. Particular focus is given to the case

when the propagation paths are spatially correlated. The performance of strch com-

munication systems is analysed and design criteria for constructing good codes are

clerived slbsequently. The thesis then develops a receiver for joint decoding and

channel estimation in time-varying fading channels'

Finally, since there are many different types of diversity which can be exploited

in wireless communication systems, the thesis develops a generalised and unified

taxonomy for system modelling and signal processing for such systems.
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Chapter 1

Introduction and Summary of

Contributions

1.1 Wireless Communications

Since the deployment of first generation (1G) cellular networks in the early 1980s,

there has been a substantial increase in the development of wireless comnunication

technologies. This tremendous boost in the cellular industry reflects the growing

demands for higher data rate and better quality services, and the increase in the

number of subscribers to mobile phone services. According to latest statistics [19],

there are over 1.3 billion subscribers worldwide in 2003 as compared to only 10

million subscribers in 1990 [te]. fn Europe, the current average market penetration

of mobile phones is70% of the total population [tO], white in other countries like

Iceland and Finland, the market penetration is as high as 90%. Thus, wireless

communication does not only complement the mature wireline network but rnay

become a dominant method of communication in the near future.

Since the early 1980s, wireless communications have gone through two genera-

tions of technologv overhaul. The first generation of public cellular networks was

1



Introduction and Summary of Contributions

established to provide basic voice telephony services to mobile subscribers over a

wide area. These first generation systems were analog and based on frequency-

division multiplexing technologies. Examples of first generation systems are the

Advance Nlobile Phone System (ANIPS) in North America, the Nordic Mobile Tele-

phone/Total Access Communication System (NN,IT/TACS) in Europe, and the Nip-

pon Telephone and Telegraph-80O/Japanese Total Access Commnnication System

(NTT-800/JTACS) in Japan. In the early 1990s, second generation (2G) systems

basecl on digital transmission techniqrles were introduced to provide more robust

communications. They provided basic services such as voice, facsimile, low-rate cir-

cuit and packet data (9.6 and 14.4 kb/s), and medium-rate packet data (up to 76.8

kb/s). Examples of 2G wireless systems are the Global System for iVlobile Com-

munication (GS\,I), Personal Digital Cellular (PDC), IS-136 and cdmaOne/IS-95.

Due to the growirrg demands for a variety of multimedia communication services

such as high-speed Internet access and video/high-quality image transmission, third

generation (3G) wireless systems (".g. Universal Mobile Telecommr-rnication Sys-

tem/International \4obile Telecommunications-20O0 (UI\,ITS/IMT-2000)) are now

under development to address these needs. These 3G wireless systems will evolve

gracefully from mature2G networks and offer true packet access at significant higher

speeds. It is expected that 3G wireless communication systems will support user

data rate aI I44l<bls for vehicular applications, 384kb/s for outdoor pedestrian

applications, and up to 2NIbls for indoor applications. For more details on the de-

velopments ancl standards of wireless communication systems, readers are referred

to the following references [3, 13, 26, 58, 77, 1'I7].

L.2 Motivation and Background

Unlike wireline communications, transmissions of information signals in wireless

medium suffer several impairments that can significantly degrade their performance.

2



Introduction and Summary of Contributions

Among these impairments, multiple access interference and channel fading are the

two major problems that limit the high-data rate transmission in wireless communi-

cation systems. In addition, wireless transmissions must also deal with the difficulty

of limited availability of the radio spectrum at the frequency of interest where the

propagation conditions are favourable. Thus, in order to effectively utilise this pre-

cious bandwidth and to overcome the impairments in wireless communications, there

is a need to develop efficient methods of transmission and coding together with so-

phisticated signal processing techniques. The research in this thesis is therefore

aimed achieving the above objectives. In this thesis, we adclress the problems of

rnr-rltiple access interference and channel fading in wireless communications and fo-

c1ls on two particnlar techniques that recently received enorrnolls attention, namely

multiuser cletection and multiple transmit multiple receive antennas.

L.z.t Multiple Access Interference - Multiuser Detection

There are a number of multiple access schemes that allow many wireless users to

share simultaneously a finite amount of radio spectrum. Frequency division rnultiple

access (FDiVIA), time division multiple access (TDI\IA) and code-division multiple

access (CDiVIA) are the three major multiple access techniques for multiplexing wire-

less users. In FDNIA systems, the frequency spectrum is partitioned into distinct

bands of frequencies (or channels) and each user is allocated a dedicated frequency

band in which information may be transmitted. In contrast to FDNIA systems,

TDN,IA systems divide the radio spectrum into time slots. Each user is assigned a

time slot and during the time slot that user can access the entire available band-

width. Since TD1VIA transmissions are time slotted, strict synchronism between

the transmitter and receivers are required and guard slots are necessary to separate

different users. Unlike FDVIA and TDNTIA systems, each user in CD1VIA systems

can transmit information over the entire available radio spectrum at all times. Each

o.)



Introduction and Summary of Contributions

user is distinguished from each other bv mriltiplying its data with a unique signa-

ture code sequence. At the receiver, the message signal of a user can be detected

by performing a time correlation operation of the received signal with that userTs

code waveform. N4ultiplexing wireless users using the CDN{A technique has many

advantages over the FDNIA and TDIVIA techniques. These advantages include the

following (but not limited to):

o Potent'ial Capaci,ty Increase - In the FDMA and TDNIA systems, in order

to avoid co-channel interference spectral guards arrd time guards respectively,

are required. In additiol, since each user in tlie FD1VIA system is assigned a

frequency band, FDNIA channels that are not in use cannot be used by other

users to increase the capacity. Similarly for TDIVIA system where each user is

allocated a time slot, when a time slot that is not itt use, it cannot be used by

other users. Thus, both FD1VIA and TDiVIA systems do not efficiently utilise

the available spectmm. In contrast, CDNIA systems allow users to access

the entire available spectrurn for all times. Therefore they fully utilise the

available spectrum and have higher potential capacity over the other multiple

access methods.

o Soft Capacity Limi,t - As the number of users in a CDNIA system is increased,

the level of multiple access interference also raises and causes the system per-

formance to decrease accordingly. When the number of users is decreased, the

system performance is then improvecl. Thus. there is no absolute limit on the

number of users in a CDNIA system.

o Access Fleri,bi,ltty - Since each user can use the entire bandwidth for transmis-

sion at any time, a new user can be added to the system without the channel

resources having to be re-sliced.

4



Introduction and Summary of Contributíons

c Di,uers,itg - Since transmitted signals are spread over a large spectrum, fre-

quency diversity will arise if the spread spectrum bandwidth is greater than

the channel coherent bandwidth. Hence, the effects of small-scale fading can

be substantially reduced. In addition, the chip duration is very short and

much less than the channel delay spread. Thus, multiple delayed versions of

the chip signal will appear in the received signal. Therefore, a Rake receiver

can be used to exploit this multipath diversity to improve reception.

o Soft Handoff- In CDiVIA systems, the spread spectrum mobiles share the same

channel in every cell. Thus, two or more base stations can simultaneously

monitor a particulaï nser and allow the Nlobile Switching Center (VISC) to

choose the best version of the signal at any moment in time.

Dle to the attractive features of the CDiVIA technique, it has been chosen as the

main multiple access scheme for the 3G systems [3, 26, 111]. However, a major prob-

lem in CDNIA systems is the presence of the multiple access interference (iVIAI). The

NIAI arises due to the non-orthogonality of the spreading code sequences employed

by users and the fact that all users in a CDMA system share the same frequency

spectrum for transmission at any given time. If the spreading code sequences are or-

thogonal to each other, the IvIAI can be completely suppressecl after performing the

time correlation operation of the received signal with the Ltser's signature code wave-

form. However in practice, the orthogonality of the spreading code sequences cannot

be maintained after they are transmitted through the wireless medium. Hence the

N{AI is always present. This NIAI can severely limit the multiple access capability

of CDNzIA systems if it is not properly exploited at the receiver.

A simple detection technique for CDIVIA systems is to correlate the received

signal with the Llser's spreading code and pass it through a threshold device [33].

This is a single user detection strategy where each user is treatecl separately and

the signal of other users are considered as noise. As a result, it performs poorly

5



Introduction and Summary of Contributions

when a large amount of MAI is present. A better approach is to perform multiuser

detection where the information of multiple users is used jointty [100]. In [99], a

maximum likelihood sequence estimator (MLSE) is proposed which involves find-

ing an output sequence that has the maximum conditional probability. This is the

optimal mnltiuser detector. However its complexity grows exponentially with the

number of users and therefore can not be implemented in practical systems. Due

to the high complexity of the optimal multiuser detector, a number of suboptimal

mlltiuser detectors with a much lesser complexity have been proposed. The first

class is known as linear multiuser detectors where a linear transformation is applied

to the correlator outputs to reduce the iViAI. The linear decorrelator [62] can com-

pletely remove the iVIAI by multiplying the correlator outpttts with the inverse of

the crosscorrelation matrix of the spreading codes, albeit at the cost of background

noise enhancement. An advantage of the decorrelator is that it does not require the

knowledge of the transmitted signal amplitudes. As it turns out, in the absence of

any prior knowledge of the transmitted signal amplitudes, the decorrelator is the

optimal detector [100]. The minimum mear squared error (NI\/[SE) detector [63]

is another example of linear suboptimal multiuser detectors. Unlike the decorrela-

tor, the iVIN,ISE detector takes the background noise into account in the detection.

It is found that when the background noise approaches zero) the 1VINISE detector

converges to the decorrelator and when the backgr-ound noise approaches infinity, it

approaches the conventional matched filter [100, pp. 296]. Thus, the decorrelator

and the conventional matched filter are the two limiting cases of the N¡tViSE detector.

A drawback of these two linear multiuser detectors is that they need to compute

the inverse of a square matrix r,vhose elements depended on the crosscorrelation of

the spreading codes. This poses a major problem in terms of processing complexity

when long codes are employed because the computation must be done in real time.

In addition, due to the linear structure of the linear multiuser detectors, they have

6
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limited capacity. An alternative approach to mitigate the NIAI is to perform inter-

ference cancellation where each user estimates the interference contributed by other

users and subtracts it from the received signal to give an estimate of the desired

signal. Thus, a correct decision on a particular user's data symbol will cancel that

Lrser's interference, while an incorrect decision will enhance the contribution of that

interferer. The interference cancellation process can be performed in a sequentially

(serial) order [75, 102] or in parallel [29, 30,31, 76,97,,98, 109]. As compared to lin-

ear multiuser detection, interference cancellation techniques have lower complexity

and can provide better performance. For this reason) some interference cancellation

techniques have been proposed in the W-CDiVIA [3] and the CDNIA I [111] propos-

als. Due to these attractive characteristics of the interference cancellation methods,

the first part of this thesis will focus on this class of suboptimal multiuser detection.

L.2.2 Multipath Fading - Multiple Transmit and Receive

Antennas

Due to the lnguided nature of the wireless communication channels, radio frequency

waves emitted by the transmitter propagate through different paths and undergo dif-

ferent reflection, refraction, diffraction and attenuation. They arrive at the receiver

from different directions with different propagation delays and strengths. These

waves are then combined, constructively or destructively depending on their phases,

at the receiver to give a resulting signal which varies widely in amplitr-rde and phase

thereby inducing fading. Depending on the relative magnitude of the time required

for the main portion of the transmitted signal to reach the receiver, termed delay

spread, and the symbol period, mr-rltipath fading can be classified as flat fading or

frequency selective fading. If the delay spread is less than the symbol period, the

channels undergo flat fading and frequency selective fading otherwise. When fre-

qlency selective fading arises, it gives rise to intersymbol interference because the

7
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transmitted signal arrives at the receiver over several symbol periods.

Another factor in wireless propagation channels that influences fading is the pres-

ence of Doppler shift which is induced by the motion of the receiver, transmitter or

surrounding objects. This Doppler shift may cause the signal level recorded at the

receiver to vary widely with time. The temporal variation in the received signal is

termecl fast fading if the channel impulse response changes rapidly within the sym-

bol duration. Conversely, if the channels impulse response changes at a rate much

slower than the transmitted symbol rate, it is called slow fading. It should be noted

that a slow or fast fading channel can be either flat or frequency-selective depending

on the time delay spread. Thus, a fading channel can be classified into one of the

following four types: fl,at slow fading, fl,at fast fading, freq'Lr,ency-select'iue sbw fading

and freqttency - s elect'iu e f ast fading.
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Figure 1.1: Performance degradation as a result of Rayleigh fading

channel
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lVlaintaining a reliable communication in wireless channels can become very dif-
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ficllt as a result of the random fluctuation in the received signal amplitude. In a

sitlation where the receiver experiences deep fades, it may require np to 20-30d8

more transmitted power in order to achieve the same bit error rate as systems oper-

ating over non-fading channels. Figure 1.1 illustrates the performance degradation

of BPSK transmissions over Rayleigh fading channels. An effective method of com-

bating channel fading is to introduce diversity into the system which would allow

the transmission and/or reception of the information signal over multiple fading

branches. If the mr-rltiple fading branches are highly uncorrelated, it would be un-

likely that they experience deep fades simultaneously. Hence, there would be some

branches that have acceptable signal quality which allow the receiver to recover the

transmitted information correctly. One way of providing diversity is to ttse channel

coding in conjunction with time interleaving. This provides temporal diversity for

the system as it introduces redundancy of the transmitted signal in the temporai do-

main. An alternative diversity technique is to send information over more than one

carrier frequency to induce different multipaths. Thus, if the carrier frequencies are

separated by more than the coherent bandwidth of the channel, the transmitted sig-

nals will not experience the same fades and hence we have frequency diversity. Both

temporal and frequency diversity techniques induce loss of bandwidth efficiency as

they have to introduce redundancy in the time and frequency domain respectively.

The third type of diversity is spatiai diversity which can be obtained by employing

multiple transmit and/or multiple receive antennas. This technique is more advan-

tageous than the previous two as it can introduce redundancy of the signal without

having to sacriflce the precious bandwidth resources.

Recently, receive antenna diversity has been exploited in the uplink of mobile

systems by deploying multipie antennas at the base station. Provided that the

antennas at the base station are well separated (i.e. around 10 wavelengths), the

multiple received signals at the antennas will be reasonably uncorrelated and they

I
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can be intelligently combined at the receiver to improve the performance of the

system in the presence of channel fading. Common processing techniques that can be

used to utilise this form of diversity are: switch diversity, equal gain and maximum

ratio combining (N,IRC) [69, 80]. Switch diversity is the simplest diversity technique

in which the signal from the antenna branch with the best quality is seiected. In the

equal gain cornbining, received signals from all antennas are co-phased and summed

together. In the N,IRC, before the signals are co-phased and added together, they

must be weighted to provide the optimal signal to noise ratio (SNR).

Another form of spatial diversity is transmit diversity which is obtained by deploy-

ing multiple antennas at the transmitter. A nttmber of transmit diversity techniques

for the downlink of mobile systerns have been recently adopted or under considera-

tion for the third generation standards [27]. Systems employing transmit diversity

can be classified into one of the following three categories:

o Feedback schemes,

o Feedforward schemes,

o Blind schemes

In the feedback schemes, explicit information of the fading channels is fedback from

the receiver to the transmitter and the transmitter nses this knowledge to its advan-

tage. Examples of the transmit diversity schemes that involve feedback are switched

transmit diversity (STD) and transmit adaptive array (TXAA) 127]. In the STD

scheme, information is transmitted on only one antenna at any given times. To de-

termine which antenna to transmit, pilot symbols are sent from each antenna. Based

on the average received po\Mer, the receiver then decides which antenna it would like

to transmit. In the TXAA scheme, information signals are multiplied with a set

of weights before being transmitted on all antennas simultaneously. These trans-

mit weights are optimised to maximise the signal power at the receiver. They are
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periodically being sent back from receiver to the transmitter via a feedback channei.

On the contrary, transmit diversity systems employing feedforward only require

the transmitter to send training information so that the receiver can estimate the

fading channels. There is no information being fedback to the transmitter. A

simple diversity scheme of this type is the delay diversity [84] where a flat fading

channel is made to become frequency selective by sending simultaneously the data

symbol on one antenna and the delayed versions of the previous data symbols on

the remaining antennas. Another scheme with feedforward information is space-

time cocling. In this method, coding is performed not only in the temporal domain

but also across the spatial-dornain createcl by the multiple antennas. Unlike the

conventional time-domairi channel coding in which the cocling gain is achieved at

the expense of bandwidth expansion, by taking the advantage of the spatial-domain,

space-time coding achieves the coding gain without having to sacrifice the precious

bandwidth. Space-time coding can be implemented in either block [7, 91] or trellis

[89] forms.

The third category of transmit diversity does not require any information about

the fading channels and hence no training sequence or feedback information is re-

qlired. The capacity of communication systems belonged to this category has been

analysed in [67, 112]. It is found that for a fixed number of antennas, as the length

of the coherent interval of the fading channels irrcreases the capacity approaches the

capacity obtained as if the receiver has perfect channel estimates. It is also found

that the space-time codes that attain capacity have a unitary structure (i.e. the

signals are mutnally orthogonal with respect to time among the transmit anten-

nas) f4, 43, 441. Another type of transmit diversity belonged to the blind scheme is

differential space-time coding 145, 48,92].

Transmit diversity schemes discussed so far can also be applied when multiple

receive antennas are used. Thus, the resulting systems are multiple-input-multiple-
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output (MIMO) systems which provide both transmit and receive diversity. As being

shown in [36,93], simultaneous deployment of multiple antennas at the transmitter

and receiver not only provides diversity over fading channels but can significantly

boost the channel capacity. Provided that the fading paths between all pairs of

transmit and receive antennas are independent, it is found that the channel capacity

increases linearly with the smaller of the number of transmit and receive antennas

[35] However, most previous works in this area assume that i) the channels are

statistically independent and ii) the channels undergo quasi-static fading where the

fading coefficients remain constant during the transrnissions of a frarne and change

independently from one frarne to another. The assumption of independent fading is

the ideal case where we have a rich scattering environment and that the antennas

within the transmitter or receiver sides can be sufficiently spaced apart. This could

hardly be met in practice and spatial correlation will present. The assumption of

quasi-static fading is only valid if the mobile unit is stationary or moving at low

velocity. If the mobile unit is moving at high velocity, the channels will undergo

fast fading where the fading coefficients can change from symbol to symbol. These

fading coefficients, however, lvill be temporally correlated to a celtain extend. In this

thesis, lve will examine N'IIN,IO systems r,vith both spatial and temporal correlation

factors being taken into account.

1.3 Overvie\ / of the Thesis and Contributions

The foc¡s of this thesis is to develop efficient coding and signal processing tech-

niqnes for the transmitter and the receivet to overcome the two major impairments

in wireless communication systems, namely mr.rltipie access interference and chan-

nel fading. In chapter 2, we examine different multinser detection techniques for

mitigating the N'IAI in CDNIA systems. We particularly focus on the interference

cancellation techniques as they have low processing complexity and potential ca-
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pacity gains. In chapter 3, we analyse the convergence behaviour of an interference

cancellation technique known as parallel interference cancellation (PIC). In chapter

4, we investigate the performance of multiple transmit multiple receive antennas

systems and design space-time trellis codes that can exploit the additional spatial

diversity created by the multiple antennas. In chapter 5, we propose a receiver struc-

ture which can jointly decode the space-time trellis codes and estimate the fading

channels. Since there are many different types of diversity which can be exploited,

we clevelop a generalised and unified taxonomy for system modelling and signal pro-

cessing for such systems in chapter 6. Conclusions of the thesis and future research

direction are given in chapter 7.

The thesis is organised such that the materials presented in each chapter are self

contained. We now give more detailed summary of the main contributions of the

thesis.

Multiuser Detectors for CDMA Systems (Chapter 2) - In this chapter, we

present two new interference cancellation techniqr-res which are hybrid of the suc-

cessive and parallel interference cancellation rnethods. Computer simulation results

show that the performance of the proposed techniques are in general superior to

the known successive and parallel interf'erence cancellation techniques. Since in-

terference cancellation techniques that use nonlinear tentative decisions require the

knowledge of the signal amplitucles of all active users in the system, we propose an

adaptive algorithm for performing joint parameter estimation and symbol detection.

This proposed adaptive multiuser detector operates on-line where the estirnates of

the lnknown païameters are r-rpdated for each incomiug observation. Compr-rter

sirnllations are used to compare the performance of this proposed adaptive mul-

tiuser detector .çvith that of the nonadaptive version where the signal amplitudes are

perfectly known.
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Convergence Behaviour Analysis of the PIC Technique (Chapter 3) - Since

there aïe many different types of tentative decision functions that can be employed

bv the parallel interference cancellation (PIC) technique for estimating the NIAI,

a general framework for analysing the convergence behaviour of the PIC detector

is cleveloped. This framework permits the derivation of the sufficient condition for

convergence of the PIC detector for a wide range of tentative decision functions.

Several well-known conditions for convergence of the PIC detector with linear de-

cisions and clip decisions can be obtained using this general framework. Computer

simulations are also used to investigate the convergence behaviour of the PIC de-

tector with hyperbolic tangent clecisions ancl simulation results are compared with

analytical results.

Space-Time Coding (Chapter 4) - The performance of space-time coded systems

with multiple transmit multiple receive antennas are analysecl. We derive two new

r-tpper bounds for the pairwise error probability of space-time coded systems in spa-

tially correlated Rayleigh fading environments. The traclitional design criteria (eg.

rank determinant and trace) for constructing space-time trellis codes are to min-

i¡rise the pairwise err-or probability of the dominant ertor event. In this chapter,

we present a number of new space-time trellis codes based on the design criterion

of minimising the sum of the pairwise error probability of all distinct pairs of code-

words. Simulation results support the claim that these new codes are superior to

other known codes constrncted using the traditional rank determinant and the trace

criteria.

Joint Space-time Decoding and Channel Estimation (Chapter 5) - A receiver

for joint space-time trellis decoding and chaunel estimation in time-varying fading

channels that are spatially and temporally correlated is proposed. By approximating
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the physical channel model of the multiple transmit multiple receive antennas sys-

tem with a statistical channel model, we incorporate per-survivor processing with

Kalman filtering into the Viterbi algorithm to allow the receiver to suboptimally

decode the space-time trellis codes and simultaneously track the channel variations.

Simulation results demonstrate that a performance close to the maximum likelihood

receiver with perfect channel state information can be obtained.

Recursive Receivers for General Diversity Channels (Chapter 6) - We intro-

dlce a general state-space model for a general diversity communication system with

time and diversity correlated flat fading. Examples of diversity systems which fall

within this framework include space-time coded systems, orthogonal frequerrcy divi-

sion multiplex (OFDM) systerns, code division multiple access systems and hybrids

of these systems. We develop a number of time-recursive receiver structures based

on sequence estimation or on symbol by symbol estimation to exploit the tempo-

ral correlations in the channel. Such time-recursive receivers offer some advantages

over block processing schemes such as computational and memory requirement re-

cluctions and the easier incorporation of adaptivity in the receiver structures. The

receivers considered include: Per-survivor processing, Nzl-algorithm, two ø posteri'ori'

probability techniques and a per-symbol iterative technique based on ENI algorithm.

Using an OFDIVI system as example, the performance of these proposed receivers are

compared with conventional designs which do not exploit the channel time correla-

tions. Simulation results suggest that there can be significant gains in performance

by incorporating time correlation into the signal model and the resulting receiver

designs.



Chapter 2

Multiuser Detectors for CDMA

Systems

This chapter considers the problem of multiuser detection in synchronotls code-

division multiple access (CDIVIA) systems. It focuses mainly on interference cancel-

lation detectors as they can provide good performance with a relatively low com-

putational complexity. It proposes two interference cancellation techniques which

are hybrid of the successive interference cancellation (SIC) detector and the parallel

interference cancellation (PIC) detector. Computer simulations are used to examine

the perforrrance of these detectors.

Since all interference cancellation detectors with nonlinear tentative decision fi-rnc-

tion require the knowledge of the signal amplitudes of all active users in the systems,

this chapter addresses the issue of joint parameter estimation and symbol detection

of mlltiple users in the CD\¡IA systems. It presents an adaptive multiuser detector

which iteratively performs joint symbol detection and estimation of the unknown

parameters using the Expectation-N{aximization (EIVI) approach. Simulation results

show that the performance of this adaptive multiuser detector is very close to that

of the nonadaptive version where the signal amplitudes of ail users are perfectly

16
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known at the receiver

2.L Introduction

In this chapter, we review two popular interference cancellation detectors: the Suc-

cessive Interference Cancellation (SIC) detector and the Parallel Interference Can-

cellation (PIC) detector. In the former detector, interference is successively removed

from the received signal in the descending order of user's strength while the latter

removes the interference for all rì.sers simultaneously. By performing the interference

cancellation successively, the SIC detector has an extremely good performance when

the powers of the users in the system are unequal. However, when ail users in the

system have equal power it performs poorly, especially for the users being processed

first. The PIC detector on the other hand perforrns extremely well in both ca,ses)

but it requires several interference cancellation stages. This motivates us to propose

two hybrid PIC-SIC detectors, which are combination of the SIC and PIC detectors.

These cornbined detectors inherit the behaviours of the SIC detector when no po\Mer

control is used and that of the PIC detector when ideal power control is used.

We particularly focus on the use of nonlinear tentative decision functions for

estimating the N{AI as they offer superior performance than the linear connterparts

[29]. The main disadvantage with using nonlinear tentative decision functions is that

the detector must have the knowledge of the signal arnplitudes of all active users

in the system. Nlost work on interference cancellation detectors with nonlinear

tentative decision fnnctions often assumes that the signal amplitudes are available

at the receiver. In this chapter, we present an adaptive multiuser cletector that

performs joint parameter estimation and symbol detection for code division multipie

access (CDVIA) systems. In the literature, there are proposed receivers which also

perforrn parameter estimation and symbol detection. The proposed receivers in

[10, 53] perform parameter estimation and symbol detection using the Baum-Welch
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version of the Expectation-Maximization (EM) method. The unknown parameters

are estimated using the maximum likelihood criterion. These methods operate off-

iine and update the parameter estimates based on an entire block of observations

using the forward-backward algorithm. These methods have the advantage that

they can estimate the unknown parameters without the need of a training sequence

[65] Hence they improve the throughput of the system. However, they have the

clrawback that they require large amounts of memory for storage of the forward

and backward variables. This motivates the use of an on-line algorithm [f0] in

olr proposed receiver which updates the parameter estimates for each incoming

observation. This method not only reduces the memory reqnirement, it also allows

the receiver to perform in real-time.

The layo¡t of this chapter is organised as follows: In section 2.2, a synchronous

CDNIA system model is presented. In section 2.3, we review some known interference

cancellation {etectors and describe the two proposed detectors. The performance

of these cletectors with different nonlinear tentative decision functions are examined

by using computer simulations. In section 2.4, we describe the adaptive mtrltitrser

detector.which performs joint symbol detection and parameter estimation for CDIVIA

systems. The performance of this detector is also examined via computer simulation.

2.2 The System Model

We consider a synchronous CDNIA system with K users transrnitting simultaneously

to a common receiver over an additive white Gaussian noise (AWGN) channel. Each

user Æ € {1, ...,K) is assigned a normalizecl signatr.ue seqì-tence s¡ of length ,il'I,

ro e i#,h)nn and transmits at symbol rate the informationdl.(i,) e {+1}. We

use the time indices I and i to denote the chip index and symbol index, respectively.

18



The transmitted signal of the kúh user during lhe tth cirip intervai is

an(t) : A*('¿) d¡"(i.) s¡(j) ,
(2.1)

where An('¿) ) 0 is the signal amplitude of user k over symbol period i, dk(i) is the

zi¿l' symbol and ú : Mi, I i,for 0 < i < M - I'

Thus, the basebancl received signal at the chip rate is the noisy sum of all signals,

which can be written as 
K

r(t):lu*tt)+u(¿) , (2.2)

k:1

where u(ú) is the realization at time ú of a zero mean white Gaussian noise with

variance ø2.

Now, let r(i) consists of 1VI consecutive observations of the received data at the

chiprate t: IWitolt[(i+1) -1i.e. r(i) :lr(Mi)r(luIi+1) ...r(]vt(i+1) -1)1"

where 7 denotes the transpose operation' Similarlv, we use

Multiuser Detectors for CMDA Systems

v(z) : l'u(luti) u(NIi + 1) .

yr(i) : lykQVI¿) y¡(lvti'+I)

. u(A:t(? + 1) - 1)l' 
1

'..yt(NI(?+1) -l)lt,

19

(2.3)

(2 4)

for the corresponding noise vector and vector of user k contribution signals, respec-

tively.

Therefore, the symbol rate version of (2.2) is:

K

r(r;) : I v*tr) + v(z) with y¡(i) : Ar('i) d¡(i,) s¡ (2 5)

k:t

2.3 Interference Cancellation Techniques

2.3.L Tentative Decision Functions

Before we review the SIC and PIC detectors, and describe the proposed detectors, we

firstly describe some tentative decision functions that can be used by the detectors
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for estimating the iVIAI. In literature, there are several tentative decision functions

have been used such as the hard decision [29, 32,97,98, 109], the infinitely soft

decision (linear) 129,75), the hyperbolic tangent decision [30, 31, 76], and the null-

zone [29]. For interference cancellation detectors that use these tentative functions,

with the exception of the linear decision, they all require the knowledge of the

signal amplitudes of all users in the system in order to reconstruct the NIAI. The

estimation of the signal amplitude can be done using the techniques described in

[53, 70] and section 2.4. Studies in [40] have shown that imperfect estimation of the

signal amplitude may significantly reduce the performance of the detectors. For the

interference cancellation detectors with linear tentative decision function, the VIAI

can be estimatecl using the or-rtput of the tentative decision function since the signal

component at the output is linearly proportional to the ttser's signal amplitude.

This in effect provides a joint estimate of the signal amplitude and the user's data

bit, and hence no longer requires the estimation of the signal amplitucle separately.

However, the disadvantage of using the linear tentative decision function is that

additive noise is now introduced into the cancellation process. Studies in [29] found

that the PIC detector with linear decisions is inferior to one with the hard decisions,

hyperbolic tangent decisions or null-zone decisions.

In this paper, we compare the performance of the SIC, PIC and the proposed de-

tectors using the harcl decision and the hyperbolic tangent decision functions. These

two tentative decision fi-rnctions can be described mathematically by the following

equations

o Hard-decision:

gn@) : sign(r) (2-6)

o Hyperbolic tangent decision:

(2 7)gn(r) : tanh(o¡ z) ,
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where a¡" ã.rê, positive constants.

2.3.2 Successive Interference Cancellation Detector

The idea of successive interference cancellation (SIC) detector is to perform inter-

ference cancellation in descending order of the uset's strength. Here we assume the

signal amplitudes are ordered as follow: Ay('i) > Ar(i) > ' ' ' >

reasons for cancelling in this descending order. Firstly, users with stronger power

can be detected more reliably and secondly, the removal of stronger signals have the

most benefit for the remaining users as they contribrite significant interference. The

successive detection statistics nsing the nonlinear tentative decision functions are

computed according to

k-1

ir(¿) î(i,) -Ð t,(¡ ã,ç'i¡"t ;

j:1

d*(i) s*GTir(¿)) ,
(2.8)

where j'¡(z) is the ktt" user's estimate of the desired signal and g¡(r) is the tentative

decision function as previously described. From (2.8) one can notice that the first

user sees ali the interference while later users see less and less interference as the

process progresses. Thus, there is no benefit for the first user and the detection is

equivalerrt to using the conventional matched filter. The most beneficial user is the

last user as it utilises the clecisions of all other users and icÌeally (i.e., when the deci-

sions of the stronger power users are correct) achieves the single user performance.

2.3.3 Parallel Interference Cancellation Detector

An alternative to successive cancellation is to perform parallel cancellation in which

all users simultaneously subtract off all the interference from the received signal.

Thus all Lrsers ïeceive equal treatment. The parallel cancellation scheme can be
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done in multiple stages as in [29, 97, 98, 109]. The idea here is that as the number

of stages increases, the accuracy of the tentative decisions will be improved and

hence the PIC detector can remove more and more interference. Now, suppose the

PIC detector performs ,L interference cancellation stages, then at |he nth stage where

n: I,..., tr we have the following estimate for the desired signal

if')(¿) : r(¿) -Dt,çt¡al"-')(t)si
i+k

¿P f¡ : or ('; *f)t¿l) , Q.s)

where J[t)(¿) : ør (sflr(z)). Note that with this notation, the initial stage which

involves correlating the spreading sequence with the received signal is not counted

as an interference cancellation stage. For the final stage, a hard decision is used to

determine the transmitted information bit.

2.3.4 Iterative Multiuser Detector

In tliis section, we describe the iterative multiuser detector presented in [76] where

it iteratively separates the received signal into individual user signals and estimates

the a posteri,ori, probabitities (APPs) of the ttser's clata symbol. The iterative process

is per-symbol basis. This iterative multiuser detector can also be viewed as a PIC

detector where each iteration corresponds to one interference cancellation stage. In

fact, we will show that for the simple CDNIA system considered in this chapter,

where there is no interchip interference, this iterative multiuser detector is exactly

the same as the PIC cletector with hyperbolic tangent decision function. However

the advantage of this iterative multiuser detector implementation is its ease in in-

corporating adaptive processing algorithms into the detector as will be shown later

in section 2.4.

This iterative multiuser detector works as follow: Let û;[') denotes the ø poste-

ri,ori. at the ntt'iteration that user k transmits d¡'('i) : þ for @ e {+1}. For the
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initial iteration, we initiali." â[o] : â[TI, : 0.5 since d¡(z) € {+1} are transmitted

with equal probabilities. Assuming at the end of iteration n these âf;1 have been

calculated, then at iteration n * 1, we then apply the foilowing steps:

Si,gnal Separation: Using the estimaled a posterioriprol>abilities from previous it-

eration, the iterative multiuser detector separates the received signal into individual

user signal component according to

if*')(z) : r(z) - t v.") Ø) , (2.10)

i+k

where vl") l'i) is the conditional expectation of y(z) computed by

Í,(")il) : t A¡(i,) s¡ "l:ìf¡ O

d€{+1}

: A¡(i)',Q"!',ll(¿) - 1) . (2.11)

In the equation above, we have used the fact that -l?f¡ + *j!r(¿) : t, Vi', n. Let

the sofr estimate of the user data be defined ur if') (1.) : 2rf,l(r) - 1, then (2.10)

can be rewritten as

if't')(z) : r(z) - t A¡(i,)s¡ a{,"){t) , (2,r2)
i+k

Calculati,on of a posteri,ori. probabi'lities: By clefining 2fl*t): "lif*t), *" 
"orl

write

2f,"+tt : At,(i,)clx(e) + sflv(z) + t p¡,t,A¡@ (a,ç¡ -;j")t,;l) (2.13)

i+k

wlrere pj,k : sflsj is the crosscorrelation between the spreading codes of user k and

user ,. The advantage of using 2[") instead of j'f') in the calculation of the a poste-

ri,ori probability is that the uncancelled MAI doesn't have to be assumed as white

Gaussian (i.e. the variance of Ð¡+*V¡Q) - v!"){r) does not have to be proportional

to an identity matrix). This is important as this assumption can not be justified for
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general CDNIA systems. In the expression above, th.e first term is the desired signal,

the second term is the background noise and the iast term is the unsuppressed mul-

tiple access interference (NIAI). The uncanceled interference term of (2.13) can be

approximated as a zeïo-mean Gaussian random variable [at]. Hence we can model

Zf,+rl(z) as a Gaussian random variable with mean Ak(i)dk(i) and covariance 12

where 1') o', recalling tlnal o2 is true additive Gaussian noise variance. Assuming

the nser data d¡(z) € {+1} are transmitted with equal probability, the ø posteri'ori'

can then be updated according to

îf,;" (¿) : p (arØ : d I 2Í"*') (¿))

p zf+tt Q) ldk(i) : ó
(2.t4)

Dr.1*'1 , (uf*u Q) | dk(i) : o

Tlris iterative process is terminated when a posteriorz probabilities clo not change

significantly from one iteration and the next.

To show that this iterative multiuser cletector corresponds to the PIC detector

with hyperbolic tangent decisionì we first derive the expression for the ¿ po.steriori'

probability tkrat d¡(i,): 1 is transmitted. Using (2.I4),

î[î,*') (i,) : p(a*{zl : r ¡ zf;+l)1r;)

* (uy*u(i) - At";t'

zf+rt - An;t,) * u (uy*' (l) + A¡;f
1

L + 
"*p { -þ +(¿)¿["*"(¿)]

where ,tt[(r,w) denotes the Gaussian density

N(r,'w): : €XD
l2trw

1

(2.15)

(2.16)



Multiuser Detectors for CMDA Systems

Now, substitr-rting (2.15) into the definition "f ãf) (z) gives

¿f) (¿) : 2

1 -r exp {-+ An(i) ¿f) U)

1 - exp {-+ An(i) zP Q

1 + *o {-å An(i) 2y*Ð @}

:ranh (Tut',t¡)
Hence, we can rewrite (2.I2) as

if*') (e) : r(e) - t Aj(i)sjdt") (i.)

1

25

(2.r7)

(2.18)

)
))

i+k

,t@):^"n(ry.irf)(d)) (2 1e)

This expression is the same as (2.9) of the PIC detector where gn@) : tanh(arz)

and a¡ : Ax(i,) ll' .

2.3.5 Successive-Parallel IC Detector: Scheme 1

This proposed detector is a hybrid between the SIC and the PIC detectors. It has a

mlltistage structure similar to the PIC detector and at each stage it also attempts

to cancel the interference of all interferers. However, the interference cancellation

pïocess is performecl successively in the descending order of user's strength similar

to the SIC detector. In estimating the amount of interference presented in the

received signal, it utilises the decisions of the stronger power users in the current

stage as well as the tentative decisions of weaker users in previous stage. Hence it

always uses the most up-to-date available estimate of the interference. Thus, unlike

ttie SIC detector which totally ignores the contribution of weaker users and treats

them as background noise, this proposed detector will take thern into accottnt. This

hybrid detector is also different from the PIC detector in the way that at each stage
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the PIC detector only uses the tentative decisions from the previous stage, while

the proposed detector utilises the clecisions of the current stage as well as frorn the

previous stage and successively cancels the interference.

Again, rve assume the signal amplitr-rdes are ordered as follow: At(r) > Ar(i) >

cancellation stage can be computed according to

26

^ (n.\ 
' ',yì-'\?,)

K-T K
: 4i.) -Do,Q.) d,\") s¡ - Ð o,fE d5"-" ,, ,

j:t j:k t

: ek (si lP)t¿l)ãf') (¿) (2.20)

for 2 1 n I L. For the flrst interference cancellation stage, we will include a

weighting factor to the tentative estimates of the matched filter outputs. The reason

behind this inclusion is that there is no interference cancellation being performed on

these tentative estimates. As a result, they may not be reliable, especially for the

low power users. Since using an incorrect estimate of the N'IAI of an interferer in the

cancellation process will enhance the contribution of that interferer, the role of the

weighting factor is therefore to reduce this enhancement when the tentative estimate

is incorrect. Thus, the weighting factor is a measure of the reliability of the tentative

estimates of the matched filter, i.". d[o) (i) : gu (sflr(z)). For a very reliable tentative

clecision ¿[o)(¿), this weighting factor will be adjusted close to 1 while for a less

reliable estimate, this weighting factor will be reduced accordinglv. Consequently,

we will fully use the correct tentative estimates to cancel the interference while for

a less accurate tentative estimates, we only partially make nse of them. We don't

adclress the issue of finding the optimal weighting factor in this chapter. Instead,

as an example we use the probability that the decision J[0)(ti) is correct uncler the

worse case condition as the weighting factor. That is

vvx(ù:Pr(An(i) - t A¡U.)lp¡,nl) 'u) 
,

.i+k

(2 21)
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where u is the background noise. Thus, the 1"¿ stage's estimate of the desired signal

with the weighting factor is

k-l K

vf)(¿) : r(,) - Ðnt(u) ã5') 
", - D ,t(i) A¡(z)rij')s¡ ;

j:7 j:k-tl

¿[o)(¿) : or (sflr(z)) (2.22)

After the publication of [71], we become a'ù/are that this hybrid PIC-SIC detec-

tor is similar to the detectors examined in [81, 108] where they are shown to be

equivalent to the Gauss-Seidel algorithm. However, there is a slight different to our

proposed detector as those detectors do not have the weighting factor at the first

stage.

2.3.6 Successive-Parallel IC Detector: Scheme 2

In [98], Varanasi and Aazhang looked at the performance of a two-stages PIC detec-

tor (i.e. L:1) in which the first stage is the linear decorrelator. The performance

of this detector is found to be extremely high as compared to the two stages PIC

detector where the conventional matched filter is used as the first stage. However,

it has a disadvantage in term of complexity. That is, it requires to compr:te the

inverse of the crosscorrelation matrix of the spreading codes. This can be a major

disadvantage in situations where the CDN¡IA system employs long code in which

each symbol is spread by a random code and is different from symboì to symbol.

Thus, in this situation the cletector must compute the inverse of the crosscorrelation

matrix for every symbol time interval. In this section we propose an interference

c;ancellation detector where the first stage performs SIC and subseqnent stages per-

form PIC. There are two reasons that we use the SIC in the first stage. Firstly, SIC

has a lower complexity than the linear decorrelator while provides a better estimate

of the individual user's signal than the conventional matched filter, especially in the

system where no poweï control is exercised. Secondly, using the SIC in the first
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stage has a potential to help the cletector to obtain a faster convergence when power

control is not used.

Since the first stage uses SIC, it will perform interference cancellation in the

descending order of signal power. We will again assume the signal amplitudes are

ordered as follow: Ar(i) > Ar(i) > "'
individual user signal is estimated by the following equations :

At stage n: l'.

Æ-1

vÍ,') (¿)

Jf)(¿)

r(¿) - Do,(¡,ij'){;)", ;

j:r
gt"(sli[')(¿)) ,

r(¿) - Do,(i.) d,t"-')12)s¡ ;

i+k

sn (sfvf )r¿l)

andatstagenf.or2lnlL

(2.23)

(2.24)

^ lnl ,..
Yk'\L)

ãt') (¿)

Note that we count the initial SIC stage as one interference stage since interference

being cancelled within this stage.

2.3.7 Performance Evaluation of IC Techniques

We evaluate the Bit Error Rates (BER) performance of these interference cancel-

lation detectors through extensive computer simulations since the exact analytical

evallation of the BER is very complei, especialiy when nonlinear tentative decision

function is used. As shown in [97], the computation of the BER of a two-stages PIC

detector is only possible when the number of users is small as it involves integrating

multidimensional normal distribution. This difficulty arises due to the fact that

the tentative decisions are not independent of one another. Similarly for the SIC

detector, the computation of the BER is difficult because the tentative decisions of
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the stronger Llsers (i.e., users being processed before the user currently considered)

are dependent.

We compare the performance of the proposed detectors with the conventional

matched fiiter, the SIC detector, the PIC detector and the single user performance

bolnd for three different scenarios. We consider a CDNIA system with 6 active

nsers ancl each user is assigned a pseudorandom code sequence of length N : 7.

We examine the performance of these detectors using the hard decision and the

hyperbolic tangent decision functions. The three scenarios that we examine ate:

o Ideal poweï control: where all users have the same power with A2k--lvk.

o l\o power control: where all ttsers have different powers with the following

power distribution: A7 - 30, Az:20, A¡:10, A+:5, As:2 and A6: l'

o Non-ideal power control: where the power distribution is A1 : 10 and An: 7

for k :2,...,6.

In the simulation results, we use the postfixes -HD and -HT to indicate whether the

cletectors use the hard decisions or hyperbolic tangent decisions, respectively.

Ideal Power Control

We obtained the BER for all six users at the signal to noise ratio Sl/Â : \dB

where the SNR for user k is defined as A2of o'. Fig. 2.1 shows the BER of different

detectors using the hard decision fttnction while Fig. 2.2 shows the results when

the hyperbolic tangent clecision function is used. The BER of the PIC and the

proposed detectors are obtained using three interference cancellation stages (i.e. L

- 3). We find that there is no significant performance improvement after this thircl

stage. As from the two graphs, we can see that the performance of the proposed

detectors outperforms the conventional matched filter and is closed to the single

user bound. Comparing the performance of the proposed detectors with the SIC
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cletector, there is a considerable improvement for the users that are being processed

first. The performance of the proposed detectors is approximately the same as the

PIC detector, except for scheme 2 that uses hard decisions which has a slightly

higher BER. These results demonstrate that in the ideal power control environment

the proposed detectors behave similar to the PIC detector.

1oo

1 o-t

10 -

10 "

10

1 o--
6 7 I 9 10 11 123 4 5

SNR

Figure 2.3: Performance of IC detectors with no po\Mer control

No Power Control

We examine the performance of these detectors for the no power control scenario

r-rsing both hard decision and hyperbolic tangent decision functions. Here we obtain

the BER of the lowest power user for different values of SNR. Fig. 2.3 shows that

all the interference cancellation detectors that we examined achieve near single nser

performance bound. However, the PIC detector requires up to three interference

-+- S¡ngle User Bound
--1- Matched Filter
--*- PIC detector for L : 1 (w¡th -HD, -HT)+ PIC detector for L : 2 (with -HD)
-e- SIC; Scheme 1 and Scheme 2 for L=1;PlC detector for L = 3; (with -HD' -HT)
-g- PIC detector Íor L = 2 _H
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cancellation stages in order to obtain the same performance as that of the SIC and

the proposed detectors where only one interference cancellation stage is required.

Thus, in the system where no power control is exercised, the proposed detectors are

now behaved similar to the SIC detector. The matched filter performs extremely

poor in this case. The result shows that increasing the SNR does not improve the

BER of matched filter. This is the inherent behavior of the matched filter due to

the near-far effect.

Non-ideal Power Control

In this section, we investigate the performance of these detectors under the non-ideal

power control condition. We examine the performânce of the five lower power users

at the SNR : gdB (SNR of the lower power users). Fig. 2.4 shows the performance

of the five lower powel users (user 2 to user 6) when hard decision function is used.

The BER of the PIC and proposed detectors are obtained r.rsing three interference

cancellation stages (i.e. L:3). As one can see the matched filter under this situa-

tion performs extremely poor. This is due to the presence of the strong interference

from user 1. Simuiation results sh.ow that the SIC detector significantly improves

the BER of lower power users as compared to the matched filter. This is because

the strong signal of user 1 can be reliably detected and removed from the received

signal. However, the performance of those users being processecl in the early stage

is still quite far from the single user bound. The BtrR of the PIC cletector is much

better than conventional matched filter. However it is still higher than that of the

proposed detectors. The reason that the PIC detector has a lower performance than

the proposed detectors is due to the unreliable tentative clecisions from the matchecl

filter (as a result of the presence of the strong interference of user 1) in the initial

stage. This unreliable initial estimate is the main cause for this performance lost

since it is well-known that for any multistage interference cancellation (or iterative)
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process, the accuracy of the initial estimates is very important. The performance of

these detectors when employing hyperbolic tangent decision function is illustrated

in Fig. 2.5. h shows a similar performance order as in the case when hard decision

function is used.

2.4 Iterative Multiuser Detection with Parameter

Estimation

In this section we describe an iterative multiuser detector which performs joint

parameter estimation and symbol detection. This detector is an extension of the

iterative multiuser detector presented in section 2.3 where we no\M include an ex-

tra step into the detection algorithm to estimate the unknown parameters. It will

perform on-line parameters estimation based on the recursive approach described in

[59]. The idea of this method is to use the estimates of the individual signa,l contri-

btrtion and the a posteriori, probabi,li,tees (APPs) to perform parameter estimation.

These estimated parameters will then be nsed for symbol detection which invoives

separating the received signal r(z) into individual user signal contribution y¡(i) and

computing the APPs. This process is iterated several times per symbol until the

APPs do not change significantly from one iteration to the next.

2.4.L Detailed Algorithm Description

Step 1 - Ini,t'ialisation: At the start of the iterative process of each symbol, we need

to perform some initialisations. Let 1'l@)(z) and ,ql')(¿) denote the estimates of the

noise variance (taking into account the unsuppressed interference) and the signal

amplitnde of user k at the ntt' ileration) respectively. Assuming that the signal

amplitude does not change significantly from one symbol period to the next, we

,"t A[0)(i) : Af'-)ç,i - 1), where ru* is the terminating iteration index of symbol
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i - L. This is a reasonable assumption when the mobile user is moving at low

speed. Although the noise variance 'yP (i.) varies from one symbol period to the

next due to different combination of the transmitted bits of the interferers, we still

set 7fr(0) (¡.): lîØ.'(¿ - r) as.yfr('.)(i - 1) is the only available information that we

have about the noise variance at the beginning of the symbol interval i. For the first

symbol 'i: I,we initiaiize Á10)(1) : a and r?(o)(r) : B where o and B are arbitrary

positive values.

Since each user k transmits the information symbols dk(i) € {+1} with equal

probability, we initialize the APPs â[t](¿) :0.5, where î[.)(ù denotes the estimate

of the APP at the nth iteration that user k transmits d¡(i) : þ for / e {+t}. Thus,

the initial conditional expectation of y¡(e) given the initial estimates for the signal

amplitudes and APPs is

t[o)(¿) : t ¿[o)(¿)'*a[o](,) ó:0. (2.2s)

d€{+1i

Step 2 - Si,gnal Separati,on: Based on the available estimate of the conditional

expectatio" Íf)(z) at iteration n from step 5, we estimate the k¿l'user signal con-

tribution

if'+tt(z) :r(z) -tv!"){t), (2.26)
i+k

which can l¡e rewritten as

if'*') Q) : Ak(¿)d¡(e)s¡ + v(t) + f (vi(z) - Íj"){r)) (2.27)
i+k

Step 3 - Computat'ion of the APPs: Let's define 2f'+tl(¿) : "fif'*t)(¿), 
then

/
zf,+rt (¿) : Ak(,¿) ctk(¿) +sfl v(z) + I oi,n ( a,('i) di(i) - D, tl'âj:, (,) d)

j+k \ ó€{+1} 
(2.28)

As discussed in the previous section, we can approximaæ 2['+r)(i) as a Gaussian

random variable of mean Ak(i)dk(i) and covarion"" 1fl(")('d), where 'yl@(i,) ) 02,
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recalling thal o2 is the variance of the background noise. Since the symbols d¡(z) e

{+1} are transmitted with equal probability, the ø posteri,ori probability ît'j,') þ)

can be calculated as follows

36

fr';" (¿) : p(r*(,i : d I 2f*') (,;))

o (uf*u þ) | dkl) : ó)
(2.2e)

Dr.1*'1 o (uf*u('2) ldk(d) : e)

Step I - Parameters Esti,mati,on: In this step, the signal amplitude and the noise

variance are estimated using the ENI algorithm. The E-step involves calculating the

average log likelihoods with respect to the APPs. Thus we have the following cost

function which is then maximized over the unknown parameterc fu@)(e) and A¡(i,) :

4"+1) u) t ît:;')(i)log * (u|*u Q,) - z¡,6Q)' rí(")(¿)) (2.30)

d€{+
1:
2

bs(znú(")(,)) #rrrä, î',;')(¿) (¿["*') (r) - zr,,a@)2 ,

where zn,O(i) : An(i)dn(i)ldk(i): /. For the Nl-step, we ttse the recursive algo-

rithm introduced by Titterington [94] for parameter estimation using the incomplete

data. The unknown parameter can be estimated according to the following formula

pf*')(¿) : ,pf) (i) + ¡t nf,)-1 t f tf"^.)lr!) 
(2.31)' N dp*li)

(t - ùRl') çt¡ + u
¿¡(n+r) U) ¿JÍ"+r) (¿)r

(2.32)
d,pk(i,) d(pk(i)

where gP þ) is the estimate of the unknown parameter such as the signal am-

plitude and noise variance, and 1 - ¡l is a forgetting constant, usually chosen to be

close to, but slightly less than unity.

Step 5 - Calculati,on of the cond'iti,onal erpectati,on of y¡(i): If the APPs don't

change significantly compared to the previous iteration) we terminate the iterative

nf;+1)1e;
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process. Otherwise, we update the approximate conditional expectation of y¡(i)

using the newly estimated signal amplitudes and APPs according to

if*')(,;) : t Af;'+tt (t) s¡ îf,jt) (ù O (2.33)

ó€i+1)

2.4.2 Performance Evaluation

We again use simulations to obtain the BER of the iterative multiuser detectors

since the exact analytical evaluation of the BtrR is very complex as shown in 197].

We examine the performance of the iterative multiuser detector with pararneter

estimation and compare it with that of the nonadaptive version where the signal

amplit¡des of all users are known at the receiver. In addition, we also compare it

with the performance of the conventional matched filter and the single user bound.

Simllation results are obtained for a CDIViA system with 7 active users and each is

assigned a pseudorandom sequence of length 7. In the simulation, the termination

condition is chosen such that if the APPs of all users change by less than 0.005, the

iterative process will be stopped.

Ideal Power Control

We investigate the performance of the iterative multiuser detectors when all trsers

have eqr:al power. We obtain the BtrR for different values of SNR where the SNR

for user k is clefined o. $. Fig. 2.6 shows that the perforrnance of the iterative

multiuser cletector with parameter estimation degracles only slightly as compared to

that of the nonadaptive version. It is eviclent that both iterative multiuser detectors

outperform the conventional matched filter and achieve a performance r,vhich is close

to tlre single user bound. Fig. 2.7 also shows the average ru-rmber of iterations that

the iterative multiuser detectors iterate per symbol. As one can see) on average the

iterative multiuser detectors require less than 4.7 iterations/symbol at the SNR :

3 dB and 2.9 iterations/symbol at the SNR: 12 dB.
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Performance of iterative scheme
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Figure 2.6: The performance of iterative multiuser detectors

Average number of iterations per symbol

9 10

38

10

o-3

q)
d

cc
o
Ul
-_cft

10 -

10

10 -

õ
-o
E
Ø
oo
e4
.o
ñ
(l)-o
<l)

Ëgs
=q
oo
6
o

5

45

3

25
11

12

123 4 7
sNR(dB)

6

----+- Matched Filter
-O- lterative (w¡th adaptat¡on)
{, lterative (with known signal amplitude)

le User Bound-tr;'

\\..r

ì,

\ì.

Figtrre 2.7: Average number of iterations per symbol



Multiuser Detectors for CMDA Systems 39

Fig. 2.8 and Fig. 2.9 are plots of the estimates of the signal amplitude and the

noise variance (background noise plus unsuppressed N4AI) respectively at the SNR

: 12dB for the first 5000 symbols. The result shows that the estimated signal

amplitude converges to the true amplitude An(i) : 1 and ú(n) (¿) converges to

approximately 0.13 within about 500 symbois. A faster rate of convergence can be

obtained by increasing the value of p however it is found that this would lead to an

estimated amplitude with larger variation.

Signal Amplitude Estimat¡on
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Figure 2.8: Estimated signal amplitude

No Power Control

The near-far resistance property of the iterative multiuser detectors is examinecl

in this section. We obtain the BER of the lowest power user in the system for two

different cases. In the first case the power of the weakest user is at -20dB relatives to

the others. As shown in Fig. 2.10, the performance of tlie matched filter is extremely
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Figure 2.9: Estimated noise variance

poor in this case. The results show that increasing the SNR does not improve the

BER of the matched frlter. This is the inherent property of the matched filter due to

the near-far effect. The BER of the iterative detector with known signal amplitudes

is very close to the single user bound despite the present of strong interferers. This

suggests that the iterative multiuser detector with known signal amplitude is near

far resistant. The iterative multiuser detector with parameter estimation performs

poorly in this case. This is because when the power of the interferers is large,

inaccurate estimation of the signal ampiitudes of the interferers results in a large

amount of interference uncanceled. In the second case, the power of the weakest user

is at -6dB relatives to the others. The results in Fig. 2.11 show that the BER of

the matched filter is still unacceptably high while the iterative detector with known

signal amplitude again performs extremely well as expected. The BER of iterative

multiuser cletector with parameter estimation, however, is very close to the non-
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Figure 2.10: Performance of the lowest power user: -20d8 relative to other users
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adaptive version in this case. This suggests that, although the iterative detector

with parameter estimation is not near-far resistant, it does not require tight power

control in order to perform well.

2.5 Conclusions

In this chapter we have presented a number of interference cancellation detectors.

These include the successive interference cancellation (SIC) detector, the parallel

interference cancellation (PIC) detector and two proposed hybrid PIC-SIC detectors.

Through computer simulations we showed that by combining the PIC and the SIC

techniques, the hybrid PIC-SIC detectors inherit many good behaviours of these two

detectors. We have also presented in this chapter an adaptive multiuser detector

which performs joint symbol detection and parameter estimation in CD\{A systems.

Simulation results show that if the relative power difference between users in the

system is not too large, the performance of this adaptive multiuser detector is very

close to the nonadaptive version (i.e where the signal amplitudes are perfectly known

at the receiver).



Chapter 3

Convergence Behaviour Analysis

of the PIC Technique

This chapter analyses the convergence behaviour of the parallel interference can-

cellation (PIC) technique in code division multiple access (CDMA) systems. It

introduces a general PIC detector model where it can be used to describe the inter-

ference cancellation process of the PIC detector with any type of tentative decisions.

\,Vith this model, the PIC detector can be viewed as either a feedback system or

an iterated-map neural network. Using the known results from previous stability

analysis in these areas, the chapter develops a general framework for analysing the

convergence behaviour of the PIC detector. This framework permits the derivation

of the sufficient condition for convergence of the PIC detector for a wide range of

tentative decision functions. As examples, the chapter derives the sufficient con-

ditions for convergence of the PIC detector with linear decision, clip decision and

hyperbolic tangent decision functions. The chapter shows that some well-known

conditions for convergence of the PIC detector with linear decision and clip decision

functions can be derived using this general framework. The chapter also examines

the convergence behaviour of the PIC detector with hyperbolic tangent decision

43
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function via computer sirnulation and cornpares it with analytical results

3.1 Introduction

Since the PIC detector performs interference cancellation in multipie stages, it is

of interest to ascertain what the behaviour would be as the number of interference

cancellation stages ,L approaches infinity. This behaviour is largely dependent on

the types of tentative decision function that the PIC detector employed for estimat-

ing the multiple access interference (NIAI) at the end of each interfelence cancella-

tion stages. In recent years there are a number of published works addressing the

convergence behaviour issue of the PIC detector for various types of tentative deci-

sion function. However, these works analyse the convergence behaviour of the PIC

detector for each type of tentative decision function separately. The convergence

behaviour of the PIC detector with linear decisions (also known as the linear PIC

detector), receives the most attention [15, 17, 18,39,68]. It is found that when the

spectral radius of the matrix (R - I) is less than 1, where R is the crosscorrelation

matrix of the spreading codes, the linear PIC detector converges to the decorre-

Iator detector as L --- æ. The convergence behaviour of the PIC detector with

clip decision function is analysed in [108] using a nonlinear programming approach.

This PIC cletector is founcl to converge to a fixed point if the maximum eigenvalue

of the matrix (R-I) is less than 1. In [100, pp. 363], it has been observecl that

the PIC detector with hard decisions does not always converge to a fixed point as

L --- æ. Later, it has been shown in [56] that the PIC detector with hard decisions

corresponds to a special case of a Hopfield neural network [a6]. The existence of the

period-two limit cycle for this special case is proved in [16]. This cyclic behaviour

is also being observed in [76] for the iterative multiuser detector that utilises the ¿

posteriori probabilities to estimate the transmitted symbol. For a system with no

interchip interference, this iterative multiuser detector corresponds to the PIC de-

44
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tector with hyperbolic tangent decisions. Using the theory of contraction mappings,

a sufficient condition for convergence of this particular detector is derived. In [76], it

is shown that when the initialisation is carefully chosen such that the sufficient con-

dition is satisfied, convergence to a fixed point will always occur. On the other hand

when the sufficient condition is not satisfied, it may lead to the cyclic behaviour.

Given that there are many different types of tentative decision function that can

be used by the PIC detector for estimating the MAI at the end of each interference

cancellation stage, our aim in this study is to develop a general framework that

would allow us to analyse the convergence behaviour of the PIC detector for any

type of tentative decision function. In this chapter, we approach the parallel in-

terference cancellation problem from two different perspectives. First, we view the

PIC detector as a feedback system and apply some known results from the stability

analysis of the latter to investigate the convergence behaviour of the PIC detector.

We derive a general condition from which the sufficient condition for convergence

of the PIC detector for a wide range of tentative decision functions can be calcu-

lated. Second, we establish a one to one correspondence between the PIC detector

and an iterated-map neural network. Using this relationship, we apply the stability

analysis of the latter to the convergence behaviour study of the PIC detector. We

prove that the PIC detector with any nonlinear tentative decision frinction that is

monotonically increasing at a sublinear rate will either converge to a fixed point or

enter a period-two limit cycle. In addition, we derive the sufficient condition which

guarantees that the PIC detector with these types of tentative decision fnnction

will always converge. Our analysis from both approaches reveals that by placing a

bound on the maximum slope of the tentative decision function, the PIC detector

will always converge to a fixed point for a given input and noise realisation. To the

best of our knowledge, there is no such general framework similar to ours has been

known. In [56]) a connection between the PIC detector with hard decisions and a
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neural network has been established similar to our second approach. However, the

convergence analysis in [56] is only applied to the case of hard decision function

whereas the analysis in our second approach is more general.

The remaining of this chapter is organised as follows: In section3.2, a synchronous

CDNIA system model is presented. In section 3.3, we introduce a general PIC

detector modeÌ where it can be usecl to describe the interference cancellation process

of the PIC detector with any tentative decision function. Sections 3.4 and 3.5 are the

main parts of this chapter where we analyse the convergence behaviour of the PIC

detector from both feedback system and iterated-rnap neural network perspectives.

In section 3.6, computer simulation is used to examine the convergence behaviour

of the PIC detector with hyperbolic tangent decision function.

3.2 The System Model

We consider a synchronous CDNÍA system with K users transmitting simultaneously

to a common receiver over an additive white Gaussian noise (AWGN) channel. Each

user À; € {1,...,K} is assigned a normalized signature sequence s¡ of length 1Vl,

rn € {#, h}' and transmits at symbol rate the information d¡(i,) € {+1}. We

rise the time indices ú and'i to denote the chip index and symbol index, respectively.

The transmitted signal of the k¿l' user during the ú¿ä chip interval is

ar(t) : A*(i) d¡(e)s¡(j) , (3 1)

where An(i) > 0 is the signal arnplitude of user ,k over symbol period i, dk(¿) is the

'l¿l' symbol and ú : IVI|*7, for 0 < 7 < NI - l.

Thus, the baseband receivecl signal at the chip rate is the noisy sum of all signals,

which can be written as

r(t) :\urtt) + u(t) , (3.2)
k--r
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where u(ú) is a realization at time ú of the zero mean white Gaussian noise with

variance o2.

Now, Iet r('i ) consists of 1VI consecntive observations of the received data at the

chip rate t : NIi to M(i,+ 1) - 1 i.e. r(z) : lr(Mi) r(dtli,+ 1) . .. r(NI(i+ 1) - 1)lr

where ? denotes the transpose operation' Similarly, we use

for the corresponding noise vector ancl vector of user Å, contribution signals, respec-

tively. Therefore, the symbol rate version of (3.2) is:

K

v(z) : lu(tvti,) u(NIi + 1) . .. u(NI(i, + 1) - 1)1" ,

yr(¿) : ls¡,(N|i) y¡,(lvti.+ 1) . .' y¡(lvl(i,+ 1) - 1)1"

r(t) : f v*{r) + v(z) witti y¡(z) : An(i) d¡(e)s¡

(3.3)

(3 4)

(3.5)

k:1

3.3 The PIC Detector

The underlying principle of interference cancellation methods is that each user es-

timates the multiuser interference contributed by other users and subtracts it from

the received signal to produce a better estimate of the desired signal. The PIC

cletector can be implernented with multiple interference cancellation stages [97, 109]

where the tentative decisions at the prior stage (sometime called iteration) are used

to generate the 1\,IAI estimates for the current stage. The idea here is that the ac-

cruacy of the tentative decisions are presumably improved as the number of stages

increases ancl hence the PIC detector can suppress more and rnore interference. A

common feature of this type of PIC detection is that at each stage the detector

performs total interference cancellation where it attempts to completely remove the

interference caused by other users by subtracting all the estimated NIAI from the

received signal. An alternative approach is to perform partial interference cancella-

tion as presented in [31] where onlv part of the estimated MAI is subtracted from
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the received signal at each stage. The idea is that for the earlier stages, the detector

cancels only a srnall fraction of the MAI since at these earlier stages the tentative

decisions are less reliable. For later stages, the tentative decisions are presumably

more reliable and the detector will attempt to cancel more N{AI. It is shown in [31]

that this detector has a significant capacity gain as compared to the conventional

matched filter. In this chapter, we only examine the convergence behaviour of the

PIC detector which performs total interference cancellation.

Let's consider a PIC detector that employs any arbitrary tentative decision func-

tion for estimating the N{AI at the end of each interference cancellation stage. Sup-

pose the PIC cletector perf'orms I interfererìce canceilation stages, then at the ntt'

stage where n : I, . . . , L l,he estimate for the clesired signal can be calculated by one

of the following set of equations depending on the type of tentative decision function

that is employed.

First form:

yf)(¿) :r(z) -t Aj(ùdt''-t)(¿)'r, (3.6)

i+k

¿[]')(¿) : ar (sfl*f)t¿l) , (3.7)

where ¿[t)(¿) : 9¡ (sflr(z)) anct gk(r) is the tentative decision function of user Å;.

Examples of the tentative decision functions that can be represented in this form

are: the hard decision function gn@): sgn(r) and the hyperbolic tangent decision

function gu("): tanh(arr) where cY¡ are positive constants.

Second form:

yf)(¿) : r(i) - t t."-', (,)s¡ , (3 8)

i+k

¿,f')(¿) : hn ("fl*f')t¿l) , (3.e)

where a[o)(¿) : h¡ (slr(i)) and hn(") is the tentative decision function of user k.

This second form can be described using the first form by setting gn(r): h.nu@),



and vice versa. Since the analysis in this chapter can be applied to any type of

tentative decision functions, it is advantageous to have two different forms as we

find that for some tentative decision functions one form leads to a stronger sufficient

condition for convergence than the other. It should be noted that even though the

second form (3.8) does not explicitly include the signal amplitude A¡,, it does not

imply that second form can only be used for PIC detection technique which requires

no knowledge of the signal amplitude since the information of the signal amplitucle

can be embedcled into the function h*(t). Examples of tentative decision functions

that can be described in this form are: the linear decision fitnction wilh h¡r(r) : r
and the clip decision function with
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h¡,(r):
A¡ r) A¡,

:x A¡rlr)-An
-A¡, r 1-A¡
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(3.10)

In the following sections, we investigate the convergence behaviour of the PIC

detector with an arbitrary tentative decision function from both feedback system and

iterated-map neural network perspectives. To simplify the notation in the analysis,

we drop the symbol time index 'i since we are only interested in the behaviour of the

PIC detector in relation to the interference cancellation stage index n.

3.4 Convergence Behaviour: A Feedback System

Perspective

In the following, we employ a general method for analysing the stabiiity of feedback

systems which is known as the small gain approach. This method can be used to

stucly the lr-stability of the feedback systems for any value p € 11, oo].
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3.4.1 Background on Feedback Systems

Let ,S be the space of sequences in ÌRK, i.e., the sequence p € S, iffp : (p(1), p(2),

with p(") € IRJ( for n: I, 2, .... The lr-norms of the sequence p are defined as

50

(3.11)

(3.13)

(3.14)

(3.i5)

(3.16)

llpllo : I lot"llo ,forl<p<oo
oo

n:I

rlP

rlP

llpll.": r,,.]l lp(")l , (3.12)

where l.l denotes any norms on IR./( or the absolute value of a number in IR.. Let

p¡r: (p(1), p(2), ...,p(t) ) denotes a truncated sequence of p. The corresponding

/o-norms of the truncated sequence are defined as

llp'll,: I lot"rlo , forl<p<oo
n: 1

llprll*: sup lp(")l
1(n(N

Let the extended space {.f" be definecl by

L{": {v € SIV¡r €Z+,llprllo < oo}

Thus, ({. \s the space of all p € S with the property that Vl/ e Z+,, the truncated

seqnence p¡¡ has finite (.o-norm.

We now state the small gain and the incremental small gain theorems. The proofs

of these theorems are omitted here and readers are referred to [28] for detailed proofs.

Theorem 3.1 (Small Gain Theorem) Consi,der the feedback sgstem as shown in

Fi,g. 3.1 and suppose p € [1,oo] zs specr,fied. LetH1, IJ2: !f"- [.fi. Suppose there

are constantsll)0 and'yz)0 suchthatv¡l € Z¡ andVv¿ € (.f"wi,thi:I,2

ll (H,'')r llo < tll, ¿rll,
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Figure 3.1: General feedback system

Under these cond'iti,ons, i,f

'ft'Yz 1l and (3.17)

ll"rllo,ll,trllo (6, (3.18)

then the outputs w1, w2 of the feedback system as shown in Fi,g. 3.1 haue fini,te

(r-norms.

Theorem 3.2 (Incremental Small Gain Theorem) Consi,der the feedback sys-

tem as showni,n Fig. 3.1 and supposep e ll,ool zs spec'ifi,ed. LetH1, FIz : {f"-- 4t.
Su,ppose there are constants ir > 0 and,12) 0 such thatYN €Z+ andYv¿ e lIo<"

wi,th i :1,2

ll(H¿t¿)r - (H¿v'i)rllr<1,lltnt - v'¿rllp. (3.19)

Under these conditi,ons, i,f

7t ^Yz 1l , (3.20)

thenVul, uz € lf" = 
a un'ique soluti,on w1, w2 e ll'" wh'ich can be obta'ined, by

'iterat'ion.

3.4.2 Application to the PIC Detector

To facilitate the analysis in this section, we will assume that there is no background

noise in the received signal. Now, by substituting r from (3.f) into (3.6), we can
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1

rewrite the PIC detector of the first form (3.6) as

"i¡f) - Andn: t A¡ p¡,n (0, - nt"-,) . (3.21)

i+k

Let's denote the estimation error of the leth user's desired signal on the l.h.s. of

(3.21) ¡v "f). Then

"f) 
:D,o,,ot,(¿, - n,@5"-" + AiÐ) , Q.22)

i+k

or in vector form

.(rr.) -(R-I) A (d-g(s(',-t) +Ád)) , (3.23)

where g(.) acts componentwise. We thus have a feedback (on index n) system as

shown in Fig. 3.1 with

flr:(R-I)Ai Hz:s(.) ; (3.24)

rÍ") :d; uf):Ad; (3.25)

and the otttput wl") : .1"¡.

Since rl") : d and .rt") : Ad Vn e Z+, the /o-norms of the inputs sequence

rr1, u2arenotfiniteforanyp€ [1,oo). Hencetll, ll2 ø¿';,.andthereforewecannot

analyse the lo-stability of the PIC detector using the small gain theorem for any

p € [1, oo). However, their /oo-norms are finite. Thus, we can use the small gain

theorem to analyse the /--stability of the PIC detector.

Proposition 3.1 Let's defi,ne

^e --.^ lso@)l,"r: 
1')g ïî' (3 26)

For the PIC detector of the fi,rst form (3.6), the error zn esti,mat'ing each li,ser's s'ignal

is bounded i,f

52

max ge* <
ll(R, - r)All"" '

(3.27)
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ll(R, - I)Ax)¡¡ll- < lr llx¡¡11"" ,

ll(s("))'ll- < rz llx¡¿11". ,

Vx e [.{. and V,^/ e Z¡ a,re

lr : ll(R _ r)All"" ,

'Yz: max 2sk .

o dgn@)
?fr : s*P 

d"

rtLrù

where the {.oo operator nor"rn is gi,uen bg

ll(R-I)All*:max l'+,loi,nl (3.28)

i+k

Proof: By Lemma 3.1 and Lemma 3.2 in the Appendix, the corresponding values

of 'y1 and 72 which satisfy the conditions

By the small gain theorem, if 'y¡¡yz { 1, the PIC detector is then /oo-stable and thus

the /oo-norm of the sequence of errors e(") is finite. A

The above result only ensures that the error in estimating each user's signal is

bounded and does not guarantee that the PIC detector will converge. We now show

that by imposing an additional restriction on the tentative decision function, we can

ensure that the PIC detector will always converge. As it turns out, this restriction

is to have the maximum slope of the tentative decisiori fnnction to be less than (or

equal to) its maximum gain.

Proposition 3.2 Let's defi,ne

and

(3.2e)

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

Under the condi,tions that

lrþt*l < çto vk, (3.35)
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(3.40)

(3.41)

the PIC detector of the first form (3.6) wi,Il conuerge to a fired poi,nt where the soft

esti,mates fr('r) _- d* ¿s tz __+ oo.

Proof: By Lemma 3.3 in the Appendix, a value of ]1 which satisfies the condition

ll((R - I)Ax)¡¿ - ((R - I)A*')rll- < ryr ll*r - x'¡¿lloo , (3.36)

Vx, x' € ¿{"" and V,^/ € Z¡, \s

(3.37)R-r)A7t oo

As proved in Lemma 3.4 in the Appendix, provided that lrþtrl < ,pnuYk the condition

ll(s(*))r - (s("'))rll* < i, ll*r - *'n¿ll- , (3.38)

is satisfied Vx, x' € t'5" and VN e V'+, rf

iz: max ger . (3.39)

Hence, by the incremental small gain theorem, the errors e(") -- e* as rL -- oo if

1t7z < 1. From the definition of e(') in (3.23), this implies that the soft estimates

ã(") opptoaches a fixed point d*. A

In order to obtain a more intuitive interpretation of the results derived previously,

we will show that these conclitions are equivalent to having the tentative decision

function to satisfy a certain sector condition. Let's define @ : IR ---+ R. with d(0) : 0.

The fi-rnction þ e sector (nt, nr), where Tr, ?z € lR. with 4r < Il2, tfr

q1r2 1ró(r) 1nzr2 , Vr € ìR. with r +0

Thus, the condition (3.27) given in Proposition 3.1 is equivalent to

go@) e sector (-glno*,, ,pe,."*) Vk ,

wherc ge*o, - ll(R-r)All- A geometric interpretation of the above result is illus-

trated in Fig. 3.2. It says that if the tentative decision function for all users lies
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y=x.q tìlu

v = en(x)

x
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(3.42)

Y = - x. Qi.,.,o* y

Figure 3.2: Geometric interpretation of the sufficient condition for convergence

within the region that includes the x-axis and bounded by the fi-rnctions g(r) :

-ge*o, r and g(r) : ge-o, r, then the sequence of errors e is bounded. In addition,

if the tentative decision ftrnction of all users has a maximum slope less than (or

eqnal to) its maximum gain, i.e. l'únl f gn Vlc, then the soft estimates d(") --- d*

¿s ¡¿ ---+ oo. It should be noted that if a function gk@) € sector (0, ipfro") leads

t" ãf) - dl, then there exists another function in sector (-pn^o,,0), which is a

mirror reflection of the function gn(r) € sector (0,çn*"*) on the x-axis, that would

Iead to ctl') --, -cti.
Following the previous steps, the PIC detector in the second form (3.8) can be

rewritten as

Ð p,,r (o,o, - n,@5"-') + ,t, a,¡) 
'

i+k
or in vector form

e(') :(R-I) (Ad-h(e("-t) +Ad)) , (3.43)

where h(.) acts componentwise. This is in the feedback form as given by Fig. 3.1

(n
ei
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^3 ç2

Proposítion 3.4 Let's define

with

FIr : (R - I) i }Iz: h(.) ; (3.44)

,rl") :Ad; ,rf;') :Ad; (3'45)

and the output *1") : e('). We now state the stability and convergence results of

the PIC detector of the second form in the next two propositions, respectively. The

proofs for these results are similar to those in Proposition 3.1 and Proposition 3.2

and therefore are omitted here.

Proposition 3.3 Let's define

^h - ^..^ lh*(")l
ru ::ï3 

ÌÉ 
(3 46)

For the PIC detector of the second form (3.8), the error in esti,mat'ing each ltser's

s'ignal is bounded i,f
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(3.47)

(3.4e)

(3.48)

Under the condi,ti,ons that

, h dh¡(r)
t/k : rTp 

d"

,1
1"?x 

pi . 
¡n _ r¡,"

l,þll < ,p'i vk ,

and

(3.50)

the PIC detector of the second form (3.8) wrII conuerge to a fi,red point where the

soft esti,mates b(") --- b* as n ---+ æ.
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3.4.3 Examples

As examples, we apply the results derived previously to obtain the sufficient condi-

tion for convergence of the PIC detector for a number of tentative decision functions.

These tentative decision functions include the hyperbolic tangent decision, the lin-

ear decision and the clip decision functions. In addition, we also compare the new

sufficient conditions for convergence of the PIC detector that employs linear decision

and clip decision functions with some well-known conditions.

Hyperbolic Tangent Decision Function

For the PIC detector with hyperbolic tangent decision function tanh(a¡r), we can

ptrt it into the first form (3.6) by having gn(r) : tanh(a¡ r). For gx(r) : tanh(ot r),

it can be shown that the maximum gaîn çfl and the maximum slope þeo are equal

,l,nr : çnr- snp ry, (3.51)' r*o Wl

- ak. (3.52)

Thus, by Proposition 3.2 the sufficient condition for convergence to a fixed point is

therefore
1må'xa¡'¡n-¡a¡- ' (3'53)

This condition is quite different to that presented in [76]. The sufficient condi-

tion for conveïgence derived in [76] involves fincling the initialisations such that the

requirement for contraction mapping is met.

Linear PIC detector

The convergence behaviour of the linear PIC detector is studied in [15, 17, 18, 39, 68].

Suppose the linear PIC detector has I interference cancellation stages, the estimate
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of the desired signal of user k at the n¿h stage is

gy) :. - t "f ir("-') .,
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(3.54)

i+k

Ler's defin" ,Y) - sk?f'f;) and 2@) - I "1") 
,f) ... ,p ]r, the linear PIC detector

can be described in matrix form as [15]

"(n)-ñ_(R_ 
I)z("-t),

r(0)z

ã"rr": sgn(z(¿)) (3.55)

where ñ: RAd+ü is the K-dimensional matched filter output, R € Rr(*K is

the symmetric correlation matrix with elements [R]¡,r : pj,k: sfls7, A € IRK*K is

the diagonal matrix of signal amplitudes, d € {+1}^ is the vector of binary user

symbols and v is the zero mean Gaussian noise with variance Elvvl-l: R. Using

(3.54), the decision statistic of the linear PIC detector at the final stage is

L

z@): fi-r)u1n-r),ñ. (3.b6)
(.:0

It can be shown that
L

j*It-l)'(R -r)n: R-' , (3.57)
(.:o

if the spectral radius of the matrix (R - I) is less than 1. The spectral radius of

the matrix O is defined as p(@) : max{lÀl : À e a(@)} where 
"(@) 

denotes the

spectrum of @ [47, pp. 35]. Thus, as the number of interference cancellation stages

approaches infinity the linear PIC detector converges to the decorrelator detector if

p(R-I) < 1.

The linear PIC detector (3.54) can be expressed in the second form (3.8) by

letting hn(r) : rYk. For /z¡(r) : Ír the maximum gain geu and the maximum slope
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,Þfl ar" also equal

,þI : çl- sup þP, (3.b8)
r#o lll

- 1. (3.5e)

Hence, using Proposition 3.4 the sufficient condition for convergence to a fixed point

is

llR-rll."<r. (3.60)

This condition is the sarne as the diagonal dominattce condition

K

llot,*l<lpr,rl :1vk (3.61)

i+k

reported in [17]. For any 6 6 pr{xK, it is shown in [28, pp. 27] that

0",1,''", US ff : P(o) ' (3 62)

Thus for any operator norm, p(O) S llOll, This suggests that the well known

condition for convergence p(R - I) < 1 is weaker (less restrictive) than that derived

using this approach.

However, \Me can obtain the same condition for convergence as the well-known

condition p(R - I) < 1 by noting that for the linear PIC detector case, (S.+S) is

equivalent to

e(,): _(R_I)e(',-t) . (3.63)

Thus, the errors e(') --- 0 as n ---+ oo if p(R - I) < 1. This implies that when there

is no background noise, the soft estimates fr,(") -- Ad as n --+ æ if p(R - I) < 1.

This is what one would expect because for p(R - I) < 1 the linear PIC detector

converges to the decorrelator and it is known that in the absence of backgrouncl

noise the decorrelator can perfectlv recover the transmitted information bits.
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Alternatively, the well-known condition for convergence of linear PIC detector

can also be obtained by realising that (3.63) is in the same feedback form as shown

in Fig. 3.1 with

IIr:(R-I);
rl') :o;

Irz:r;
tf;):o

(3.64)

(3.65)

und *1") - 
"(n 

). Since the /2-norms of the sequence ll1, u2 are finite (equal zero in

this case), we can therefore analyse the [.2-stability of this detector. Using the small

gain theorem, it can be shown that if

llR-rllr<t, (3 66)

the linear PIC detector is /2-stable and thus the error sequence e will have frn\te !.2-

norm. From the definition of the /2-norm, if the eïror sequence e: (e(1), e(z), ... ,

has finite l2-îorrrr, then e(') --- 0 as n ---+ Ø. Hence by showing that the linear PIC

detector is /2-stable, we can further conclude that the sequence of soft estimates

fr,(n) -- Ad as z¿ ---+ oo. Since the matrix (R - I) is real syrnmetric, p(R - I) :

llR - Ill, Thus, we have the condition for convergence which is the same as the

well-known result.

Clip decision function

The convergence behaviour of the PIC detector with clip decision function has been

studied in [108]. It is found that this detector converges to a fixed point if the

maximum eigenvalue of the matrix (R - I) is less than 1. For the PIC detector with

clip decision function, we can express it in the second forrr (3,8) with lz¡(r) clefined

as in (3.10). Similar to linear decisiorr function, the clip decision function has equal
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maximum gain and maximum slope

^t.h - ,^h lhu(')l,t,t_ vi-sttP#, (3.67)
r*O l'¿ I

- 1. (3.68)

Thus, by Proposition 3.4 the sufficient condition for convergence to a fixed point is

therefore

llR-rll,"<1, (3.6e)

which is stronger than the known condition À,'.,o,(R - I) < 1 derived in [108] since

llR - Ill." > p(R - I) (3.70)

) À-o,(R - r) . (3.71)

We lvill obtain this known condition using the analysis presented in the next section.

3.5 Convergence Behaviour Analysis: A Neural

Network Perspective

The analysis in the previous section assumes that there is no backgrouncl noise.

In this section, the presence of background noise is taken into account. We will

firstly prove that the PIC detector with any nonlinear tentative decision function

that is monotonically increasing at a sublinear rate, i.e. magnitude increases less

than linearly, will either converge to a fixed point or enter a period-two limit cycle.

We then derive a sufficient condition which guarantees that the PIC detector with

these types of tentative decision function always converge to a fixed point. Due to

the nonlinearity of the tentative decision function the exact calculation of the fixed

point is intractable. It should also be noted that the results in this section do not

apply to the PIC detector with linear decision function nor hard decision fttnction

as they do not satisfy the condition of monotonically increasing at a sublinear rate.
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(3.72)

Ir l.) Irc-r lK

Figure 3.3: An iterated-map neural network

Consicler an iterated-map neural network with K neurons as depicted in Fig. 3.3.

The state of neuron k at tìme n is denoted by pÍ:'). fn" input to each neuron k is

the sum of the external input 1¡ and the weighted sum of the states of other neurons

at time n - L. For the iterated-map neural network where the state of the neurons

are updated in parallel, the state of neuron k is given by

[tf*t) : fo 1* + t T,,oø1")

i+k

where Tj,u : T¡r,¡ is the weight on the interconnection which couples neuron 7 and

neuron k, and /¿(r) is a nonlinear input-output transfer function.

The stability of this iterated-map neural netrvork is analysed in [66]. We now

summarise the rrain results of [66] in the following theorems. The proofs of these

results are omitted here and readers are referred to [00] for the detailed proofs.

Theorem 3.3 Consi,der the 'iterated-map nettral network as i,llustrated i,n Fi,g. 3.3

wi,th the states of the nerlrons updated i,n parallel as descri,bed by (3.72). Prouided

that the input-outpu,t transfer functi,on sati.sfies the condi'ti,ons

tl2 It r-rFl

1. f n@) 'is monoton'ically 'increasi,ng for all k, and
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(3.74)

2.Vx(")l I (*lrl'o for sorne constant}lr¡"11 and (¡, ( oo, and all z € IR

then the tterated-map network w'ill ei,ther conuerge to a fired poi,nt or enter a peri,od-

two li,mi,t cycle.

Theorem 3.4 Let denote the mari,mu,m slope of the i,nput-outpnt transfer functi,on

fn@), whi,ch sat'isfies condi,ti,ons 1 and 2 i,n Theorem 3.3, by B¡* i,.e.,

,d* : r1p ry. (3.23)

Def,ne a d'iagonal matri,r B : di.ag$3t, 02, ) /xj and a symmetric matrir

T : lT¡,nl wi,th T¡,,¡, : 0 Vk. [Jnder the cond'iti,on that the matrir (T + B-1) is

positiue defini,te, the zterated-map neural network w'ill always conuerge to a fired

point.

3.5.2 Application to the PIC Detector

The soft estimate of the information bit of user k in (3.7) can be rewritten as

ãf) : no sf 
" - Do, p,,rã5"-')

i+k

: Çlt An sT 
" - t An A¡ pj,o rty-') (3.75)

i+k

where go(r) : On(fi) Thus, we have arranged the PIC detector of the first form

(3.6) into the same form as that of the iterated-map neural network. Each active

user in the CDNfA system can be viewed as a neuron in the neural network with

.1f;) t"pt.rents the state of the neuron k, A¡s[ r represents the external input to

neuron k, ancl -An A¡ p¡,n is the strength of the connection from neuron j to neuron

k. Sirnilarly, the PIC detector of the second form can also be rewritten into the form

similar to the iterated-map neural network by substituting (3.8) into (3.9). Thus we

"f r - (3.76)

have

bf) : rro
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Therefore by using Theorem 3.3 and Theorem 3.4, we obtain the following corol-

Iary and propositions which state the convergence behaviour of the PIC detector.

Corollary 3.1 The PIC detector of the form (3.6) or (3.8) with an arbitrary tenta-

ti,ue decision functi,on that is monoton'ically i,ncreas'ing at a subli,near rate wi,ll ei,ther

conuerge to a fi,red poi,nt or enter a li,mit cycle of period-two.

Proposition 3.5 (First Form) Denote the largest pos'it'iue e'igenualues of the sym-

metri,c matrir (R - I)42 by À^",((R - I)A') and the marimum slope of the tenta-

t'iue deci,s'ion fu,nct'ion gn(r) by þfl i,.e.

,þnr: "\p 
U# . QlT)

Under the conditi,on that

uí < ;;f19a,l vk, (3 zs)

the PIC detector of the f,rst form (3.6) with any tentati,ue dec'is'ion functi,on that

,is monotoni,cally i,ncreasi,ng at a subl'inear rate w'ill always conuerge to a fi,red poi,nt

where the soft estimates [(n) -- d* as n ---+ @.

Proof : Since gn(*) : On(fi;), the maximum slope of gr,(r) is $. As shown

previously in (3.75), the PIC detector of the first form (3.6) is equivalent to the

iterated-map neural network (3.72). Hence, by Theorem 3.4 this detector will con-

verge to a fixed point if the matrix

B;'-A(R-r)A (3.7e)

is positive definite where Bs: diag{fr, #, " , o",&}.

A sufficient condition for the rnatrix [B;t - A (R - I)A] to be positive definite

,H< , lk , , vÅ;. 13.80)¡ ¡ú À,,o,(A (R - I)A)
The result immediately follows as the eigenvalttes of A (R - I)A are the same as

the eigenvalues of (R, - I)42. A
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Proposition 3.6 (Second Form) Denote the largest posi,tiue e'igenualues of the

symmetric matrir (R - I) bA À*o,(R - I) and the mari,mum slope of the ten,tatiue

d,ec'isi,on functi,on hn(r) by þ! i.e.,

,þI: "\pÜ#. (3 81)

Under the condi,ti,on that

,lf < ç;f,_ r) v/c, (3.82)

the PIC detector of the second form (3.5) wi,th any tentati,ue dec'is'ion fttncti'on that

is monotonically 'increasing at a subli,near rate wi,ll always conuerge to a fixed poi'nt

where the soft est'imates f,(n) --- b* as n --+ Ø.

Proof: This proposition is proved in a similar way as for Proposition 3.5. By

rewriting the PIC cletector of the second form (3.9) into (3.76) and recognizing its

connection with the iterated-map neural network, we can then apply Theorem 3.4.

Thus, the detector will converge if the matrix

B;'-(R-r) (3.83)

is positive definite where Bh : diag{þ|, d!, ' ' ' , ,þ'k}. The result immediately

follows which concludes the proof. A

Similar to the results in the previons section, the sufficient conditions for con-

vergence derived using this approach also demonstrate that by placing a bound on

the maxirnum slope of the tentative decision function, the PIC detector will con-

verge to a fixed point. Nloreover, this bound is dependecl on the correlation between

the spreacling codes and the signal amplitudes of the users in the system. We now

compare the bounds derived here with those derivecl in the previous section to de-

termine which approach would give a weaker (less restrictive) sufficient condition

for convergence.
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For the PIC detector of the first form, the upper bounds on the largest allowable

slope of the tentative decision function are

1
' fd,bo,ck

ltLat
ll(R - r)All."

as given by the feedback approach and

,þT*?i,tu (3.85)
À,,,o"((R - I)lz;

as given by th.e iterated-map neural network approach. We cannot conclude which

approach would give a weaker sufficient condition for convergence for this general

case because the second approach gives a different bound for each user. However,

for the special case when all ttsers have equal signal amplitude with ,4¿ : ¿ Vk, then

we have

1
(3.86)' f d.bacA:'VLut

n ll(R - I)ll- '

(3.84)

(3.87)

(3.e1)

^t.ttneL I ur^vubl,rt-;;"IR_Ð v/r

Since

l-o,(R-I) <p(R-I) , (3.SS)

< llR - rll- , (3.se)

the iterated-map neural network approach gives a weaker sufficient condition for

convergence for this special case.

For the PIC detector of the second form, the upper bounds on the largest allow-

able slope of the tentative decision function are

.,þ{,lt",r: 
--l- (3.e0)
llR - rll." '

for the feedback approach and

1
,þ

t¿net
ub2 À-o"(R - I) '
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for the iterated-map neural network approach. For this second PIC detector form,

,þrÅt""k < ,,þ?*ry'and therefore we can conclucle that the iterated-map neural network

approach gives a weaker sufficient condition for convergence.

3.5.3 Examples

Hyperbolic Tangent Decision Function

Let's consider the PIC detector with hyperbolic tangent decision function, tanh(a¿r)

where cv¡ âr€ some constants. This PIC detector can be expressed by the first form

(3.6) with gx(") : tanh(arr). As previously shown in section 3.4, the rnaximtrm

slope of the function tanh(a¡z) is

,./f :,Tp U# - a¡ (3.e2)

Using Proposition 3.5, the sufficient condition for convergence to a fixed point is

therefore

afr<';dï,o,) vk (3e3)

Clip Decision Function

The PIC detector with the clip tentative decision function can be expressed into the

seconcl form (3.8) by having h,n(r) clefined as in (3.10). The maximum slope of the

clip function is

,þX : 1. (3.94)

Thns, using Propositiou 3.6, the sufficient condition for convergence is

t-o,(R-r) < 1. (3.95)

This sufficient condition for convergence turns out to be exactly the same as that

derived in 1108].
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3.6 Simulation

We use computer simulation to examine the convergence behaviour of the PIC detec-

tor with hyperbolic tangent decision function in this section. We consider a CDMA

system with 4 active users. AII four users have equal po\Mer with A¡ : 1. Each user

is assigned a spreading code seqr.rence of length NI : 5 where the correlation matrix

IS

R-

1 0.6 0.6 0.6

0.6 r 0.2 0.2

0.6 0.2 r 0.2

0.6 0.2 0.2 1

With these system parameters, the corresponding sufficient condition for conver-

gence derived using the feedback approach is

mnax aÀ < *r::i"u: 
,,*; 

(3.97)

and the iterated-map neural network approach is

(3.e6)

an < a'i,Ilfj: =--l-a,rro"(R - I)
VK, (3.e8)

where llR - Ill." : 1.8 and À-o,(R - I) : 1.2583. As mentioned previously, the

sufficient condition derived using the latter approach is weaker than the former.

In ordel to find the largest allowable a¡ for which the PIC detector with hyper-

bolic tangent decision function still converge to a fixed point via simulation, we ran

a series of N,'Ionte Carlo simulations for different values of a¡. The following resr-rlts

are obtained at the signal to noise ratio SNR : OdB, where the SNR is defined as

A'rlo' . Fig. 3.4 shows the probability that the detector enters the period-two limit

cycle for different values of a¡. The result is obtained by averaging the number

of times the detector enters a limit cycle over 250,000 different realisations of the

received signal vector r. As shown in Fig. 3.4, the detector converges to a fixed
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0,035

0.03

o7 075 08 085 09 095
The maximum slope, øk

Figure 3.4: Percentage of entering the period-two limit cycle for clifferent a¡

point for all an I 0.8 and starts to exhibit cyclic behaviour of period tw'o when

the value of a¡" is greater than 0.8. This suggests that the upper bound on the

largest aliowable a¡ for which the PIC detector still converges to a fixed point is

affi:0.8. This bound is very close to the analytical bound *W:::0.795 derived

by using the iterated-map neural network approach. Simulation result also indicates

that as the maximum slope of the hyperbolic tangent decision function increases,

the probability that the cletector enters a limit cycle also increases.

Fig. 3.5 shows the soft estimate of individual user symbol at the end of each

interference cancellation stage, d.t")(i), rvhen (tr, :0.5 Vk. With this value, th.e

soft estimates of the transmitted symbol of all users converge to a fixed point after

several interference cancellation stages as expected. We also find that for cl¡ with

values that is slightly smaller than a'fl'fj, it rnay require more than 100 interference

cancellation stages for the estimates of the user symbols to converge to a fixed value

as being shown in Fig. 3.6.
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The simulation results in Fìg. 3.7 and Fig. 3.8 are obtained for the cases when

ok : 1 Vk and au : 2.5 Vk, respectively. They illustrate the behaviour of the PIC

detector when the tentative decision ftrnction does not satisfy the sufficient condition

for convergence. As one can observe, the detector exhibits a cyclic behaviour of

period two for both cases. However, for the câs€ o¡ :1, it requires more number of

interference cancellation stages before it enters the limit cycles and also the estimated

valtres of the data symbols are not closed to tl as compared to the case an :2.5.

These observations can be explained by the fact that as a¡ becomes large, the

hyperbolic tangent decision function approaches the hard decision.

3.7 Conclusions

In this chapter, by introducing a general PIC detector model, we have developed a

general framework for analysing the convergence behaviour of the PIC detector. This

framework perrnits the derivation of the sufficient condition for convergence of the

PIC detector for a wide range of tentative decision functions. We have shown that

some well-known conditions for convergence of the PIC detector with linear decision

and clip decision functions can be obtained using this framework. We anal¡'sed the

convergence behaviour of the PIC detector by using known results from the stability

analysis of feedback systems and an iterated-map neural network. Both approaches

lead to the same conclusion that that by placing a bound on the rnaximum slope of

the tentative decision function, the soft estimates of the information bits produced

by the PIC detectors approach a fixed point ¿Ls n ---+ oo. Analytical results derived

from the second approach also shows that the PIC detector with any nonlinear

tentative decision ftrnction that is monotonically increasing at sublinear rate will

either converge to a fixed point or enter a limit cycle of period-two. Computer

simulation was also used to examine the convergerce behaviour of the PIC detector

with hyperbolic tangent decision function. The simulation and analytical results
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obtained were found to be in close agreement

3.8 Appendix

Lemma 3.1 Let¡¡ ç p/{xK and x e L{" where {.{. i,s the ertend"ed space of sequence

en Rlr as def,ned äy (3.15) . A ualue of 1 whi,ch sati,sfy the cond,,ition

ll(H")rllo < rll"'llo YN ez* (3.ee)

.v: llHllo , (3.100)

where p € ll,æ) and llHllo denotes the operator norrn of the matrir H.

Proof: Note that the value 7 is not uniquely defined by (3.99). However, we are

interested only in the value of 7 that can be calculatecl from the matrix H. From

the definition of the operator norm) we have

llH¡lo - s.p +fft (3.101)**o llxllp

Hence by choosing

r: llHllo , (3.102)

the condition in (3.99) will be satisfied. A

Lemma 3.2 Let x e [.{. where (.{" is the ertended space of sequence in ]R/(. Let

FIx: f(x) where f(.) : lfr(.) fr(.) ... , ,fr.(.))r acts cornponent. Let's d,efi,ne

,o ::Ï3 ry vr € IR (3.103)

A 'ualu,e of 1 whi,ch sati,sfy the conditi,on

ll(H")rll." < ?llx¡,'ll- YN e Z* (3.104)

LS

?,s

'l : maxPk (3.105)
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(3.106)

(3.107)

(3.108)

(3.110)

Prool Now

ll (H*)'11". : llf(*)rll."
: ,{lT, lrix{"1¡¡_

: 
,llprnn 

m*ax l/¡(rf))l ,

where 1.1." denotes /oo-norm on RK and l.l denotes the absolute value of a number

in R. Since

lfn@)l<pol"l Vre R, (3.10e)

we then have

ll(H*)'11". < ,{},T, ^g e¡l*f)l
( mpx e¡ ma\ rnu*1"Í.")l

1 '" l1n1N k 't I

: maxp¡ llx¡rll"" .j

Thus, by choosing 1 : mâX¡ g¡, the condition in (3.10a) will be satisfied. A

Lemma 3.3 Let H € RK'K and X, X' € ¿1" where |{" ls the ertended space of

sequence zn lRK. A uahrc of I which sati,sfy the condi,t'ion

ll(H")" - (H*')rllo I zll*r - *'rllo VN e Z*

(3.111)

(3.112)

(3.113)

LS

ry: llHll, .

where p € lL,æl and llFlll, denotes the operator norrn the matri,rH

Proof: Since H is a linear mapping,

ll(H")r - (H*')rll, : llH(* - x')¡ollo . (3.115)

Now, if x, x' € (.lrf,, tt,"n (*-*') € [f".Thus by Lemma 3.1 the results immediately

(3.i14)

follows. A



Lemma 3,4 Let x, x' € !.{. where llj" 'is the ertended space of sequence inFrK . Let

FIx: f(x) where f(.) : t/r( ) /r( ) ... , fn(.)fr acts component. Let's defi,ne

pr : sup 49 , (3.116)
:rlo l:Il

,,/*: rTp ry (3.117)

Proui,ded that lþ¡l < pr Vlc, a uaht"e of 1 whi,ch sat'isfg the cond'ition
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ll(H*)" - (H*')rll- < ill*r - x'¡¿ll- VN eZ* (3.118)

LS

i : m?xçn
k

(3.11e)

Prool Now

ll(H*)r - (H*')'ll* : llf(*), - f(*')rll."
: 

,lLTr lf 1x{"1¡ - f (*'("))l-

: råTr mÌx lf ¡'(rl'') - ro@'f))l 
'

where 1.1." denotes /oo-norm on IR.K and l.l denotes the absolute value of a number

in lR. Now,tf lrþnl < gr, we then have

lfr@) - fn("')l < prl, - *'l Vø, r' € IR . (3.123)

Hence, if lrþ*l 3 pn

ll(H*), - (H*')rll- < ,*pl *fl eu lrf'\ - "'fù1 Q)24)

I mpx ç¡ ,T,,p*^g"lrf,) - *'f)l (2.125)

p¡ll*¡v - *'¡rll* (3.126)

Thus, tf lrþnl { pn, then by choosing i: maxr ç¡,the condition in (3.118) will be

satisfied. A

(3.120)

(3.121)

(3.t22)



Chapter 4

Space-Time Coding

This chapter addresses the issues of designing space-time codes in spatially correlated

fading channels. Analytical upper bounds and asymptotic tight expression for the

pairwise error probability of space-time coded systems in spatially correlated fading

channels are derived. Based on the performance analysis, the chapter presents the

rank determinant and the trace design criteria for constructing space-time codes to

operate in spatially correlated flat Rayleigh fading channels. Furthermore, some new

space-time trellis codes based on a new design criterion, which involves minimising

the sum of the pairwise error probability of all distinct pairs of codewords, are

also presented. These new space-time trellis codes are found through systematic

computer search. Simulation results support the claim that these new codes are

superior to other known codes constructed using the rank determinant and the

trace criteria.

4.L Introduction

Wireless communication systems operating in flat fading environments can increase

their capacity significantly by employing multiple transmit and multiple receive an-

76
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tennas [36, 93]. In [35], a layered space-time architecture for wireless communication

in flat Rayleigh fading environment with multiple antennas is designed. It demon-

strates that when the fading coefficients are statistically independent and known at

the receiver, the capacity of the link increases linearly with the smaller of the num-

ber of transmit and receive antennas. Following these works, Tarokh, Seshadri and

Calderbank [89] propose a space-time trellis code modulation scheme to exploit this

potential increase in capacity promised by multiple transmit and multiple receive

antennas. It is found in [41, 89] that the pairwise error probability of the space-time

codes in quasi-static Rayleigh fading channels is determined by the rank and the

determinant of the distance matrix. Using this analysis, a rank determinant design

criterion is proposed which involves maximising the minimum rank and the mini-

mum determinant of the distance matrix over all distinct pairs of codewords. Based

on this criterion, a number of QPSK and 8PSK codes are constructed by hand in

[89]. These codes achieve the maximal possible diversity gain, but not the full coding

gain. Subsequently, some other QPSK codes with better performance are found by

compnter search in [12]. Recently another design criterion for constructing space-

time trellis codes in quasi-static Rayleigh fading channels is derived in [21, 110]. It is

found that when the product of the minimum rank r of the distance matrix and the

number of receive antennas is greater or equal to 4, the pairwise error probability

is determined by the squared Euclidean distance between two codewords (i.e. trace

of the distance matrix). Thtts, the code design criterion is then to maximise the

minimum squared Euclidean distance. It has been shown by simulation that a code

with a smaller determinant can still achieve better performance than the one with a

larger determinant, provided that its minimum squared Euclidean distance is larger

[110].

The rank determinant and the trace design criteria in [21, 89, 110] are derived

based on some upper bounds of the pairwise error probability of the space-time
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coded systems in independent fading channels. Such spatially independent fading

only occur if the multipath reflections are uniformly distribrited around the receiver

and that the multiple antennas at the receiver are sufficiently spaced apart. This

assumption is often hard to satisfy in practice. At the mobile unit (MU) end,

even thought it is frequently immersed in a complex scattering environment where

the received signals are linear combination of several multipaths reflected from the

nearby local scatterers) the antennas at the MU cannot be sufficiently spaced apart

due to the limited size of the MU. In the isotropic scattering environments where the

iVIU receives signals from all directions with equal probabilities, the received signals

at two IVIU antennas can be assumed to be spatially uncorrelated if the two antennas

are separated at a distance greater than À12 where À is the carrier wavelength.

However, it has been experimentally demonstrated in [37] that the scattering at

the 1VIU is more likely nonisotropic, resulting in a nonuniform distribution of the

angle of arrival (AOA) of the multipath components at the MU. This nonuniform

distribution of AOA significantly increases the cross-correlation among the antennas

at the VIU. In addition, the base station (BS) antennas in land radio systems are

typically placed highly above the ground and are not surrounded by many local

scatterers. As a result, spatial correlation also arises among the antennas at the BS.

In this chapter, we derive new upper bounds for the pairwise error probability

of the space-time coded systems in spatially correlated fading channels. Based on

these anaiytical pairwise error probability bounds, we derive the equivalent rank

determinant and trace design criteria for constructing space-time codes in correlated

fading channels. The rank determinant and the trace design criteria have a common

theme in which they minimize only the probability of error of the dominant error

event. In particular, for each of these design criteria there exists many space-time

trellis codes and they don't necessary have the same performance. For example, it is

found in [107] that there are over 250 different 4 states QPSK space-time trellis codes
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for 2 transmit antennas that would satisfy the rank determinant design criterion.

These observations motivate us to construct new space-time treilis codes based on

the criterion of minimising the sum of the pairwise error probability of all possible

error events. Since all codewords are likely to be transmitted with equal probability,

it is expected that the sum of the pairwise error probability of all possible error events

is a better measnre of the error performance than the pairwise error probability of

the dominant error event. Through computer search, it is found that only a limited

number of space-time trellis codes exist that would satisfy this criterion. This sum

of pairwise error probability criterion is similar to the distance spectrum criterion

reported in [6]. There are some codes constructed based on this distance spectrum

criterion have been presented in [54]. However they all use BPSK modulation and

achieve a bandwidth efÊciency of 1 bitlslHz. The space-time treliis codes presented

in this chapter all use QPSK modulation and achieve a bandwidth efficiency of 2

bitslslHz.

This chapter is organised as follows: In section 4.2, a general space-time coded

system with rrultiple transmit and multiple receive antennas is presented. The per-

formance of the space-time system in spatially correlated Rayleigh fading channels

is analysed in section 4.3. Based on the analytical expressions of the pairwise error

probability, codes design criteria are derived in section 4.4. In section 4.5, the con-

struction of space-time trellis codes is described. Computer simulations are used to

compare the performance of the newly constructed codes with other known codes.

The following notation is used throughout the chapter: The sttperscript " and H de-

note the transpose and conjugate transpose operations, respectively. The Kronecker

product operation is denoted by A. The zero-mean, circular-symmetric, complex

Gaussian clistribution with variance of o2 is denoted by CN(0,o2). The matrix I¡¿

(O¡¿) is the l/ x l/ identity matrix (matrix of all zeros).
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Figr.rre 4.1: The block diagram of the transmitter and receiver

4.2 The System Model

Consider a wireless communication system with n7 transmit and n¡ receive an-

tennas as depicted in Fig. 4.L. At each time ú, the encoder produces n" outputs

r{t),rr(t),...,rnr(ú) where r¿(ú) is a signal from a certain signal constellation with

nnit average energy. These outputs are then simultaneously transmitted Ly n,

antennas. At the receiver, the received signal at the júh receive antennas is

nT'

r¡(t):Dno,t r¿Q) JE,+nj(t) , (4 1)

i:l

where ,Ð" is the transmitted power per symbol at each transmit antenna and n, (ú)

is the additive noise component at the receive antenna j. The additive noise is

white and C,A/(O, 1) distributed. The coefficient h¿,¡ is the fading gain for the path

from transmit antenna i, to receive antenna 7 and is assumed to be CAI'(0,[Ð]r,r)

distributed where Ð is the channel correlation matrix defined later in this section

and the index g : (j -l)rr*¿. We assume the channels undergo quasi-static fading

(i.e. the fading coefficients remain constant during one frame of 7 symbol periods

and change independently from one frame to another). Thus, the received signals

at the receive antenna 7 during 7 symbol periods can be written in vector form as:

80

Receiver
Information

Source

Space-Time Encoder

¡? o
.-+---.f .

aa O'

aa aa

oo aO
aa aa

,¡:fE,Xhr. ln¡, (4.2)
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where h¡ : [ht,¡ hz,j .. . hn,,jfr , n¡ : ln¡(I) "¡(z) 
.. . n¡(T)]r and
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(4 3)

(4.5)

X-

rt(T) rz(T) r",(T)

Stacking the ? observations per receive antenna yields lhe Tn¡¿ sufficient statistics

.:[.I$...rT*]':JE,Xlnl_n, (44)

whereh: [hT krT. '.'lrî*]', t : [tT n[ ...:nT*]'andX:In^8X. Theadditive

noise is assumed to be white in space and time (i.e. E[nnt] : Ir,ro). However, we

allow the fading process to be spatially correlated with covariance E[hhH] : X (i.e.

) need not be proportional to the identity matrix).

4.3 Performance Analysis

In this section, we first review the derivation of the pairwise error probability pre-

sented in [14], which is asymptotically tight to the true pairwise error probability.

We then derive two upper bounds for the pairwise error probability of the space-time

coded systems in correlated fading channels. These upper bounds are more accurate

than the asymptotic expression [14] at low SNRs. The derivations of these upper

bounds follow closely to those presented in [89, 110]. However, the difference is that

the upper bounds derived in [89, 110] are for independent fading channels while the

Lrpper bounds derived here are for spatially correlated fading channels.

Assuming ideal channel state information (CSI) is available at the receiver and

a maximum likelihood receiver is employed, the receiver will erroneously select the

codeword Î. when the codeword X is transmitted if
2 TnRtt

t:L j:r

T nR nT

r j(t) -ln,'toçt)J E, r j(t) - \nr,¡r/t)J E,
nT,tt

t:t j:r i:1 i:r

2
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This is equivalent to
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llr - J n"xnll' < ll" - J n"xn¡' . (4 6)

(4 e)

(4.10)

(4.11)

(4.72)

4.3.t Asymptotic Tight Pairwise Error Probability

As from (4.6), the pairwise error probabitity P(X ---+ X¡ otmistaking *. for X is

P(X---+x¡: Pr(Í <0 I Xistransmitted), (4.7)

where /: ll. - Jflxnll'- llr - t/flxhll'. Bv clefining the vector

t-_]

': I \/8"^ 
|' I r (a'8)

[rj
and the Hermitian matrix

I nnn-xHN yru- inf
":L ,x-,x or.,n ]

the test statistic f can be written in the quadratic form as

Í:'HFz'

The characteristic function of the distribution of the test statistic / as derived in

[83] is

G ¡(t) : 6¡"-"11 : 1

I n:L al,^ (s * o-t¡u^ '

where l/ is the number the distinct nonzeto eigenvalues a,, of RuulxF with multi-

plicity p,,-andP.,ulx is the covariance matrix of the random vector z given that the

codeword X is transmitted

E,Ð E,EXH

E"XÐ E"XÐXH +I
F-ou¡a : E lzzH lX] :



Space-Time Coding 83

Suppose R,,lxF has {o,,}f:1 negative eigenvaiues and {r*)I:"*, positive eigenval-

ues, the exact pairwise error probability is given by [1a]

P(x..- x¡ : I:_[::,ac¡t)ffi ,

¡iæ+c ds: 
J-r**,t-'c ¡(s)fi '

Llr-1\
:-Ð*"(6'":;) (4 13)

The residue of a function /(s) at a pole s¿ with multipiicity of p can be calculated

as [82]

Res(/(s),",) :G5 n#[(s-s¿)/'/(s)] . (4.r4)

The expression of the exact pairwise error probability above does not give any insight

into the structure of the codes. In this section, we are interested in the case when the

S¡r/Ë --+ oo (or equivalently E" - oo) as this leads to a closed form expression for

the pairwise error probability which shows its dependency on the system parameters

such as codewords employed, fading correlation and system diversity.

Proposition 4.1 Assnm'ing Ð 'is full rank, as E, - æ half of the nonzero asyrnp-

toti,c ei,genualues of R,o.¡F' are eqnal to mi,nus u,n'ity wi,th multi.plici,ty of rn¡¡ where

r i,s th,e rank of the cl'istance matrir Ax,x : (X - X)t(X - Xl . The other half are

pos'it'iue and, equal to the ei,genualues of E"Ð(X - i)o (X - X¡.

Proof: To see this, let us first begin by expanding the expression of R,,¡¡F:

[ "." 
E"ÐxH ]l*"*-NHN ¿u-i'fR,'txF:l .. ll I--'-- 

lt,*, E"NÐNH +I.l I *-* orn, j

| ø">(xux-x'x)+ø">NH@-Ð E">(No-i')1
- 

lt"*r@'x - NHN + E,N>N'(x - h+ x - x E"x>(x - i') )
(4.15)
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and defining the following matrices:

84

,r: I 
r""" 

-l

":L x l
v : x(.T - x)o | -x rr,* ]

,:l on'n' o"t"'o""" 
I

I rx - xl or,,a l
Thus, R,,lxF can be expressed in term of [J, V and Z as

R,,lxF:E"UI/+Z'

(4.16)

(4.t7)

(4.18)

(4.1e)

Using [14, Appendix B, Theorem 2], the nonzero eigenvalues of E"UV I Z are

arbitrary close to the nonzero eigenvalues of E"VU and Z(I - U(VU)-lV) as '8"

approach infinity if

vu: Ð (x - x)"@ - 2) (4.20)

has ftrll rank. Since Ax,x : (X - X)"(X - i¡ i. nonnegative definite Hermitian

matrix and VU is assumed to be full rank, it follows that the number of eigenvalues

of E'VU ãle nTrL¡¿. These eigenvalues are real and linearly proportional to the ,tr".

Let's define /x,x - InoS Ax,x and through simple manipulation, it can be shown

that

zF- u(vu)-lv) :

I 
otrTtt¡. on7,,¡1xrnp 

I . (4.21)

I w - xl - w - x)A*l*(/ - x)n x -( - x)Al*@ - ö' )

Thus, the nonzero eigenvalues of Z (I - U(VU)-tV) are the nonzero eigenvalues of

-(X - X¡,A.;to1X - X)t with multiplicity n6. For a negative projection matrix,

its eigenvalues are minus one or zero 164, pp. 14]. Since -(X - X¡A;to1X - X)o

is a full rank negative projection matrix, its eigenvalues equal to minus one with
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multiplicity of n7. Therefore, the eigenvalues of Z(I- U(VU)-lV) are equal to

minus nnity with multiplicity of. n7n¡7.

When Ax,x is not full rank (i.e. r : rank(Ax,x) < n7), VU will has rank rn¡¿.

The number of positive eigenvalues of ø"VU and the multiplicity of the eigenvalue

minus one of Z(I- U(VU)-1V) witl then be rn¡¿. A

Proposition 4.2 The asyrnptoti,c pai,rw'ise error probabi,lity i,s equal to

F-TNR
2rnp - !

TTLn
P(X -+ x¡ :

lr?i x,
(4.22)

where À¿ are nonzero ei,genuahtes of E(X - i¡o çX - X¡

Proof: By the Lebesgue's dominated convergence theoretn, the limit ancl the

integral commute. Therefore, r.rsing (4.13)

"r.,T"" 

Ei"^P(x-- x) : 
El"iT." "r"" I:::,s-l c¡1s¡

fJoo+€: / _ti- EI,,* "-' Gr(")
J -.¡æ+e 

r1's+oo 2rj

ds

2trj '

ds
(4.23)

Since half of the nonzero eigenvalues of RurlxF are equal to minus unity with

multiplicity of rnp and the other half are positive which equal to the eigenvalues of
^TIE,>(N - X)-'(X - X), it is obvious that

lim EIn' ,-t Gr(r) (4.24)Es+oo s (s - 1)-,n (-1)""" flili Àrs
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,s¿:1
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where À¿ aïe the nonzero eigenvalues of Ð(.T - X)o (X - 21. Thus,

lim E:'RP(X--'X) : [t**' ' 'l ' :=== dt
E"-ìo"-s - \ r_.jætt s (s - 1)'",o ,-1)'"" llil! À¡s 2rj

Res
1

s (s - l)rnn (-1)"'" fITl 
^,_1 flrnn-| 1

(rn^ - 1)! ru:i e¿ d,srnn-L trnp*1' (- 1;"'," S:l

r (2rnp-1\: 
ffi-t [ ,,rLn ) 

(425)

wlrere the (rn¡¿- 1)th derivative is calculated using Leibniz's rule of differentiation.

The asymptotic pairwise error probability in the proposition is then immediately

followed. A

This expression for the pairwise error probability is asymptotically tight to the

true error probability as compared to the standard Chernoff bound at high SNRs.

However at low SNRs, this asymptotic expression very loose. A similar asymptotic

tight bound on the pairwise error probability is also derived in [87].

4.3.2 Pairwise Error Probability Upper Bound

Through simple rnanipulation, the condition given by (a.6) can be shown to be

equivalent to

Jn,nH @-x)o(x-i)ra <

where R"{.} means the real part of an argument. The term on the left hand side

of @.26) is a constant and the term on the right hand side of (4.26) is a zero mean

Gaussian random variable with variance 4d2(X, *) ,"h.r"

TnR

t:I j:I

2

,t'(x,x¡ : f t Dno,, ("0(t) - û¿(t))

nT.

i:1

: hH (x - x)'(x - x)rt (4.27)
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where

E" d2(x, *)
4
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Assuming ideal CSI is available at the receiver, the pairwise error probability con-

dition on h is upper bounded by [89]

P(X---+Xltr) <exp

Let's define the nonnegative definite Hermitian matrix

c(x, x, >¡ : (>'t\' @ - x)'(x - x) Ðttz

(4.28)

The correlated fading channels can be written as

Il-: ÐLl2 ñ. , (4.2e)

where Ð is the rlrrLn x TLTu¡¿ fading channel correlation matrix and h is an nTnp

zero mean i.i.d complex vector with covariance EllalaHl:Inr,r*. Thus,

d,'(x,x¡ : iru lyr/\n @ - x)'(x - x) >t/2ñ

Then by using eigenvalue decomposition, we can represent G(X, X, t) by a unitary

matrix W and a real diagonal matrix A

G(X, i, >¡ :'WA'WH (4.32)

The columns of 'W, 
{w1, w2,...,wnrn^} are a complete orthogonal basis of C'"'R.

They are given by the eigenvectors of G(X, Î', >¡ with the corresponding eigenvalues

À¿ ) 0, which are the diagonal elements of A. Let q denote the rank of G(X, i, >¡

and hence the number of nonzero eigenvalnes À¿. Equation (4.30) can be rewritten

(4.30)

(4.31)

(4.33)

(4.34)

AS
q

d,'(x,x¡ : D,x,lp,l'
I:t

0,:É'*,



Since ñ ir ,.to mean complex Gaussian random vectol with covariance E'[ññ¡r] :
Inrn, and {w1,w2,...¡w,,rn*} is an orthogonal basis of Cn'n^, p¿ ale zero mean

independent complex Gaussian random variables with variance one. Thus, lB¿l are

independent Rayleigh distributions with pdf

plpù :210t I ""p(-1,6,1')

Space-Time Coding

Hence, by averaging the conditional probability of error

P(X---Xlft) <exp E,DO,: À¿ P,l'
4
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(4.35)

(4.36)

with respect to independent Rayleigh distributions of lB¿1, we get the following upper

bound of the pairwise error probability

P(X--x¡ 3ffi
1

det (r,,," + (8"14) (Ðvz¡ø (x - i¡n@ - i) >r/r)
1

clet (r,",,o + @"14) > (x - i¡nçx - i))
The second and third lines in (a.37) follow from the following matrix properties

der(I + B) : fl(t + pù ,

det(I + A B): det(1 + B A)

(4.37)

(4.38)

(4.3e)

(4.4r)

respectively, where p¿ are eigenvalues of B. It follows from the inequality in (a.37)

that for high SNR

P(X -, x¡ 5 (8"14)-o #¡ . Ø.40)

This asymptotic bound is different from the asymptotic tight expression in (a.22)

by only a constant of

2q-l
q

ntosØ) -T,"n
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decibels. As the diversity q ---+ oo, this difference approach 0 dB.

When the fading channels are independent, i.e X : I, the pairwise error proba-

bility is

P(X-- x) S
det (I,,,,," + (8"14) (x - x)" (* - i))

(4.42)

Since (X - X) : I,,oS (X - X¡, equation (4.42) can be rewritten as

1

1

nR

P(X -+ x¡ 1 (4.43)

(4.44)

aet (r," + (8"14) (x - x¡ø1x - *))

which is the same as [89, Eq. (8)]

4.3.3 Pairwise Error Probability Upper Bound for Large q

When q: r'anlc(G(X,X,>)) is large, this implies that d.'(X,X¡ ir the sum of a

large number of indepenclent variables. Thus, according to the central limit theorem,

the distribution of D : d,'(X,)i) upptouches a Gaussian distribution with rnean

LLD: I A'

q

I:I

and variance

ll', :f, ¡? . (4'45)
L:7

Note that since À¿ are nonzero eigenvalues of a nonnegative definite Hermitian ma-

trix, D is always positive. Hence by averaging (4.28) over the Gaussian distribution

of D, the pairwise error probability can be upper bounded by

r+o" ( E" D\P(x -- x) < 
Jo:'"*, (- ^ I 

p(D)dD (4.46)

where p(D) is the pdf of the Gaussian random variable D. Using the identity

l::exp(-7D) 
p(D)ctD - exp (ir*, -',u,) , (ú"*) , ? > 0 (4 47)
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the upper bound of the pairwise error probability in (4.46) can be rewritten as
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(4.4e)

P(X -* x¡ s "* (åu: Ð^r - +å^,), (W)
(4.48)

where Q(r) is the complementary error function. For liigh SNR (i.e. large E")

Consequently, by using the inequality

e@)3!r-,'¡z, r)o (4.b0)
2

the bound in (a.a8) can be further approximated by

P(x ..- x¡ 5 * "*o 
(-+ i ^,) (4 51)'z 
\ 4-r_, /

When the fading channels are independent, the upper bound of pairwise error

probabiiity in (a.51) is reduced to

P(x..- x¡ s å "*o 
(-"+ É",)\'¿:r/

:å.*o ('+åÐ @t-r'-)') Ø52)

where r and o¿ ãïe rank and nonzero eigenvaiues of the distance matrix Ax,x :

(X - i)t(X - i¡, respectively. This expression is the same as one derived in

[21, 110].

4.4 Space-Time Code Design Criteria

In this section, we describe the rank determinant, the trace and the sum of pairwise

error probabilities design criteria for constructing the space-time codes to operate

in spatially correlated fading channels.
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4.4.L The Rank Determinant Criterion

From (4.40), the pairwise error probability is exponentially dependent on th.e rank q

and inversely proportional to the determinant fl À¿ of the matrix G(X, i, >¡ . Thus

in order to minimised the error probability, we need to maximise the minimum rank

q and the minimum determinant fl À¿ of the matrix G(X, X, >¡ over all pairs of

distinct codewords. When G(X, i, >¡ is full rank, the upper bound of the pairwise

error probability in (a.40) can be written as

(4.53)

(4.54)

The above criterion is then equivalent to

1. Ensure Ax,x is ftrll rank for all pairs of distinct codeworcls

2 Maximise the minimum determinant det(A*,¡) along all pairs of distinct code-

words

Thus when G(X, X, >¡ is ftrli rank, the rank determinant design criterion is inde-

pendent from the fading channel correlations.

4.4.2 The Tlace Criterion

This trace criterion is only applicable when Q : ranlc(G(X, X, >)) is large (i'e.

q > 4) since it is based on the performance analysis for large q. As from (4.51),

minimising the pairwise error probability is equivalent to maximise the sum of the

eigenvalues of G(X, X, >¡. Since

q

I 
^, 

: trace{G(x, *, >)} 
't:r

the trace criterion is then to maximise the minimum trace of the matrix G(X, i, >¡

over all pairs of distinct codewords. It can be noticed that the trace criterion does not
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guarantee full diversity space-time codes to be constructed. In addition, the design

criterion is dependent on the channel correlation matrix even when the channel

correlation matrix and the distance matrix Ax,x are full rank.

4.4.3 Sum of PEP criterion

Both the rank determinant and the trace design criteria aim to miminise the error

probability of the dominant event. We now describe a design criterion which involves

minimising the sum of all pairwise error probabilities. From (4.40), the pairwise error

probability is inversely proportional to flfl:, À¿. Hence, to minimise the sum of the

pairwise error probability of all error events we need to minimise

E-7r@):tI
e:l d>e

1

lIn:, \i'o '
(4.55)

Note that d(E) depencls on the number of receive antennas but is independent of

the fading channel correlation. The codes design criterion is then eqr-rivalent to:

o Ensure that A¡",¡o is full rank for all pairs of distinct codewords.

o Nlinirnise the metric cl(E)
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4.5 Space Time Trellis Codes

4.5J The Space-Time TYellis Encoder

o

93

01
oô

oô

I (t)
v/ 'l

ot

x¡(t)

Ioò

oó
I,

Figure 4.2: Space-time trellis encoder

We consider a space time trellis encoder with 1VIPSK modulation as shown in Fig.

4.2. This space time tlellis encoder achieves a bandwidth efficiency of m : Iogz lV[

bifslslHz. We use the same encoder representation as described in [21, 110]. At

each time t, m binary inputs l{t),12(t),...,L"(t) are fecl into the encoder which

consists of m, feed forward shift registers, each with a memory order of. u¡. The lcth

inptrt bit Ik(t), which is fed to the k¿h shift register, and the delayed bits in the kth

shift register's memory are then multiplied with the i,th encoder coefficients set

gi:[9'o,*,9\,*, 7ir,n )
(4.57)
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where g'¿,n€ {0, 1,..., IVI -l} with k:1,2,...,rh, /:0,...,u¡" aîd'i:1,...,n7. The

multipiier outputs are added modulo NI and mapped into signals from the MPSK

constellation, giving the encoder output to the i¿l' transmit antenna

r¿(t) : ¡4 si,* Ir,(t - l) mod 1ìl (4.58)

where M(") : exp(2r j" I M) is the mapping function that maps integer values to the

IVIPSK constellation. The memory order of the k¿h shift register, z¡, is determined

from the total memory order z by

'u: lu + k - 1l

Lr"*;irl' (4'5e)

where lrl the maximum integer not larger than z.

4.5.2 Construction of the Space-Time Tlellis Codes

Using the sum of pairwise error probabilities design criterion, we perform a system-

atic search to construct new QPSK space-time trellis codes for two transmit and

two receive antennas. We perform a search over all possible pairs of error event with

a path length of T : 4 i max¡ u¡. The values of d(E) in Table 4.1 are compnted for

this path length. We have tried with a longer path length but the same codes are

found. Even though these codes are designed for two receive antennas, simulation

results show that they also perform well for other number of receive antennas. The

newly found codes with 4, 8, 16 and 32 states are summarized in Table 4.1 where

Br : [ (gl,n, gï,n, ..., si,i), G)u,u, 9?^.,x,'.', o'[,) ) (4.60)

The codes that are found in [89] (TSC) by the rank determinant criterion and in

[21] (CYV) by the trace criterion are included as references. All these codes achieve

full diversity. Their corresponding minimum determinant and minimum trace (i.e.

squared Euclidean distance) are also shown.



Space-Time Coding 95

Table 4.1: QPSK space-time trellis codes for correiated flat Rayleigh fading

Code 91 and 92 det(A* ¡) trace(A*.a) d.(E)

TSC 2

ú,:
òI

8z:
0,2), (2,0)]
0,1), (1,0)] 4 4 95.72

CYV 2

O
b 1 (

(

0

2

2
o
d

), 1

2

2

0
)

o^?t¿ ), 4 10 35.97

New 2

Õb 1 f(2,3) ,(2,2
[(1,2) ,(2,0

I

8z 8 8 29.4t

TSC t
r)

o.br
8z

(

(

0

0

2), (2, o)l
1), (1, o), (2,2)l L2 8 t7.76
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4.5.3 Performance of Space-Time Tbellis Codes

This section compares the performance of the new codes with the TSC and CYV

codes for both independent ancl correlated flat Rayleigh fading. All these codes

achieve a bandwidth efficiency ol2bitsf sfHz. At the receiver, a maxirnum likelihood

Viterbi decoder with ideal channel state information is employed. We simulate for

different number of receive antennas. In the simulation, each frame consists of 130

coded symbols transmitted out of each transmit antenna. The frarne error rate
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Figure 4.3: Performance of 4 states QPSK codes with 2 and 4 receive antennas

(FER) performance of these codes are obtained and plotted against the signal to

noise ratio (SNR). We define S¡/Ë : n7E"f Ns where 1\b is the variance of the

additive noise at the receiver. For independent fading channels where the fading

coefficient h¡,¡ \s a complex random variable with variance of 0.5 per dimension, this

SNR is equal to the average received signal to noise ratio per receive antenna.

The performance of the 4, 8 and 16 states QPSK space-time trellis codes with 2

and 4 receive antennas in quasi-static Rayleigh fading is shown in Fig. 4.3, Fig. 4.4

and Fig. 4.5, respectively. The transmitted signals from different antennas are as-

sumed to undergo independent fades. For the 2 receive antennas case, the newly

found codes outperform the TSC codes by approximately 0.6 dB to 1.5 dB and the

CYV codes by 0.1 clB to 0.5 dB. For the 4 receive antennas case, the new QPSK

codes perform better than the TSC codes by 0.7 dB to 2.2 dB. The new 8 and 16
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Figure 4.4: Performance of 8 states QPSK codes with 2 and 4 receive antennas

states QPSK codes perform equally well as the CYV codes while the new 4 state

cocle performs slightly poorer than the corresponding CYV code by 0.1 dB.

The simulation lesults in Fig. 4.3, Fig. 4.4 and Fig. 4.5 all show that the CYV

codes achieve a better performance than the TSC codes despite having smaller

(or equal) minimum determinant. This further demonstrates the weakness of the

rank determinant criterion. As shown in Table 4.1, all new codes have smaller

minimum square Euclidean distances (i.e. rninimum trace) than the corresponding

CYV codes. However simulation results show that the new cocles still perform better

than the CYV codes for 2 receive antennas case in spite of smaller minimum squared

Euclidean distarrces. This suggests that by taking into account all the possible error

events into the design process, additional performance gain can be obtained, and

that the metric d(E) is a better rneasure of the code error performance than the
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Figure 4.5: Performance of 16 states QPSK codes with 2 and 4 receive antennas

determinant and the trace metrics. For 4 receive antennas, the new codes do not

outperform the CYV codes like for the 2 receive antenna case because the new codes

are designed for 2 receive antennas. N¡Iore importantly, when 4 receive antennas are

employed, the system doesn't need to operate in the high SNR region to obtain a

reasonable FER. Hence the metric d(E) is no longer closely related to the code error

performance because it is based on the asymptotic (high SNR) analysis,

The perforrrance of these space time trellis codes in correlated fading environment

is shown in Fig. 4.6. The results are obtained for 4 and 8 states codes with two

receives antennas. The correlation factor between any two propagation paths is 0.5.

As shown in Fig. 4.6, the new 4 ancl 8 states codes have the same performance as

the corresponding CYV codes, while perform better than the 4 and 8 states TSC

codes by 1.2 dB and 0.4 dB respectively.
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Figtrre 4.6: Performance of 4 and 8 states QPSK STTCNI in correlated Rayleigh

fading with 2 receive antennas

4.6 Conclusions

In this chapter, we analysed the performance of the space-time coded systems

that employ multiple transmit and multiple receive antennas in spatially correlated

Rayleigh fading channels. We presented an asymptotic tight expression and two

upper bounds for the pairwise error probability. A number of new QPSK codes

for two transmit antennas based on a ne\M criterion of rninimising the sum of the

pairwise error probabilities were found. Simulation results showed that these new

codes are superior to the other codes found by the rank determinant and the trace

design criteria.
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Chapter 5

Joint Space-Time Trellis Decoding

and Channel Estimation

This chapter addresses the issues of joint space-time trellis decoding and channel

estimation in time-varying fading channels that are spatially and temporally cor-

related. A recursive space-time receiver which incorporates per-survivor processing

(PSP) and Kalman filtering into ttre Viterbi algorithm is proposed. The channel

time-evolution is rnodelecl by a multichannel autoregressive process, and a bank of

Kalman filters is used to track the channel variations. Computer simulation results

demonstrate that a performance close to the maximum likelihood receiver with per-

fect channel state information (CSI) can be obtained. The effects of the spatially

independent fading channel assumption on the performance of a receiver operated

in spatially correlated time-varying channels are examined.

5.1 Introduction

The works described in the previous chapter on space-time coding assume that the

receiver has perfect channel state information of the wireless fading channels. This

100



Joint Space-Time Trellis Decoding and Channel Estimation 101

assumption is only applicable to wireless applications that have limited mobility

where the channels can be accurately estimated by using pilot symbols inserted pe-

riodically during transmissions. In this chapter, we consider the problem of decoding

space-time trellis codes in time-varying fading channels. In recent years, there are a

number of published works addressing this issue 123, 24,60, 106]. In [23], an iterative

space-time receiver that performs joint channel estimation and detection based on

the expectation-maximization (EN4) algorithm has been described. It requires the

insertion of pilot symbols at the start of each frame. The performance of this receiver

is reasonably good when the length of the frame is relatively short, but degrades

significantly as the frame length increases. Thus f'or very fast time-varying channels,

many pilot symbols would be needed ancl hence reduce the system throughput. In

[60], Lin et al. proposes an iterative receiver based on Kalman filtering for decoding

the Alamouti's space-time block code [7]. It models the time-varying channels as

autoregressive (AR) processes and uses a Kalman filter for channel tracking. Al-

though this receiver can accurately track the fading channels, it is very sensitive to

channel estimation errors. Even small channel estimation errors can cause a con-

siderable performance loss. In recent years, per-sttrvivor processing (PSP) has been

known as an effective approach for simultaneous estimation of the data sequence

and the unknown channel parameters in single-input-single-output (SISO) systems

[79] In [106], a PSP based receiver for decoding space-time trellis codes is pro-

posed which uses an accelerated self-tr-rning least mean square (LNIS) algorithm for

tracking the fading channels. It provides good performance for both slowly and

moderately time-varying channels. Similarly to [106], a PSP based receiver which

combines the Viterbi algorithm with data-aidecl channel estimation is proposed in

1241. However, the difference is that it Lrses a bank of Kalman filters to track the

channel variations. Simulation results in 124, 106] show that these PSP based re-

ceivers generally offer superior performance than other competing receivers such as
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the Wiener Interpolation Filter (WIF) [41], the iterative Kalman filter [24] and the

iterative E1VI based receiver [23].

AII the works mentionecl previously are based on the assumption of independent

and identically distributed (i.i.d) fading channels. However, in real propagation

environment, spatial correlation in the fading channels can arise due to the insuffi-

cient spacing of the antennas at the mobile station and the lack of local scatterers

around the base station antennas 12,20,86]. Such spatial correlation can consider-

ably reduce the performance of the receiver if it is not properly incorporated into

the design of the receiver. In172,73], we introduce a general state space model for

general diversity communication systems and propose a number of receiver struc-

tures for joint channel estimation and decoding in time-varying correlated diversity

channels. The application of these receivers to OFDIVI systems, where the diversity

is obtained from the redundancy in the frequency domain, is discussed in172,,73, 50].

The approximation of the correlated time-frequency channels by the multichannel

AR processes is detailed in [72,50]. In this chapter, we apply the PSP receiver

derived in 172,73] to the problem of joint space-time treilis decoding and channel

estimation in a wireless comûrunication system with multiple transmit and receive

antennas. This PSP receiver incorporates the per-survivor processing and Kalman

filtering into the Viterbi algorithm similar to that in l2a]. However our proposed

PSP receiver implicitly inclr-rdes the channel estimation errors into the path metric

of the Viterbi algorithm while the PSP receiver in l2a] computes the path metric as

if there is no channel estimation error. Nlore importantly, we do not assume i.i.cl fad-

ing channels and allow the channels to be spatially and temporallv correlated. The

proposed PSP receiver accounts for such spatio-temporal correlation in the channels

when performing the channel estimation and the ciecoding steps. Simulations in

section 5.5 demonstrate that in fast time-varying fading channels, the performance

of a receiver can degrade to an unacceptable level if the spatial correlation in the
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channels is ignored. To our knowledge, there is no other work on receiver structure

design which performs joint space-time trellis decoding and channel estimation in

spatially correlated time-varying fading channels.

This chapter is organized as follows. In section 5.2, the system model for trans-

mission using multiple transmit and receive antennas is introduced. In section 5.3,

the wireless fading channels and their spatio-temporal correlation is reviewed. The

approximation of the physical wireless fading channels by the AR processes is pre-

sented. This approximation method is differed to one in [50, 72] for the OFDIVI

systems. In section 5.4, the proposed PSP receiver for joint space-time trellis de-

coding and channel estimation is described. Some simulation results to cornpare

the perforrnance of proposed receiver to the maximum likelihood (ML) receiver with

perfect CSI is presented in section 5.5. In addition, the effects of the i.i.d fading

assumption on a receiver's performance are examined.

5.2 The System Model

Consider a wireless communication system with n7 transmit and nÊ receive anten-

nas. At each time ú, the encoder produces n" outpnts z1(ú), rz(t),...,t¡tr.(t) where

zo(t) is a signal from a certain signal constellation with unit average energy. The n7

coded symbols are chosen by the encoder so that a certain criterion is satisfied. The

n7 coded symbols outpnt from the encoder are then simultaneously transmitted by

r¿T antennas. At the receiver, the received signal at the júl' receive antenna is

nT

ri(t) :Dnn,,(t) r¿(t) J ø" + nj(t) ,

i:r
: J E" x(ú)h¡ (t) + nj(L) , (5 1)

where ,Ð, is the transmitted power per symbol at each transmit antenna, x(t) :

lrlb) r2(t) ,",(t)1, h¡(¿) : lh,¡(t) h2,j(t) \t,,,¡(t))r and n¡(ú) are inde-
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pendent samples of a zero-mean complex Gaussian process with variance ÄI¡. It is

further assumed that the additive noise is white in space and time

Eln¡(t) ni(L +r)l : { 
n"ul'¡' i : tc

(5.2)

I o' i+k
where the superscript * denotes the complex conjugate operation and ô(.) denotes

the Dirac delta function. The coefficient h¿,¡(t) is the fading gain for the path

from transmit antenna i to receive antenna j. The gain h¿,i(t) is modeled as a

complex Gaussian random process with zero-mean and variance one. We assume

that the information is transmitted in a frame of 7 coded symbols per transmit

antenna. It is further âssumed that the facling gains are independent from frame

to frame. However, within each frame the fading gains can be temporally and

spatially correiated. The spatio-temporal correlation between any two fading gains

is discussed in more details in the next section. Stacking the observations from the

receive antennas yields the np sufficient statistics

r(ú) : lr1(t) r2(t) . . .r,,a(¿)lt : t/ ø" x(t) h(¿) + n(¿) , (5 3)

where h(ú) : [hT(ú) lr|(t) ... hi"(t)]", n(t) : lnt(t) n2(t) ... rlnn(r)1" and X(t) :
r," I x(¿).

5.3 The Channel

5.3.1 The physical channel model

In this chapter, the channel model developed in [2] is used to characterize the fre-

quency nonselective multiple-input-multiple-output (MINtIO) wireless fading chan-

nels with multiple transmit arrd multiple receive antennas. We consider a wireless

communication channel between the base station (BS) arid a mobile unit (\tIU) as

depicted in Fig. 5.1.
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Figure 5.1: Channel model with local scatterers around 1\4U

This multiple antennas configuration is initially proposed in [86] to investigate

the effect of the spatial correlation on the capacity of multielement antenna systems.

Subsequently, it has been extended in [2] to include the effect of the motion at the

MU. We consider only the Rayleigh fading channels in this work. Hence, the fading

channel model described in this section is a special case of that presented in [2]. The

BS has no local scatterers as it is typically situated well above the city buildings,

while the MU is immersed in a complex scattering environment. The BS receives

signals through a narrow beamwidth A : arctan(RlD) where D is the distance

between the BS and the \,IU, and R is the radius of the scatterer ring. Let the BS

be eqnipped with n6s antenna elements and the 1VIU with n¡¡¡¡ antenna elements.

Let 1 1 p, q I nss and 1 { l, m 1 nn¡u denote the indices of the BS antennas and

iVIU antennas respectively.

Suppose there are l/ independent scatterers, ,S¿, around the NIU. The normalized

complex path gain hr/t) connecting the BS antenna element p (BSr) and the MU

v

BS p

ô

q

D
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antenna element I (MU¿) can be described mathematically by

1¡l
h^,(t\: -L \- 

( ' 'j2tt ' ì
p'u\ '| ,/N ?-9t 

x exp 
\'f'-'fle',+(¿¿l + j2trf plcos(Óytu -.')ltÌ ' (5'4)

where g¿ is the amplitude of the wave scattered by the ith scatterer toward the N,,IU

such that ¡/-t D[, Elg?] :1 as l/ ---+ oo. Thus, in the limit case the fading gain

he,L(t) constructed according to the model represents a Rayleigh fading. The phase

shift introduced by the 'ith scatterer is clenoted by þ¿. It is assumed that {rþn}L,

are i.i.cl. random variable and is assumed to be uniformly distributecl over [-zr, a.).

The maximum Doppler shift is denoted by lr: ul\ where z is the speed of the

N,IU. The direction of niotion of the IVIU is '1. €¡e and (¿¿ are the distances from the

zlth scatterer to BS, and MU¿ respectively. These distances depend on the angle of

arrival (AOA) ô!o' of the traveling wave frorn the ¿lth scatterer toward the NIU . By

assnming i.hat D >> ,R >> max(ðpq, d¿-), which is applicable for many practical cases

of interest, it has been shown in [2] that the cross correlation between the gains of

two arbitrary communication link lzp,l(ú) and hn,*(t) can be expressed as

ppt,q,,(r) : Elhp,t(t)h;,,*(t* r)] : exp { i2tr6'ncos(ct'ò\r-"^t.l .l J

" l:_"*p{+[drna 
sin(aoo) sin(@À1u) t dL^cos(þLIU - 0m))

- j2rf prlcos(gLru - ùllf @^ru¡¿qtt'ru , (5.b)

where f @ntu) is the pdf of the AOA seen by the iViU. It is often assumed that the

IVIU receives signals from all clirection with equal probability, i.e. the AOA seen by

the user is uniformly distributed over l-n, n) with /(dn'Iu): tlQr) [20, 51, 86].

Hov,ever, empirical measurements in [37] have shown that the AOA distribution are

likely to be nonuniform. In [1], the von Mises angular distribution has been used

for modeling the nonuniform AOA distribution at the N{U and the validity for the

use of the von lVlises angular distribution has been verified with the measured data.
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P

The von Mises angular distribution pdf is given by

r(ó*''): exp[rc cos óNru _ p
, ó't' e l-r, r) (5.6)

2rIs(n)

where 16(.) is the zeroth-order modified Bessel function, LL € l-7r, zr) accounts for

the mean clirection of AOA seen by the user, and rc ) 0 controls the spread of the

AOA. For rc ) 3, the spread of the AOA of the scatter components at MU is roughly

equal to 2lJn. Using this distribution, a closed-form and mathematically tractable

expression for the space-time cross-correlation between the two links, h,o,¿(ú) and

hq,*(t) of the NIIMO wireless fading channel has been derived in [2]

/-\ - 
exPþcon cos(aon)] r-( J ".2PeL,q^(r) : 
- 

Io(o) ¡u\ r,ù - a2 - b?^ - \rL' sin2(aon)

! 2ab¿,ncos(B¡^ - 7) + 2crn\,si,n(a,n)[ø sin('y) - b¿*sin(B¿-)]

- j2n[acos(¡; - 1) - b¿^cos(¡.t, - 0¿à - cpnLsin(con)sin(p)])tl') , (5 7)

where a : 2r f or, btrn : 2trd,¿,*f À and cro : 2trõpqlÀ.

5.3.2 Autoregressive Channel Model

It has been shown in [88, 103] that the time varying Rayleigh fading channels can

be well described by a hidden \''Iarkov model. As has been done in [25, 95] for

channel equalization problems, the time varying fading channels can be modeled by

a multichannel autoregressive (AR) process of orcler P

r07

(5 8)h(¿) : I oþl h(¿ - p) + v(ú) ,

p:l

where the matrices A(p) are the time invariant matrices which are determined from

the second order statistic of the fading channels and v(ú) is a zero mean complex

white Gaussian noise process with the correlation matrix E[v(t)vn(l + r)] : Qð(r).

By postmultiplying (5.8) with ho (t - r) and taking the expectation on both sides
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we arrive at [78]

P

R(-r) : tAþ)R(p-r) + Qô(r), r:0,...,P

108

(5 e)

(5.10)

p:l

where R(r) : E[h(ú)h¡/(t + r)] is the cross-correiation matrix. Provided that the

correlation matrices R(r) is available, the matrices A(p) and Q can then be obtained

by solving the above equations. This technique for determining the AR coefficients

is similar to 111, 22] and those in [25, 95] for channel equalization problems. In this

chapter, the proposed receiver uses Kalman filters for estimating the fading channel.

Thus, in order to keep the complexity of the receiver at a reasonable level, we use

the fir-st order AR process to model the fading channels. For P : 1, the channel

fading process has an AR representation:

h(ú) :Ah(ú-1) +v(t)

The matrices A and Q are evaluated by solving (5.9) for r : 0, I

A: R(-1) R-l(o) ,

Q : R(o) - AR(1) . (5.11)

Let the BS and the NIU assume the roles of the transmitter and receiver respectively.

Thus, nT : nss a,nd rLR: Trtvr¡. With this role assignment, [R(r)]",y : Ppt,q-(r)

is the cross-correlation between two fading gains he,t(t) and hn,,n(t * r) where 1 (

p, q < n7 arrd I < I, m 1nn. Due to the arrangement of h(ú) in (5.3), the indices

¿: p¡(t-1)n7 and f : q-f(m-7)r, where I 1 e, f 1n7n¡¿. The cross-correlation

term pr¿,,-(r) is computed using (5 7)

For the spatially independent channel, the channel autocorrelation is then given

by the Jake's formula pet,,pL(r): Elh,pt(t)h,i,(t+ r)] : J0(2r foT"r) where .16(.) is

the zeroth-order Bessel function of the first kind as in [23, 24,57,60, 106]. The
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matrices A and Q are then given by

A,: Jo(2r f pT,)I

Q: (i - JSQr f pT"))r

109

(5.12)

(5.13)

This turns out to be the same approximation method as used in [57, 60] for MIMO

systems.

6.4 Receiver Structures

Equations (5.3) and (5.10) can be seen as the state-space equations which describe

a linear time varying system. The state of the system is the gain of the fading

channels and A is the state transition matrix. Given A, Q and X(ú), a minimum

variance unbiased estimate of the channel gains can be obtainecl recursively via a

Kalman filter [9]. However, the matrix X(l) is the transmitted coded symbols Ity ,,
transmit antennas at time ú and is therefore unknown to the receiver. Thus, this

problem can be posed as the channel estimation with unknown signal model, where

the unknown model parameter X(ú) belongs to a known cliscrete set. This problem

can also be viewecl as joint channel estimation and decoding of the space time trellis

code in time-varying fading channels. At the receiver, the matrices A and Q can

be estimated from the received signals using the technique described in [95] for the

SISO case. In this work, we assttme that these rnatrices are known at the receiver

and focus on the problem of joint decoding and channel tracking.

5.4.1 Maximum Likelihood Sequence Estimation (MLSE)

When the ideal channel state information CSI h(ú) ,t: l, ..., T are available, the

problem of decoding the space time trellis codes in the time-varying fading channels

can be easily achieved by using the Viterbi algorithrn which minimizes the following



metric
T

4i" : I ll"(tl - JE" x,.ft) h(¿)ll' , (5.14)
t:l

where the subscript m denotes the n¿th hypothesized sequence {x-(ú)}f,, being

transmitted. Since the perfect CSI is not available at the receiver, we need to per-

form joint channel estimation and decoding. Assuming each sequence is transmitted

with equal probability, this problem can be solvecl by finding the sequence {x-(l)}[,
which maximizes the likelihood function p(r(1), . . . , r(7) I {r-(¿)}Lr). This can be

achieved by using a bank of Kalman filters to track the time-varying channels, one

for each of the possible seqr-rence. Given a sequence of the received signals {t(¿)}Lr,
the channel estimate and its associated error covariance for the sequence {x*(t)}f,,
can be computed recursively via the measurement and time update equations of the

Kalrnan filter modeled to that sequence:

Nleasurement Update Equations:

îr^çt1t¡ : Ã,.(tlt - 1) + c,,(¿) (.trl - J E"x*(t) Ît*çt1t - t))
G-(¿) : f E"Ð,*(¿lú- \xr.(t) (E"x-(t) >,.(tlt- Ð xr.(t)+ Ahl,o)-t

>",(¿l¿) :Ð,.(tlt- 1) - Jn"e^çt)x*Q) Ð*(tlt - 1) . (5.15)

Time Update Equations:

Joint Space-Time Trellis Decoding and Channel Estimation

ñ,,1r+11ú) :atr-1r¡r¡

x,,,(ú + 1l¿) : A t-(¿l¿)A¡/ + Q

110

(5.16)

Using these channel estimates, the receiver recursively computes the log likelihood

metric for the hypothesized sequence n¿ according to

T

¡MLSE : - t ef,(t¡ n;Lft)e,.(t) * tog det Cl,,(ú) ,

t:1
(5.17)
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where er,"(ú) and O"r(ú) are the innovation sequence and its associated covariance for

the Kalman filter tuned to the hypothesized sequence rn:

e^(t): r(¿) - f ø,y*(t¡ ir^çt¡t - 1) , (5.1S)

o,,(ú) : E"x^(t) >^(tlt - t) xÏ-Ø * Äh1," . (5.19)

The receiver then chooses the sequence that maximises the log likelihood metric

TAILSE
'J rn

5.4.2 A Per-Survivor Processing (PSP) Approach

For a space time trellis code with the rate of R bits/sec fHz, lhere are 2Rr possi-

ble sequences {x,,(ú)}f,r. Hence we would need a bank of 2Rr KaIrrran filters to

implement the NILSE receiver. This direct implementation of this optimal receiver

is prohibited to be used in practical applications as the frame length 7 is gener-

ally large. In recent years, per-survivor processing [79] with Kalman flltering has

been seen as an attractive approach to performing maximum likelihood sequence

estimation over mobile radio channels that are rapidly time-varying [25, 7a] (with

rLr : nn : 7). ln 172,73], we have extended these methods to perform joint

channel estimation and decoding of block codes in general diversity time-varying

correlated fading channels. In this chapter, we extends this work further to per-

form joint channel estimation and space-time trellis decoding by incorporating the

per-survivor processing and Kalman filtering into the Viterbi algorithrn.

Let ,S denotes the total number of states in the trellis. This PSP receiver works

as follow: At the symbol interval t-I, we assume that each state, Lt"(t- 1) for s:
1,...,S,retains a survivor path. Associated with this survivor path are the channel

estimate ñr,"(¿ - 1l¿ - 1) and the cumulative log likelihood path metric fi,.(ú - 1).

At the t¿l'symbol interval, for all valid transitions to state pr(t), lL,"(t- I) ---+ ¡to(t),
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Figure 5.2: PSP receiver with Viterbi algorithm

the following branch metric is computed

Â (¡r"(¿ - 1) * t','(t)) : -r{o\) o;J(¿) ,",oQ) - los det o",r(ú) (5.20)

where

e,,a(t): r(ú) - 1/E"y,,o(ú) ñr,(¿l¿ - 1)

CI",r(¿) : E"X",y(t) )r" (tlt - l) XY,r(t) * Àb1,,"

(5.21)

(5.22)

and X",r(ú) are the coded symbols that are output by the encoder during the tran-

sition p,(t - L) --- p.o(t). The predicted channel estimate ñr"1t¡t - 1) and its error

covariance is computed using the time update equations in (5.16).

Once the branch metric of all valid transitions þ"(t -1) ---+ ¡L,r(t) is computed, the

survivor path sequence to the state ¡6(ú) and its cumulative path metric fr,(ú) are

determined by performing a maximization over the previous valid states LLr(t - I)

: mAX
¡r"(t-1)

| *"(t) Ifr.(ú-1) +A(p"(¿-1) - t'r(t)) ] (5.23)
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The channel estimate associate with this survivor path is then updated by a Kalman

filter tuned to the coded symbols for the survivor transition. Let the predecessor

state of pr(t) which maximizes the cumulative path metric fr,(t) Ue denoted by

popt(t - 1). The channel estimate at time I of the survivor path at state pr(ú) can

be estimated by the Kalman filter tuned to yoo¿,'(t) (i.e. the coded symbols for the

survivor transition Ll"pt(t - 1) - Ito(t))

rrrlt¡t¡ :ñ,orçt!t- 1) + G"pt,a(t) ("trl - JE"y.o¿,r(t)rr,e^tlt- t))

G"pt,aï) : J E">,or\lt - r)xlor,r(t) (E"x"pt,y(t) Ð"rt(tlt - t) xfrr,r(t) + luo/,") 1

>r(tlt) : Ð,r¿(tlt - 1) - ,/ E"G,or,r(t)7"rt,oft) E"rr(tlt - t) (5.24)

Thus, this receiver requires only one Kalman filter for each state in the trellis. A

pictorial description of the per-survivor processing with Viterbi algorithm is given in

Fig. 5.2, assuming the 4 states space-time trellis codes with the rate of 2bitsf secfHz.

5.5 Performance Evaluation

The performance of the proposed PSP receiver is evaluated by using computer sim-

ulations. We consider the downlink of a single user system where the BS is equipped

with two transmit antennas and the MU has two receive antennas. The four-states

QPSK space tine trellis cocles iri [89] is adopted. This space time code achieves a

bandwidth efficiency of 2 bits/secfHz. Vy'e assume information is transmitted at the

rate of 20 Ksps at the carrier frequency of 2.4 GHz. The information is transmitted

in frame of 130 coded symbols per transmit antenna. At the beginning of each frame,

each antenna transmits an orthogonal sequence (with length of 2 symbols). These

orthogonal pilot sequences are used by the receiver to obtain the initial fading chan-

nel estimate to initialize the Kalman filters. We assume perfect time and frequency

synchronization, and that the received signerls are sarnpled at the symbol rate ?r.

The fading channels used for the simulation will be generated according to (5.10).
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The matrix A and Q are determined by the space-time correlation (5.7) with the

following physical parameters: The transmit antennas at the BS are separated by a

distance of 101 while the receive antennas of the MU are separated by 0.5ì. With

the assumed carrier frequency, these antenna spacings correspond to 1.25 metres

and 6.25 centimetres respectively. The MU is moving in the direction 7 : 45'. For

the macrocells in urban, suburban and rnral areas, the angular spread A at the BS

is often less than 15' and in some cases less than 5". We choose A : 10" in this

simulation. The angle spread at the ÌVIU is set to 2lJE = 66' (i.e. rc : 3) with

the mean AOA pl : 180o. The antenna array at the BS is assumed to be in parallel

position to the NIU antenna array (i.e. 41,2:90", puz:90").

We examine the performance of the PSP receiver for two scenarios. The first

scenario corresponds to moclerate time-varying channels where the MU is moving at

tlre speed of 9 km/h. With this speed, the fading rate ToT,:0.001. The second

scenario is when the speed of the VIU is 90 km/h. This scenario corresponds to fast

time-varying channels with the fading rate f pTr: 0.01. We plot the frarne error

rate (FER) of the PSP receiver for different values of signal to noise ratio (SNR).

We define the SI\R as the ratio between the total power transmitted and the total

noise power per receive antenna, i.e. ,Sl/Ë : n7E"f Ns. In acldition, we compare the

performance of the PSP receiver with that of the tnaximum likelihood (iUL) receiver

which has perfect knowledge of the channels. For a fairer performance comparison

with the double differential space-time coding scheme proposed in [61] which offers

robust means of handling time-selectivity of the channels, we also examine the bit

error rate (BtrR) of the proposed PSP receiver. Fig. 5.3 shows the FER and BER

of the PSP and the N,IL receivers for fpT,:0.001. At the FER: 10-2, the FER

performance of the PSP receiver is within 0.1 dB of the NzlL receiver with ideal CSI.

Simulation results of the BER for this system however show a larger gap between the

performance of the PSP receiver and the N{L receiver with perfect CSI. This effect
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has been also observed in [23]. An explanation for this is that when there is an error

occurred, it causes error propagation which results in more errors in the subsequence

symbols of that frame. However this gap is still small when compared to the double

differential scheme which has a 6 dB performance loss. At the BER: 10-3, the

proposed PSP receiver is only L.2 dB worse than the IVIL receiver with perfect CSI.

Fig. 5.4 shows the FER and BER of the PSP ancl NIL receivers for the fast time-

varying channels with fading rate f oT, :0.01. As expected, the performance gap

between the PSP receiver and the ML receiver is larger for this case as compared

to the moderate time-varying channels case. This is due to the increase in the

amount of uncertainty in the predicted channel estimate. However, the increase in

performance gap is not significant. At the FER:10-2 and BER: 10-3, the

respective FER and BtrR performance gaps between the proposed PSP receiver and

the NIL receiver with perfect CSI are 0.8 dB and 1.6 dB.

We also examine the effect of the spatial correlation in the channels on the per-

formance of the PSP receiver which assumes an i.i.d fading channel model. The

space-time correlated fading channels used for the simulations are generated using

the setup described previously. We compare the performance of the PSP receiver

which aclopts the i.i.d fading channel model to one which adopts the true channel

model. Fig. 5.5 and Fig. 5.6 show the error performance degradation that results

when the i.i.d. channel model is adopted by the PSP receiver for moderately and

fast time-varying cases) respectively. For moderately time-varying channels, the per-

formance of the PSP receiver which assum,es the i.i.d fading channel model clegrades

by 1 clB as compared to the one with true channel model. However under fast

time-varying channels. this channel model mismatch due to the spatial correlation

causes large charrnel estimation errors at the receiver and results in large perfor-

mance degradation. This result indicates that under fast time-varying channels,

it is very important for the receiver to account for such spatial correlation in the
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channels.

In the previous sirnulations) we use the AR channel model to generate the fading

channels. We now examine the performance of this PSP receiver under realistic

situations. Let's define the following n7 nnTr x ny n¡¿T7 matrix

R(0)

R(-1)

R(1)

R(0)

R("" - 1)

R(r,r - 2)
R?,r (5.25)

R(-Tr + t) R(-Tr + 2) R(0)

R(') : E[h(ú)hr/(t + r)] (5.26)

wlrere h: [tr"(1) ht(2) ...ht(Tr)]',T,:TI?, is the total frame length, Ç
is the length of the pilot seqr-rence, and [R(r)]",f : pet,q (r) is the cross-correlation

between two facling gains he,t(t) and hn,^(tf r) given bv (5.7). The fading channels

with the cross-correlation (5.7) can then be generated by having

n: nN| n. (5.27)

where h., is an rLr rùnT7 zero rrrean i.i.d complex vector with covariance Elk.-Iall :
L For a 2 transmit and 2 receive antennas systetn, if a frame contains 130 coded

symbols per transmit antennas, the size of the matrix R will then be 4(130 + 4) *
4(130 + Tr). Due to the complexity involved in finding the square root of such

large matrix, the size of the frame is now reduced so that it contains only 25 coded

symbols per transmit antenna. An orthogonal pilot sequence (with length of 2

symbols) is still used so that the receiver can obtain the initial channel estimate.

At the receiver, we approximate the fading channel with a first order AR process

(5.10). The matrices A and Q required by the Kalman filters for estimating the

fading channel are given by (5.11).

FiS. 5.7 compares the performance of the PSP receiver with that of the iVIL

receiver which has ideal CSI at the facling rate fpT":0.001. At the FER:10-2,

IhhtE
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the PSP receiver is about 0.8 dB \Morse than the NIL receiver with perfect CSI. This

performance gap is slightly larger than the previous case when lhe AR model is used

for generating the fading channel. The BER performance gap, however, is about

the same as the previous case. At lhe BER: 10-3, the performance gap between

the two receivers is about 1.2d8. The performance cornparison of these two receivers

under fast time-varying channels with fading rate f oT" :0.01 is shown in Fig. 5.8.

At the FER: 10-2 and BER: 10-3, the performance gaps between these two

receivers are 2.0 dB and 2.7 dB, respectively. These gaps are again only slightly

larger than the corresponding case when the fading channel is generatecl using the

AR model. This suggests that the PSP receiver is quite robust to modelling error

and that the first order AR model can provide a reasonably accurate approximation

of the time-varying channel at these fading rate. Using higher order AR model

therefore can only increase the performance of the receiver slightly, albeit at the

cost of increased receiver complexity. For this reason, we will not investigate the

performance of the PSP receiver with higher order AR moclel.

5.6 Conclusrons

This chapter proposes a PSP based receiver for joint space-time trellis decoding

and channel estimation in spatially correlated time-varying fading channels. The

physical channel model of the IVIMO wireless fading channel with multiple transmit

multiple receive antennas is approximated by a statistical channel model. This sta-

tistical channel rnodel permits Kalman filtering to be used for tracking the channel

variations. Sirnulation results have suggested that the proposecl PSP receiver witir

first order AR channel approximation performs very well. In addition, these simu-

lation results also confirm the importance for the receiver to account for the spatial

correlation in the channel.
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Chapter 6

Recursive Receivers for General

Diversity Channels

This chapter addresses the design and performance of time recursive receivers for

diversity based communication systems with flat Rayleigh or Ricean fading. It

introduces a general state-space model for such systems where there is temporal

correlation in the channel gains. Such an approach encompasses a wide range of

diversity systems such as spatial diversity, freqnency diversity and code diversity

systems which are used in practice. The chapter describes a number of noncoherent

receiver structures derived from both sequence and ø posteri,ori probability based

cost functions and compare their performance using an orthogonal frequency division

multiplex example. In this exarnple, the chapter shows how a standard physical

delay-doppler scattering channel rnodel can be approximated by the proposed state-

space model. Simulations are used to show that significant performance gains can

be obtained by exploiting temporal as well as diversity channel correlations. The

chapter argues that such time-recursive receivers offer some advantages over block

processing schemes such as computational and memory requirement reductions and

the easier incorporation of adaptivity in the receiver structures.

I2I
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6.1 Introduction

In recent years there has been an increasing emphasis on exploitation of differ-

ent types of diversity in communications systems, particularly those which utilise

a wireless transmission medinm. Examples of types of diversity which have been

exploited to improve the performance of digital communications systems are time

diversity (also known as fractional sampling) 152], spatial diversity via the use of

several transmitter and/or receiver antennae [93,36], code diversity (as r,rsed in

spread spectrum communications), and frequency diversity such as used in orthog-

onal frequency division multiplexing (OFDN,I) systems. Also, these different types

of diversity can also be combined, for example, a multicarrier code-division multi-

ple access (CD\,IA) system. In these types of systems, the presence of a number

of different diversity channels can be used to improve the system performance by

transmitting and/or receiving the same information symbols simultaneously across

a number of channels. This goal can be achieved by introducing coding in both the

temporal and diversity dimensions. This chapter is concerned with the design of

receivers for such di,uersi,tg systems.

Given that thele are many different types of diversity which may be exploitecl, it

is desirable to develop a generalised and unified taxonorny for system modelling and

signal processing for such systems. This framework can be used to derive various

t5rpes of receiver structures which are applicable to any type of diversity system. In

particular, we will consider systems where the channel is modelled by vector time

series where each element of the vector represents the complex gain of a different

diversity channel. We will assume that these gains are correlated in both the diver-

sity dimension (ie the gains of different channels are statistically dependent at each

time), and the ternporal direction. Temporal correlation can arise from doppler ef-

fects [51] and from oversampling as examples. We particularly focus on state-space

channel models which lead naturally to time recursive receiver stmctures. These
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structures generally tend to offer reduced compr-rtational compiexity and memory

requirements when compared to block processing systems. Another potentiai ad-

vantage of time recursive receivers is the ease of development of adaptive processing

algorithms, however we don't acldress this issue in this chapter.

Since the computational complexity of the optimal receiver is generally too large

to be feasible, we focus on the derivation and cornparison of a number of sub-

optimal receivers which have computational complexity which is linear in the size

of the transmission coclebook. In this chapter) we will tend to focus on single-user

systems where the general aim of the receiver is to exploit the temporal and diversity

correlation to improve performance. N4uch of what is considered here also applies to

the multiuser caser where the diversity correlation leads to undesirable interference

between users. The task of the receiver is then to mitigate this interference.

In this chapter, we acldress only flat fading channels. Related work which acl-

dresses, in a different way, the frequency selective space-time case, can be found in

[85]. Recent work in the space-tirne coding context [14] utilises fading models where

correlation between the diversity channels is includecl. Of course, such correlation

is an inherent feature in CDN¡IA systerns, and the main focus of various multiuser

detection schemes (see [33, 71] for an overview) is the mitigation of the detrimen-

tal effects of such correlation. However, there has been significantly less published

concerning the presence of, and exploitation of temporal correlation in the channel.

We believe that this work makes the following contributions :

o A generalised state-space model for diversity communication systems,

o Development of a number of time-recursive receiver structnres which exploit

temporal correlations in the channel, and

o A performance comparison of these proposed receivers.

In addition, we examine the issue of matcliing our proposecl model to a physical cor-
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relation uiodel for delay-doppler channels [49], [50]. Some of the proposed receivers

are well-known, but others are novel, especially in the context of their application

in this problem.

There has been considerable interest also in the code design issue for diversity sys-

tems, particularly space-time diversity systems (see eg [14, 89, 44, 4,104]). We don't

directly address the design issue in this chapter, but we will make some pertinent

observations regarding code design in the context of the OFDNi example presented

in section 6.4.

The layout of the chapter is as follows : In section 6.2, we introduce our model of

a general diversity system in complex number form, and then in a real quadrature

signal form. The latter- will form the basis for the receiver design. The model for

the received signal constitutes the measurement equation for a time varying state

space system. Our model for the diversity path gains is cast as a quadrature Gauss-

Markov process which constitutes the state equation for the state space system.

We also give some examples, which are by no means exhaustive, of how sorne well-

known examples of diversity systems may be cast within our framework. Some

issues relating to partial diversity ancl an associated model redttction rnethod are

discussed. In section 6.3, we introduce a number of candidate noncoherent receiver

structures which are based on the state-space diversity moclel from 6.2. In section

6.4, we detail a specific application of our techniques to the OFDM system. The

cliversity dimension here is frequency. lVe examine a general physical delay-doppler

scattering model for path correlations as a function of time and frequency, and detail

a technique which permits approximation of this correlation function by the signal

model introduced in 6.2. Finally we present some simulation results for the OFDNI

case, which compare the perforrnance of our candidate receivers to the coherent case

(path gains known by the receiver), and to standard approaches which do not exploit

the time correlation.
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6.2 The Communication System Model

We consider a communication system consisting of L > 1 diversity paths. These

diversity paths âre assumed to undergo Rayleigh/Ricean flat fading. The path

gains are correlated with each other and are also temporally correlated. At each

time ú, we map p bits of the input data stream onto one of the codewords of the

set O: {X(1),¡{r),...,*{r<)} where X(e) € C^IXL atd, K :2P. The codeword is

then transmitted serially across the L channels, ie column (. of the selected code is

transmitted serially across diversity path /. Vy'e assume that the receiver measures

a linear superposition of the L diversity paths. Thus the received signal in block of

M cornplex samples (IV'I is the temporal dimension) can be written as

(6 1)

where ñ, e C¿ is the channel gains and ñ¿ € Cill is a zero mean, cornplex, circular,

white Ganssian noise sequence with covariance 2o2I¡¡.

6.2.L Examples

We now give several examples of holv this model may be applied to represent different

diversity systems.

Space-time coded systems

By examining (4.4) and (5.3), it is evident that space-time coded s)¡stems in quasi-

static fading channels or in time-varying fading channels can be easily cast into this

general diversity system model (6.1)

Orthogonal frequency division multiplexing (OFDM)

Here the diversity dimension is frequency) so \Me can regard OFDNI as a frequency-

time coded system. Sr-rppose we seek to transmit n complex symbols in a vector

Í,:i,ñ¿*ñ,
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(6 2)

s¿ for time period ú. We use a pre-coder matrix ç a çLxn to map the n symbols

onto the tr orthogonal frequency channels. Here lV[ : L. The signal transmitted on

channel (. wl\l be the [th elerrrenl of the vector Cs¿. The cyclic prefix which is added

at the transmitter and stripped off at the receiver turns the time and frequency

selective fading into a time fading on each carrier, see [49]. Thus the received signal

for symbol period ú is the superposition

L-l

[Í,]- : !tñ,]n [Ct,], "2ti'mt'/L 
f [ñ,]- ,

2.:0

where [h¿]¿ denotes the complex gain of channel (., and ñ¿ is additive Gaussian

white noise. Thus we have the form of (6.1) where the code matrix has the form

*¿ : Fo S, where S¿ is a L x L diagonal matrix with its diagonal elements being

the entries of the vector Cs¿, and F is the Fourier matrix [F],,r¿ : "-2nirn[f 
L. iVlore

details on OFDNI as a diversity system are given in section 6.4.

Code division multiple access (CDMA) - uplink

This is an example of a multiuser diversity system. In this case, column / of the

code matrix is the spreacling code for user / multiplied by the complex modulation

symbol for user / at syrnbol time ú. Thus if .W € çA'IxL denotes a matrix of the

length 1VI spreading codes for active users, and S¡ is a diagonal matrix of size L x L

with the diagonal elements being the modulation symbols of the active users for

symbol period ú, then the associated diversity code is X, : \M S,. The path gains in

this case are the propagation gains from each user rnobile station to the base station.

In this case, onr receiver designs will constitute noncoherent rnultiuser detectors.

6.2.2 Real Quadrature Model Form

It will be convenient for the resulting receiver derivations, to utilise a real quadrature

model for the signal. Let denote the real and imaginary part of an arbitrary complex
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(6 3)

(6 4)

matrix (or vector) 0rby 0[ and, á], respectively. The complex received signal (6.1)

can be modelled into quadrature form by

lrlVt: : X¿ h¿ ltrt ,

where y, € R'À1, h, € R2¿ and X¿ 6 p2ii'1x2r are given by

h¿:
hi

hi "': [;1 ' X': [îi î' ]
The transmitted codeword X¿ is now selected from the corresponding set O :

{x{ll,x('),...,x(t)}. Here n¿ 6 pz1v1 is a zero mean) Gaussian white noise vec-

tor with covariance o'Irnr.

6.2.3 Time-Correlated Rayleigh/Ricean Flat Fading Chan-

nel Model

In this section, we define the model for the diversity path gains h¿ in both complex,

and real quadrature form. The channel gains are modelled as a first-order vector

Gauss-Nlarkov process expressed in complex form by

ñr+r:Añr*vr, (6.5)

where [ 6 ç¿x¿ is a kno'uvn, stable matrix ancl ü¿ is a complex Gaussian white noise

process with mean ! and ovariance Q. W. assnme that at the initial time ú : 0

that hs is chosen to be Gaussian with the steady state statistics

B{ño} : (r - x)-' þ, (6.6)

and Cov{ño} : Þ where Þ satisfies the Lyapunov eqnatio" ÃÉÃo * Q : Þ. Th.,.

ñ¿ will be a stationary process with mean given by (6 6) and with autocorrelation

matrix

E{hr lnf-'} : r)0
Þ r(0

(6.7)
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h¿+r:Ah¿fv¿,

This channel model is general and permits both temporal and diversity correlations

in the gains. Several channel models considered in 114, 44, 60] and previous chapters

for the space-time coded systems can be considered as special cases of this model.

The quasi-static independent and identical distributed (i.i.d) fading model used in

[44] can be represented by this general model with Ã : 0 and Þ : I where 0 is the

matrix of all zeros. Setting Ã : 0 and Þ : E{ht ln|) + I, this model corresponds

to the quasi-static correlated fading channel model in [14] and in chapter 4. The

time-varying i.i.d fading channel model in [60] can be cast into this general model

by having É : I and Ã : oI where o < 1. By having Ã and/or É not proportional

to an identity matrix and Ã f O, we then have a time-varying correlated fading

channel similar to that in chapter 5.

The analogous real quadrature form for (6.5) is

t28

(6 8)

(6.10)

(6.11)

where

[; ï'] 
, v: 

[ï]
(6.e)

The process v¿ € iR2¿ is a Gaussian white noise process witli mean ¡l and covariance

matrix Q given by

A

l"t

l-L'

l-L

T
Q",

Q¿¿

QrrQ:
ail

with Qr,. -F Q¿¿ : Q" and Qfl - Qr¿ : Qi. The mean and autocorrelation sequence

for h¿ are then given by

u : E{ht}: (I - A)-t t, ,

A'P r)0
E{lr,- laT_,} :

P (ar¡-' r1o,
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where

I p", P,n IP: 
l

Ltl P'ol

with P,, ]-P¿¿: P" and PTn- Pri: Pi. Equations (6.3) and (6.8) are respectively

the observation and state equations for a state space model of our received signals.

The mean and autocorrelations for h¡ can be shown to be identical to the analogous

means and autocorrelations of the complex sequence ñr. Th.,r the magnitude gain

of the channels is Ricean (if p I O) or Rayleigh (if ¡r : 0) with joint correlations in

the diversity and time dimensions given bV (6.11). Equation (6.11) shows that the

autocorrelation sequence has the form of a mixture of decaying complex exponentials

(determined by the eigenvalues of the stable matrix A).

6.2.4 Model Reduction

In the general diversity model (6.1), we made the assumption that the covariance

matrix Þ of the channel gains ñ, *ur strictly positive definite. This is equivalent to

the assumption that full diversity gain I is achieved. As observed in [49], for some

systems the effective amount of diversity can be less than tr. This is manifested by

the resulting covariance matrix É not being strictly positive definite. In this case,

we can reduce the dimension of the problem to I (< ¿) , the effect'iue diversity of the

channel, which is given by the number of non-zero eigenvalues of P. This permits a

reduction in the computational cornplexity of the various receivers presentecl later.

We proceed as follows : Let Þ : õ 
^ 

<ÉH clenotes an eigenvalne decomposition,

where õ is unitary ancl À is a diagonal matrix of the form

^

/\0
00

(6.13)

where z\ is I x tr and is strictly positive definite. Here .L represents the true diversity

of the mociel. Partition .i, : [O ô] conformally with /r, ie iÞ is of size L xT. Let
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-u-ñ, : O" ñr, th.tt if E{ñ¿} : 0, the following model is equivalent to one described

previously by (6.5) and (6.1), however, with a reduced state dimension as shown in

the Appendix:

h¿+r : Ah¿*V¿

it : X¿ h¿ * ñ¿ , (6.14)

where

A : o"¡.o
1/¿ oo ú,

Xr : XriÞ (6.15)

6.3 The Recervers

In this section, we describe a nurnber of noncoherent receiver structures for esti-

mating the code sequence X¿ in the absence of knowledge of the channel gains.

The first class of teceivers, which includes the Generalised Likelihood Ratio Test

(GLRT)114, I04,101], Noncoherent N,Iaximum Likelihood (NCIUL) 1I4,44) and N,IAP

receivers, are well-known and do not exploit the temporal correlation in the signal.

The NC\,{L and NIAP receivers however do exploit the correlation in the diversity

dimension. The second class are Kalman filter based receivers which includes the

Per-survivor processing (PSP), Nl-algorithm, A posteriori probability (APP) and

iterative Expected-Maximisation (EM) receivels. These receivers are based on the

state space model from section6.2. The PSP, APP, iVl-algorithm and EN,[ algorithms

are all well-known. However, the novelty of these receivers is that we incorporate

Kalman filtering into these standard algorithrns to exploit the temporal correlation

in the signals, and track the channel variations.
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6.3.1 Generalised Likelihood Ratio Test (GLRT) Receiver

When the probability distribution of the diversity path gains is unknown, a GLRT

receiver can be used. The GLRT receiver computes the joint maximum likelihood

estimate of the channel and the transmitted codeword. Thus, the transmitted code-

word estimated by the GLRT receiver is

*7tnr - ars iåð t;,n p(y¿ lX¿ : X, h,) , (6.16)

where p(]l¿lXr, hr) : N(yt- X¿hr, o2I¡ø) is the data likelihood function, which is a

Gaussian with mean X, h¿ and covariance o2I. Here, Â/(*, P) denotes the Gaussian

density

x/(*, ,) : rravrãryn "-xrP-'xf 
2, (6.17)

where l/ is the dimension of the vector x. Now, maximising p(y¿ lXr, hr) is equiv-

alent to minimising

lf"*$,)x,,h,) : llv'-Xrhrll'. (6.18)

So maximising J'G¿R? over h¿ yields the estimate

h, : (xI x,)-' XI y, . (6.19)

Substitute this estimate into (6.18) gives

¡1"o'(yrlx,, Ê,) : llv, - x'(xl x,)-'xI v'll' . (6.20)

Thus, the GLRT receiver estimates the transrnitted codeword according to

*|rnr - ars m*in llPf yrll' , (6.21)

where Pf : 1- ¡(*) (Xtt¡r¡(n)¡-r (Xttl;r is the projector orthogonal to the sub-

space spanned by the columns of the codeword X(k).
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6.3.2 Noncoherent Maximum Likelihood (NCML) Receiver

In the situation where the probability distribution of the fading channel is known,

one can use the NCNiL receiver. The NCML receiver maximises the marginal density

p(y¿lx¿) over X¿

*!ct'tr' - argmaxp(y¿ lX, : X)t "xeo

- ars?pðEn, {p(yt, h,l Xr : X)} , (6.22)

where the expectation is with respect to the channel h¿. This is equivalent to

choosing the codeword which minimises the following cost function:

iltnnt(x) : (y, -Xz)"(xpX"+o2l)-11y¿ -Xz) +logdet(XpXr +o2I) .

(6.23)

where ¡u and P are the mean and covariance of h¿. This receiver cloes not expioit the

ternporal correlation as it operates independently from codeword period to codeword

period. However, it can be extended to account for the temporal correlation by

incorporating multiple codewords into the decision metric (6.23), albeit at the cost

of exponential increase in processing complexity.

6.3.3 Maximum A Posteriori Probability (MAP) Receiver

Another receiver which can be used when the statistics of the fading channel is

known is the IVIAP receiver. The NIAP receiver works by maximising over h¿ and

X¿, the a posteriorz probabilitv p(X¿, hrlyr) o( p(y¿lh¿, Xr) p(hr), assuming the

codes are chosen from the codebook with uniform probability. That is

*yae - ars iåðr;,nr{yt,, k\ I X, : X) ,

(6.24)- arsipð'¡rr{y¿ I h¿, X) p(h,) ,
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where

p(v¿ lx, h,)p(h,) : Af (v, - xh¿ì 
"2t¡tt[çn, - u;P). (6.25)

Using the Gaussian Product Lemma, p(yú lX, hr)p(hr) can be expressed as

p(ytlX, h,)p(h,) : ff(y, -xu; xPXr + o2r),,\/(h' - Ê,(x); Ê'(x)) , (6.26)

where

ûr(x) : u -r P x" (x P x" + o2r)-r (y, - xr)
Ê,(x) - p -px"(xpx" +o2r)-1xp. (6.27)

Clearly Êr(X) maximises p(y¿ I X, hr)p(h,) over h¿ and the maximised value is

p(hlx, tiú(x))p(Ë,(x)) :Â/(y, -xu; xpx" +o2r)Â/(o; Ê,(x)) . (6.28)

Thus, the cost function that the \,IAP leceiver needs to minirnise is the same as that

of the noncoherent NIL receiver plr:s an extra term log det Ê¿ (neglecting constant

terms):

4"o'(x) : J{'rt"(x) + logdet Ê,(x) . (6.29)

N'Iore detailed description of the GLRT, NCi\'iL and NIAP approaches can be found

rn lbbl.

The receivers described above do not exploit the temporal correlation of the fading

channels and operate on each symbol period independently. In the following sections,

we describe several receivers which take this temporal correlation into account when

performing the detection.

6.3.4 Sequence Estimation Approaches

Consicler a sequence of codewords {X6,X1,...,Xr-r} being transmitted during ?

codeword intervals. In order to obtain an optimal solution which maximises the

likelihood p(Vo,...,yr-rlXo,...,Xr-r), there must be a Kalman filter for each of the
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possible sequence (model). This direct implementation of the optimal receiver has

a complexity of O(K') which gïows exponentially with the length of the sequence.

Thus, even for small T, it rnay not be practical to use this method. Therefore,

we need to examine other suboptimal methods. In this section, we describe two

receivers which approximately optimise the likelihood of the transmitted sequence,

i." p(yo, ...,Vr-1 lXo, ..., Xr-r).

Per-Survivor Processing (PSP) Receiver

In this section, we describe a receiver which approximates the optimal receiver by

using the per-survivor processing method [79]. This method can be implemented via

the Viterbi Algorithm. In this method, there will be K Kalman filters (KFs), each

tuned to one of the K codeworcls. Fig. 6.1 illustrates the structure of this receiver.
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Figure 6.1: Structure of PSP Receiver
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At time t, for each codeword the receiver calculates the log likelihood from the

possible paths. After computing the path metric, it retains the path with the largest

Iog likelihood and computes the channel estimate for this path. The approximately

optimal log likelihood at time t of the kth KF tuned to X¿ : X(k) can be evaluated

according to

ôiu) : 
rS,?îr. (ri'ì, - elt'or rlf'tr-t eli'o -log dets-lir'øl¡ , (6.30)

where ajl, f the cummulative path metric at time ú - 1 of the survivor path ending

at X¿-1 : ¡(j) , eli'n) is the innovation sequence of the path from X¿-r : ¡(i) ¡o

X¿ : ¡(k), and f¿Íi'k) 's its associated covariance

eli,nt - y¿ - x(t) ÊÍr,,,_, (6.31)

nji,rt - x(n) DÍr/_, ¡(t)" + o2I

The predicted channel estimat" frjfl-, and its covariance tjÈ, of the path from

X,-, : ¡(j) ¿1s determined from the filtered channel estimate Êj'Jr,r-, and its

covariance tÍ'lrlr-, via the KF time update equations

ûÍ,¿,:nhl,ì,¡,_tt tt, (6.32)

tÍrr,_, : AxÍrl,t¿_rAr + e .

Once the survivor path at X¿ : ¡(t) ¡. determined, the KF then estimates the

channel associated with this path using tÈe received signal at time t. Let the pre-

decessor of X¿ : X(,t) which maximises the log likelihoocl dÍu) ¡. denoted bV ,þr(k).

The filtered channel estimate of the survivor path at tirre ú ending with X¿ : ¡(fr)

can be evaluated by the KF measurement update equations

ÊÍ[' : i'ÍlLf)) + cÍú¿(k)) (", - x(*) ÊÍ11f") ,

cÍú'(k)) : rÍËl(f,)¡(t)" (xt*, rÍËif)) ¡(,t)r + ø2r) ,

,Í1,) : ,ÍlLf)) _ Gjø'(r))¡(r) ¡(ú(r)) (6.33)
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This method has a complexity of O(K) which is a huge reduction as compare to the

optimal cletector. It is possible to develop an O(K2) version of this approach, in

which each Kalman filter which tunes to X¿, produces K filtered channel estimates,

one for each survivor paths from time t - L Once the channel estimates are made,

it computes the path metric and selects the one which maximises the log likelihood.

The computation of the path metric is the same as in (6.30), with the predicted

channel estimate and its covariance replaced by the filtered channel estirnates and

its associated covariance.

The space-time coded system in time varying fading channels from (5.3) can be

cast into this general cliversity form (6.1) by letting Í,: t/ÇXQ). Since XU):
I¡r" 8 lrt!) ... r,r](ú), the total nnmber of possible X, i. K : 0N' where p is

the size of the modulation constellation in which r¿(ú) is belonged to and n7 is the

number of transmit antennas. Thus, this PSP receiver can be used for joint channel

estimation and space-time trellis decoding similar to that in chapter 5. However,

it should be noticed that this PSP receiver is not the same âs that presented in

chapter 5. Firstly, the number of KFs in this PSP receiver is K (which is dependent

on B and n7) while the number of KFs in the PSP receiver in the previous chapter

equals to the number of states of the space-time trellis code (which is independent

of p and n7). Secondly, this PSP receiver does not expioit the trellis structure of

the space-time trellis code and hence it would lead to a lower performance than the

PSP receiver in the previous chapter. Nevertheless, this PSP receiver might be a

preferable receiver in a situation when K is much smaller than the nurnber of states

of the space-time trellis code. Using this PSP receiver will then significantly reduce

the processing complexity.
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M-Algorithm Receiver

The PSP method offers a much lower complexity than the optimal receiver. However,

there are situations in which the codebook size, K, is too large which may prevent the

PSP method from being used. Also the PSP receiver retains only one survivor path

for each codeword at time ú. This could be a disadvantage as the discarded paths at

some codewords could have a much larger likelihood than the survivor paths at other

codewords. Nlotivated by this observation, we developed a receiver which is based

on the N4-algorithmla2l for detecting the transmitted codeword. The complexity of

this receiver can vary from O(1) to O(K) depending on the computation complexity

that can be afforded at the receiver terminal.
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The N[-algorithm receiver is implemented using a bank of S Kalman filters where
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(6.34)

1 < S < K. A pictorial description of the M-algorithm receiver is depicted in Fig.

6.2. This receiver works as follow: At the end of each symbol period, the receiver

retains S channel estimates with the largest log likelihood. Suppose at the end of

time ú - 1, the ,S survivor channel estimates ut" h!1']1,-, for m: 1,...,,S. At time

ú, for each codeword X¿, the receiver computes ,S path metrics using the predicted

channel estimates ÊÍiî], : A ÊÍiìt, -t I tt. The log likelihood of the path from the

rn¿h survivor at time ú - 1 and X¿ : ¡(t) i. calculated bv

6[^'n¡ : õÍ:l - ef*'n¡r g(rn'k)-l ,l:'"'r) -logdet ç¡1n'k)

where ¿Í1ì ir the log lilcelihood of the survivor path rn at time ú - 1 and

,Í*'o) : y¿ - x(*)ûÍill, ,

f-lf-'*¡ : ¡(k) Ðl|r¡(r')r + o2I ,

are the innovation sequence and its covariance, respectively. Thus, there are ,SK

canclidate paths in total and the M-algorithm selects ,S paths with the largest log

likelihood. Let the path from ilrre n'¿th survivor at time ú - 1 and X¿ : X(k) being

selected by the lVl-algorithm as the s¿ä survivor path at time ú. The filtered channel

estimate of this s¿l' snrvivor path can then be updated by r-rsing a Kalman filter

tuned to X¿: ¡(r'). Thus,

ÊÍ"/ : ûÍP, + cÍ-'k) (", - x(*)hÍïll,)

Gf-,r¡ : rÍîl], ¡(t)" (xto, tÍË,, ¡(r)r + a'r)

DÍil : rÍi}, - GÍ-'urx(k) rÍill, (6.36)

In both the PSP and Nl-algorithm, the optimal sequence is extracted by backtracking

through the survivor paths. On-line versions can also be derived.

(6.35)
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6.3.5 Codeword by Codeword Estimation

The receivers described previously are used for sequence estimation. In this section,

we describe two other techniques which detect the transmitted codeword at each

codeword interval. Thus, these receivers can be used in applications which can't

tolerate the delays associated with the Viterbi algorithm backtracking, or when we

desire to incorporate adaptivity to the channel statistics.

The A Posteriori, Probability (APP) Receiver

Unlike the receivers described previously which retain several estirnates of the fading

channels at the end ofeach codeword interval, this receiver produces a single channel

estimate which is the weighted sum of all the estimates. This receiver is implemented

by using a bank of K Kalman filters where each Kalman filter is tuned to one of the

codewords. FiS. 6.3 illustrates the structure of this receiver.

Based on the assumed signal model, each Kalman filter gives a conditional channel

estimate.

ÊÍf,' : ñ'l'-' + GÍk) (t' - ¡{h)h'¡'-') 
1

GÍu) : X,l,-, ¡(rc)" (X,u, D,t,-L ¡(*)r + o,t) 
t 

)\ .r. /

tÍ[' :x,t,-r -GÍo)X(u)D,t,-r. (6.37)

where Êrlr-r : Ah¿-rl¿: -f ¡t is the preclicted channel estimate. These channel

estimates wili then be weighted and snmrned to yield the mean channel estimate.

The weighting coefficient of the channel estimate Êj[) ir the ø posteriori,probability

that X¿: ¡ç(k), i.e. p(X¿: ¡(Ic) lyo,...,y¿). Using the Bayes rnle, the a'posteriori,

probability that X¿ take on each value in O is computed according to

llr(k) : p(X¿ : ¡(k) lyo, ..., y¿) : ctp(Vt I yo, ..., y¿-r, X¿ : ¡(r)¡ , (6.38)

where

p(ytlYo,..., Y¿-r, X¿ : ¡(t); : AIGÍr);CIÍ*)) , (6.3e)
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c¿ is the normalised factor such that D* trr(k) : 1, .Í*) : yt - X(k)Êrlr-r i.

the innovations sequence from the Kalman filter tunecl to X¡ : y(k) and f)jk) :
X(k)D¿l¿-rX&)T +o2Iis its associatecl covariance. Thus, the mean channel estimate

and its associated covariance at time ú are

Ê,t,:In,(¿)ÊÍ[, , (6.40)
k

x,r,: In,(*) {"Í[, * ÊÍ[,tÊÍ[)l'] - Ê,,,r'f,r
À:

In effect we collapse the K Kalman filters' estimates back to one each time. The

estimated transmitted codeword at tirne ú is that which maximises the a posteriori,

probabilitv.

From observation, we notice that most of the a 'posteri,orz probabilities that X¿ :
X(k) f'or lc : I,.., K are very small. In fact, most of them are almost zero. Thus, the
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contribution of the channel estimates after being weighted by the smail a posteriori,

probabilities to the mean channel estimate will be insignificant. Motivated by this

observation, we will modify this receiver so that it will not compute the filtered

clrannel estimate for the codeword with small a posteriori probability. Thus we

can reduce the complexity of the receiver with little penalty on performance. The

modified receiver will works as f'ollow. After computing the ø posteriori, probability

that X¿ takes on a value in O as in (6.38), ,S codewords which have the greatest a

posteriori probabilities will be selected, lvhere 1 < S ( K. Lets s denotes a member

of the set of ,S survivors. The a posteri,ore probabilities are then normalised so that

D" flr(r) : 1. For each of these survivor paths, a filterecl channel estimate, ttjN u"a

its associated covaria"ce Dl,/ are calculatecl. These estimates are then combined to

yìeld a single channel estimate and its covariance for time ú, Thr-rs,

h,t,:f n,{")r'Í¡i , (6.41)

x,r, : tn,,,, {"Í,i * IìÍi/(ÊÍri)'} - t,r,ûf,, .

s

This receiver has the flavour of the M-algorithm technique but it is not the same

since at the end of each codeword period, this receiver retains only one channel

estimate while the \zl-algorithm retains S channel estimates. The complexity of this

receiver is O(S). When S : K this receiver corresponds to the unmodified APP

receiver as described previor-rsly.

Iterative EM Receiver

Another receiver which we proposed is the iterative receiver. In this approach, we

use the Expectation-N,'Iaximisation algorithrn to iteratively maximise the log likeli-

hood function, logp(y, 1y0, ..., Y¿-r, X¿ : X(r')). The iteration is per-codeword basis.

When the channel is known, the log likeiihood is

L(t): logp(yr lhr,Xr) : -o-2 llvr - X, h,ll' - M rogo2 , (6.42)
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Since the knowiedge of the channel h¿ is not available at the receiver, the conditional

expectation of this log likelihood given the present and past measurements is used

instead as the objective cost function,

Jr(xr,ûr|,, x,l,) : E{L(t) lyo,..',y¿} : -,T ar' e¿ - log det fl¿ , (6'43)

where €t: yt- X,ûrl, and Q¿ - X¿ErlrXrt + o2I. This motivates the iterative

scheme whereby the conditional expectations is computed using X¿ : ¡(Êz) ¿¡1¿

then maximised J¿ over all codewords to yield [(kz+r). The iterative process for

cletermining the transrnitted codeword at time ú can be clescribed in details as follow:

Initi,aLi,sati,on: At the start of each iteration process, the channel estimate and its

associated covariance are initialised to the Kalman filter one step prediction

ñÍo': û,1,-r: Ah¿-rl¿-t|- lt

iÍo':D,lr-t:Ax¿-rl¿-, A"+Q. $'44)

The initial codeword is chose to maximise the cost function

xÍo' : o.s flZð J(X,, ñÍo), iÍo)) . (6.45)

Iterat'ion Update: We update from iteration (. - 1 to (. for (. ) 1 via

lÍn) : Ê,r,-, + KÍ¿) (", - xjz-t' û,r,-')

KÍE :E,t,_, (xj¿-'l¡r (*1n-'l D,t,_, (xjz-r,rr * o, t)-'
tln) : Ð,r,-, - KÍ4xÍn-t) x,r,-t

*Ín) : o'slåð J,(x,ñÍ",iÍ4) . (6.46)

The algorithm terrrinates when the maximising codeword is unaltered. We then set

the values of hr1, and E¿¡¿ to the final valuet of ñj/) u"d i[¿) respectively and progress

to codeword ú * 1. In [60], an iterative receiver based on Kalman filtering similar

to ours is also proposed. However, this receiver is designed specifically for decoding

the Alamouti's space-time block cocle with two transmit and one receive antenna.

Our proposed iterative ENI receiver is more general.
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6.4 Application to OFDM systems

One important example of a diversity system is (OFDM) which is used in various

wireless local area networks. In an OFDM system clata is transmitted over L or-

thogonal frequency channels using a discrete Fourier transform (DFT). Within our

context, we can regard the DFT operation as a type of "time-frequency" coding.

Generally, a number of different clata symbols (from a single user, or a number of

different users) are transmitted simultaneously on subsets of the available channels.

Here we will consider the single-user case, where one data symbol is transmitted

ori all tr channels simultaneously. This approach offers the maximal diversity gain.

This is equivalent to using the precoder matrix C equal to the .L-vector of all 1s.

Thus corresponding to each data symbol (regarded as a member of a finite complex

alphabet) s¿ we transmit a segment of A,I :,L time samples containing all I calriers,

and given bY 
L-r

ttL+rn:tsrs'2rimtfL, $.47)
{.:o

for rn - 0,...,L-1. In a standard OFDNI system, a cyclic prefix is added to

mitigate against inter-symbol interference, and this is stripped off in the receiver.

The recovered received samples then have the form
L-l

TtL+n : t st ht,¿ 
"2ritn('/L 

* ,utL+rn , (6.48)
t:o

where h¿,¿ denote the channel path gains as a function of symbol time ú ancl frequency

chanrrel /. Using this model, the freqttency channels are spaced by an amount equal

to the symbol rate. Here 'u" is a zero mean white Gaussian noise process. Now

blocking the received samples into a vector of length I corresponding to the symbol

s¿ we have

Ít : X, h¿ f ñ¿ ' (6.49)

where X¿ is a L x L matrix with elements [*¿],rr,t: st 
"2ttimt/L 

and ñ¿ is an tr x 1

vector with elements [h¿]¿ : h,t,t. We thus have placed this OFDIVI system model
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in the general diversity form (6.1). Note that the assumption that only one user

symbol is transmitted over the L channels is not restrictive as indicated in 6.2.1.

6.4.I A Physical Model for Delay-Doppler Spread Channels

In this section we relate our statistical channel gain model to a commonly used phys-

ical model for multipath propagation. This provides a parameterisation of our state

space model in terms of specified physical parameters such as delay and doppler

spreads for the channel. In [a9], a physical model is used to characterise the cor-

relation between the time-frequency gains /z¿,¿ in (6.a8). This model is using the

statistics of the channel and uses a block representation of the channel based on

its autocorrelation matrix. For a classical Doppler power spectrum and exponential

multipath intensity profile, the correlation between two symbols spaced in time and

frequency respectively with A¿ and A/ is given by [51]:

ó(Lt,A/) : óo ór(Lt) ó¡(Ll) (6.50)

with @s > 0,

ór(Lt): Jo(trB¿Lt) , þ¡(LÍ): =--: 

-
I -l j2trT-A,f (6.5i)

Here ,/6 is the zero-order Bessel ftrnction of the first kind, with B¿ and T^ being

the Doppler and delay spreads respectively of the plopagation channel. From (6.7),

we can thus see that the É matrix represents by itself the frequency correlation and

Ã¿'-¿, is the time correlation between two symbols separated bv a time shift eqnal

to (ú1 - tz).Thus immediately,

lPlo,,:ffi, (6.52)

F" being the frequency spacing between two OFDN¡I subcarriers.

Due to the separable nature of the physical channel correlation function (6.50),

we take our state transition matrix A to be of the form Ã - a I, where ø is a
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(6.53)

complex constant. Corrparing the time correlation between two OFDM symbols

separated by k symbol periods, we need to have ak : Jo(trB¿kT") for every k, where

I is the symbol period. This is theoretically impossible, so an approximation has to

be made for the {ro}3-t to fit the {Js(rB¿kT")}flìt, D being the number of OFDNI

symbols corresponding to the time-length after which the correlation is considered

to be insignificant, see [50]. This approximation is given by solving the least squares

problem:

rB¿kT,Jo( 2ka

This problem can be solved for various values of normalised Doppler spreads (BaT")

and the corresponding values of ø used in the state space model. One could also

choose to include additional "modes" in A to obtain a better approximation, but

we do not provide details here.

6.5 Simulation

We considered a single user OFDN'I system with 16 carriers. The data sequence is

arranged into a block of 16 OFDNI symbols. Each symbol is transmitted over the

16 orthogonal frequency channels using the DFT. The first symbol of each OFDNI

block will be used as pilot symbol to generate an estimate to initialise the Kalman

filters. We assumed that the fading channels are independent from block to block.

However, within each block, the time-frequency covariance of the fading channels

between any two symbols is given by the model in section 6.4. We assumed the

channel is undergone Rayleigh fading, (i.e., ¡r - 0). In this simulation, we used

B¿Tr:0.25. This Doppler spread value corresponds to a fast time-varying channel

where the temporal correlation between any two consecutive symbols is only 0.852.

Even with such low temporal correlation in the channels, a significant performance

gain can be attained by exploiting this time correlation as will be shown later in the
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simulation results. We examined two cases when T^F, : 0.5 and T*F, : 0.025.

These values of T,nF" represent fading channels that are highly decorrelated and

highly correlated in freqr-rency dimension) respectively.

In this simulation we compared the performance of the proposed techniques with

the NCML, NIAP and GLRT receivers. In addition) we also compared them with

the performance of the coherent Vlaximum Likelihood (NIL) receiver which has ideal

channel state information (CSI). The performance of the coherent ML receiver will

be used as the benchmark and we will see how close the performance of the proposed

receivers can approach this bound. The PSP and the Nl-algorithm receivers perform

sequence estimation on the whole OFDNT block of 16 symbols while the APP and

the iterative EM receivers perform symbol by symbol detection. The lVl-algorithm

receiver with two survivors (i.e. S : 2) and the unmodified APP receiver (i.e. the

channel estimate is the weighted sum of the estimates from all the Kalman filters)

are used in the simulation.

As from (6.49), the codeword X¿ has eiements [i¿]r,,,¿ : st e2ni*tlL. In this

simulation we considered the case wh.ere the data symbol s¿ € {+1}. Thus, the

codebook consists of two codes which are tF where F is the Fourier matrix. Fig.

6.4 shows the performance of the receivers for the fading channel with B¿T, :0.25

and f,,F" : 0.5. The symbol error rate (SER) is plotted for different values of Signal-

to-Noise Ratio (SNR) where the SNR is defined as the average received SNR per

symbol. The standard GLRT, 1\,14P and NCN'IL receivers all have an SER: 0.5 for

all SNRs. This is becanse by using t.,vo codes which are scalar multiple of each other,

the decision metrics of these receivers are indistinguishable (for the Rayleigh fading

channels) between the two codewords as discussed in [44, 104]. Since the proposed

receivers exploit the time correiation, then by r-rsing a pilot symbol to provide an

estimate to initialise the Kalman filters, the proposed receivers do not suffer the

same problem as those conventional noncoherent receivers. As shown in Fig. 6.4,
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Figure 6.4: Codes : tF wiLh B¿T":0.25 andT*F,:0.5

at the SER:10-2 the performance of the proposed receivers is within 5-7dB of

the coherent IVIL receiver. Holvever, as the frequency correiation is increased, the

performance of the proposed techniques is significantly reduced as shown in Fig. 6.5

for the highly frequency correlated channel with ftfl :0.025. The reason for this

huge degradation in performance is that as the channel become highly correlated

in frequency, the diversity provicled from th.e frequency domain is reduced. Thus,

the probability that most of the channel coefficients faded at the same time is high,

resulting in higher probability of error in detecting the transmitted code. Since the

proposed receivers perform joint data detection and channel tracking) once an error

is occurred it is likely to cause error propagation resulting in further error for the

subsequence symbols in the block. The performance of the coherent NIL receiver is

also reduced in this case. However, this is mainly due to the loss in the diversity

o 2

+
- {::). lterat¡ve (EM)
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--+- Coherent ML



o

o
d

o
o
õa
E
(n

Recursive Receivers for General Diversity Channels 148

Bd : O.25, Tm : O.O25
1oo

-2

10-

o 2 4 6 I 10 12 14 16 '1 8 20
sNR (dB)

Fignre 6.5: Codes : tF with B¿T,:0.25 and fl,,F' : 0.025

rather than the error propagation problem since it has ideal CSI. This suggests that

using codes which are scalar multiples of each other is not optimal for noncoherent

detection.

To prevent the above problem, we chose two codes which are not scalar multiple of

each other. The two codes are F and U F matrices where [/ is an arbitrarily unitary

matrix. Fig. 6.6 shows the performance of the receivers using the new codebook

for the fading channel with B¿T" : 0.25 and T^F" : 0.5. The GLRT receiver

still has.the ^98,R 
: 0.5 for this case since the orthogonal projector Pf to the

codeword ¡(t) ir equal to zero for both codewords. The performance of the N,'IAP

and the NCN4L receivers are still very poor. However with this set of codes, the

proposed receivers perform very well. At the SER:10-3 the proposed techniques

obtained a performance which is within 4dB of the coherent ML receiver. Unlike

+ GLRT, MAP, Noncoherent ML
-E= lterat¡ve (EM)
û- APPs, PSP, M-algorithm

-+- Coherent ML
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the former set of codes, using these new codes reduces the performance gap between

the proposed receivers and the coherent N'IL receiver when the fading channels are

highly frequency correlated as shown in Fig. 6.7 for T-F":0.025. We also note an

interesting observation that the performance of the VIAP and NCN,{L is improving

as the fading channels are more correlatecl. This can be explained by examining the

decision metrics of these receivers.

The simulation results for all the scenarios considered above confirm the supe-

riority of the proposed receivers to other standarcl noncoherent receivers. They

dernonstrate the usefulness of exploiting the temporal and diversity correlations in

the channels at the receivers. Simulations above show that even in fast time-varying

channels where the temporal correlation is low, by exploiting such correlation could

significant improve the receiver's performance. By utilising the temporal correlation,

MAP. Noncoherent ML
EMative(EM)

M-algorithm<l-

+- APPS
, PSP

+
-{l-



o
õ
o
o
õ
-o
E
(t)

Recursive Receivers for General Díversitv Channels

OFDM Example: Bd = O.25, Tm = O.O25
1oo

10
122 4 6 I

recelver

150

20o o
(dB)SN

1

R
14 .t6 1a
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the proposed receivers obtain a performance which is within few dB of the coherent

The above observations are pertinent from the point of code design for incoherent

systems with temporal channel correlations. It appears that an approach consist-

ing of modulation followed by a fixed diversity code will perform poorly. Such an

observation is supported by previous work such as [1a] as an example which does

not seal with such correlation. We believe there is a deeper issue at hand here when

temporal correlation is included in the signal model.

*
'ìr

-ê-

GLRT
MAP, Noncoherent ML
Iterative (EM), APP
PSP, M-algorithm
Coherent ML
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6.6 Conclusrons

We have introduced a general state space model for a general diversity communica-

tions system with time correlated flat fading. Examples of diversity systems which

fall within this framework include space-time coded systems, orthogonal frequency

division multiplex (OFDiVI) systems, code division multiple access systems and hy-

brids of these systems. The model permits the design of a nttmber of time recursive

noncoherent receivers based either on sequence estimation or on symbol by symbol

estimation. The receivers considered include Per-survivor processing, IVI-algorithm,

two ø posteri,orr, probability techniques ancl a per-symbol iterative technique based

on the ENI algorithm. As an example of the utility of the approach, we exam-

ine an OFDIVi system model basecl on a physical delay doppler spread propagation

medium, and we have shown how to approximate the resulting channel statistics by

our model. The various receivers are compared to conventional designs which do

not exploit the channel time correlations. These simulations have suggested that

there can be significant gains in performance by incorporating time correlation into

the signal model and the resulting receiver designs. Some implications for diversity

code design in the noncoherent case are also briefly noted.

6.7 Appendix: Derivation of The Reduced State

Model

In this appendix, we derived the reduced state model for diversity systems which do

not have full diversity gain.

Using the eigenvalue decomposition, we can express the channel covariance P :
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õ n õH where õ is unitary with A õH : ÕH õ : I, and A is diagonal of the form

0
^

^-
(6.54)

00

Let S¿ : õH ñ,, thi. implies

o The covariance of gr, Cou{$¿) : L,

o If we partition $¿ into the form of

(6.55)

where h, € Cztl ancl h, ç Ç(r-Z)x1, then the corresponding covariances are:

Cou{kt¡): A', Cou{hr} : O, and Cou{l'¿,ttr} : O.

o Since Cou{ñ,r}: 0, this implies Ê, i. o constant. Thus, if ñ, has zeïo mean,

$¿ will also has zero mean and hence Ê, : 0. The resulting É, can be then

represented by

trl (6.56)

The measurement equation from (6.1) can be now expressed in term of h¿ as:

Ír:X¿h¿*ñ¿'
:irog¿*ñ¿,

h,

h,
Ét

õ.b¿

[o ô]X¿

:i.rQh¿-lñ¿ (6 57)
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The state equation of h¿ can be derive as follow

Ér+r : Õo ñr*t ,

:(ÞH(Añr+ñ,),

:(ÞHAÕsr+oHú¿,

153

hr*

0

1
-u -uo" Ao o" Ao

ôHno ôt¡,ô lll'1.[Ë;,] (6.58)

Thus,

hr*r:ooRõh, + Q'ur. (6.59)

Equations (6.57) and (6.59) therefore represent the reduced state model of (6.1) and

(6.5), respectively.



Chapter 7

Conclusions

7.L Summary of Contributions

In this thesis, we have developed signal processing and space-time coding tech-

niques to overcome the multiple access interference and channel fading impairments

in wireless communication systems. We focused on the use of interference cancel-

lation methods to mitigate the multiple access interference in CDNIA systems, and

the use of multiple transmit and multiple receive antennas for providing diversity

to combat the effects of channel fading. The major contributions of the thesis are

listed below:

Chapter 2: Multiuser Detectors for CDMA Systems

o Two new interference cancellation detectors, which are hybrid of the successive

ancl palallel interference cancellation detectors, are proposed.

o We developed an adaptive multiuser detector which performs joint parameter

estimation and symbol detection for CDN'iA systems.

t54
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Chapter 3: Convergence Behaviour Analysis of the PIC Technique

o We developed a general framework for analysing the convergence behaviour of

the PIC detector for any type of tentative decision function.

o We derived general conditions from which the sufficient condition for conver-

gence of the PIC detector for a wide range of tentative decision functions can

be calculated. Several well-known conditions for convergence of the PIC detec-

tor with linear decisions and clip decisions can be obtained from this general

framework.

o We proved that the PIC detector with any tentative decision fttnction that is

monotonically increasing at sublinear rate will either converge to a fixed point

or enter a limit cycle of period-two.

Chapter 4: Space-Time Coding

o We derived two new upper bounds for the pairwise error probability of space-

tinie codecl systems with multiple transrnit and mr-rltiple receive antennas in

the presence of spatially correlatecl fading.

o We found new QPSK space-time trellis codes for two transrnit antennas based

on the design criterion of minimising the sum of the the pairwise error proba-

bility of all distinct pairs of codewords. Simulation resnlts showed that these

new space-time trellis codes are snperior to other known codes.

Chapter 5: Joint Space-Time Thellis Decoding and Channel Estimation

o We showed hor,v the physical moclel of the ÌVIIN'IO wireless facling channels

with multiple transmit ancl multiple receive antennas can be approximated by

a statistical cliannel model.
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o We developed a space-time receiver for joint channel estimation and space-time

trellis decoding in spatially correlated time-varying Rayleigh fading channels.

Chapter 6: Recursive Receivers for General Diversity Channels

o We introducecl a general state space model for a general diversity communica-

tion system with time and diversity correlated flat fading.

o We developed a number of time-recursive receivers which exploit the temporal

correlation in the fading channels.

7.2 Suggestions for Further Study

The works that we presented on the area of mrtltiuser detection mainly assume that

the CD\44 systems are synchronous and there is no chip interference. However

in a practical CDN{A system, users transmit information independently and hence

the signal of different users will arrive asynchronously at the receiver'. In addition,

since the chips are sent at a much faster rate than the symbol rate, it is likely

to yield interchip interference and neighbouring syrnbol interference. Therefore it

would be of practical interest to include those issues into our works. In addition,

the convergence behaviour analysis in this thesis is only applied to the PIC detector

that perforrns total interference cancellation. It would be of further research interest

to investigate the convergence behaviour of the PIC detector that performs partial

interference cancellation.

So far, all the works presented on the area of space-time coding have mainly

focused on the narrowband flat facling case where oniy spatial diversity is avail-

able. However, future wireless communication systems will transmit information

with symbol duration much smaller than the channel delay spread and consequently

frequency-selectivity arises. In [90], theoretical analysis reveals that space-time

codes designed for flat fading still provides at least the same diversity advantage even
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in frequency-selective channels. Coding advantage however might decrease consid-

erably due to the presence of intersymbol interference unless additional processing

is employed [38]. Future work will look at developing space-time coding schemes for

frequency selective channels that can exploit both spatial and multipath diversit;'.

It will focus at coding schemes which allow low decoding complexity at the receiver

whiie at the same time achieve full diversity advantage. Low decoding complexity

is quite essential as mobile terminals are supposed to be small, light weight and

low cost. The main technical challenge for designing space-time codes in frequency-

selective fading channels is that signals are mixed both in space (due to the multiple

transmit aritennas) and time (due to the multipaths). Thus, optimal space-time cocl-

ing for dispersive mr-rltipath channels is very complex and requires highly complex

processing at the receiver. Since mobile terminals are required to small, light weight

and low cost, suboptimal approaches which allow simple processing at the receivers

would be needed. One approach is to combine space-time coding with orthogo-

nal frequency division multiplexing (OFDN'I) which converts the frequency-selective

fading channels into a set of flat fading channels. Another approach is to combine

space-time coding with single carrier frequency domain equalization (SC-FDE) tech-

nique. Both OFDN4 and SC-FDE approaches have the advantage of lower processing

complexity than the single carrier time domain equalization cottnterpart [f4]. In [S],

space-time codes are combined with OFDN'I to provide high data rate transmission

over broadband channels. However, the codes being used are constructed for flat

fading. Hence, it can only exploit the spatial diversity while fails to exploit the

multipath diversity. In [8, 113], space-time block coding schemes basecl on single

carrier frequency domain equalization âpproach are proposecl for frequency selec-

tive fading channels. However, they follow the Alamouti's space-time block coding

scheme and are restricted to only two transmit anteunas case. It is of interest to

seek for more general space-time codes that can exploit the full diversity advantage



Conclusion and F\rture Research

using the OFDiVI and SC-FDE approaches

158



Bibliography

[1] A. Abdi, J. A. Barger and iVI. Kaveh, "A parametric model for the distribution of

the angle of arrival and the associated correlation function and power spectrum

at the rnobile station" , IEEE Trans. Veh. Technol.,, vol.51, no. 3, PP. 425-434,

May 2002.

[2] A Abdi and NI. Kaveh, "A space-time correlation model for multielement an-

tenna systems in mobile fading channels" , IEEE J. Select. Areas Commun., voL

20, no.3, pp.550-560, Apr. 2002.

[3] F Adachi, lVI. Sawahashi and H. Suda, "Wideband DS-CDIVIA for next-

generation mobile communications systems" , IEEE Commun. Magz., pp. 56-69'

Sept. 1998.

[4] D Agrawal, T. J. Richardson and R. Urbanke, "lVlultiple-antenna signal con-

stellations for fading channels" , IEEE Trans. Inform. Theory, vol. 47, no. 6, pp.

2618-2626, Sept. 2001.

l5l D Agrawal, V. Tarokh, A. Naguib and N. Seshadri, "Space-time OFDNI for high

clata-rate wireless cornmunication over wideband channels" , Proc. Veh. Technol.

Conf., pp. 2232-2236, ON, Canada, N4ay 1998.

[6] K Aktas and M. P. Fitz, "Computing the distance spectrum of space-time trellis

codes" , Proc. WCNC'00, Chicago IL, Sept. 2000.

159



Bibliography 160

[7] S iVI. Alamouti, "A simple transmit diversity technique for wireless communi-

cations" , IEEE J. Select. Areas Commun., voi. 16, no. 8, pp. 1451-1458, Oct.

1998.

[S] N. Al-Dhahir, "Single-carrier frequency domain equaÌization for space-time block

coded transmission over frequency-selective fading channels" , IEEE Commun.

Letters, vol. 5, no. 7, pp. 304-306, Jul. 2001.

[9] B. D. O. Anderson and J. B. Moore, Opti,mal Filtering, Englewood Cliffs, NJ,

Prentice-Hall, L979.

[10] C. Anton-Haro, J. A. R. Fonollosa and J. R. Fonollosa, "Blind channel esti-

nration and data detection using Hidden Vlarkov Model. IEEE Trans. Si,gnal

Process., vol. 45, no. 1, pp.24I-247, Jan. 1997.

[11] K. E. Baddour and N. C. Beaulieu, "Autoregressive models for

fading channel simulation", Proc. GLOBECOM 2001, Available at

http:l lwww.it.iitb.ac.iîl it6l2lresources/repository/GloBEcONI}IIvoII2I

[12] S. Baro, G. Bauch and A. Hansmann, "Improved codes for space-time trellis

coded moclulation", IEEE Commun. Lett., Vol. 4, No. 1, pp.20-22, Jan. 2000.

[13] Q Bi, G. I. Zysman and H. iVlenkes, "Wireless mobile communications at the

start of the 21st century",IEEE Commu,n. Magz., pp. 110-116, Jan.2001.

[14] NI. Brehler and N,I. K. Varanasi, "Asymptotic error probability analysis of

quadratic receivers in rayleigh fading channels with application to a nnified anal-

ysis of coherent and noncoherent space-time receivers" , IEEE Trans. Inform.

Theory, vol 47, No. 6, pp. 2383-2399, Sept. 2001.



Bibliography 161

[15] D. R. Brown III, M. iVlotani, V. V. Veeravalli, H. V. Poor and C. R. Johnson, Jr.,

"On the performance of linear parallel interference cancellation", IEEE Tfans.

Inform. Theorg, vol. 47, no. 5, pp. 1957-1970, July 2001.

[16] J. Bruck and J. W. Goodman, "A generalized convergence theorem for neural

networks" , IEEE Trans. Inform. Theory, vol. 34, no. 5, pp. 1089-1092, Sept.

1988.

[17] R. iVL Buehrer, S. P. Nicoloso and S. Gollamudi, "Linear verslrs non-linear

interference cancellation", IEICE J. on Commun. Networks, vol. 1, no.2, pp.

118-133, June 1999.

[18] R. VI. Buehrer, "On the convergence of multistage interference cancelation"

Conf. Rec. 33rd Asilomar Conf. Signals, Systems and Compuers, vol. 1, pp.

634-638, Pacific Grove, CA, Oct. 24-27, 1999.

[19] CellularOnline, "Latest global, handset, base station, 8e regional cellular statis-

tic", Jan. 2003, available at h|tp:f f www.cellular.co.za..

[20] T-4. Chen, VI. P. Fitz, W-Y. Kuo, N4. D. Zoltowski and J. H. Grim, "A space-

time model for frequency nonselective rayleigh fading channels with application

to space-time modems" , IEEE J. Select. Areas Commu,n., vol. 18, no. 7, pp.

1175-1190, July 2000.

l2ll Z. Chen, J. Yuan and B. Vucetic, "Improved space-time trellis coded modula-

tion scherne on slow Rayleigh fading channels" , Electroni,cs Letters, Vol. 37, No.

7, pp. 440-447, iViarch 2001.

122] G. Colman, S. D. Blostein and N. C. Beaulieu, "An ARIVIA multipath fading

simnlator", Proc. 7th Annual Vi,rgi,ni,a Tech. Sympos'ium on Wireless Personal

Commun., Blacksburg, VA, Jun. 11-13, 1997.



Bibliography t62

[23] C. Cozzo and B. L. Hughes, "Joint channel estimation and data symbol de-

tection in space-time communications" , in Proc. Int. Conf. on Commnn'icat'ions,

New Orleans, LA, June 18-22, 2000, pp.287-291.

l24l C. Cozzo and B. L. Hughes, "Ar adaptive receiver for space-time trellis codes

based on per-survivor processing" , IEEE Trans. Commun.,, vol. 50, no. 8, pp.

7213-1216, Aug.2002.

[25] Q Dai and E. Shwedyk, "Detection of bandlimited signals over frequency se-

lective rayleigh fading channels" , IEEE Trans. Commun., voL 42, no. 2f 3f 4, pp.

941-950, Feb./N'Iar. lApr. 1994.

[26] E. Dahlman, B. Gudmundson, NI. Nilsson and J. Skold, "UNÍTS/IMT-2000

Based on wideband CDVIA" , IEEE Commrm. Magz., pp. 70-80, Sept. 1998.

[27] R. T. Derryberry, S. D. Gray, D. NI. Ionesctt, G. Nlandyam and B.

Raghothaman, "Transmit diversitv in 3G CDMA systems", IEEE Commun.

lvlaqz., pp. 68-75, Apr. 2002.

[28] C. A. Desoer and lVI. Vidyasager Feedback Sgstems : Input-Ontput Propert'ies,

Academic Press, 1975.

[29] D. Divsalar and N{. Simon, "Improved CD\44 performance using parallel in-

terference cancellatiort", IEEE MILCOM., New York, USA, 1994, vol. 3, PP.

917-977.

[30] D. Divsalar, NL Simon and D. Raphaeli, " A new approach to parallel interfer-

ence cancellation for CDMA. IEEE GLOBECOM New York, NY, USA; 1996

vol. 3, pp. 7452-1457.



Bibliography

[31] D. Divsalar, M. Simon and D. Raphaeli, "Improved parallel interference can-

cellation for CDNIA" , IEEE Trans. Commun., vol. 46, no. 2, pp. 258-268, Feb.

1998.

[32] A. Duel-Hallen, "Decorrelating decision-feedback multiuser detector for syn-

chronous code-division multiple access channel" , IEEE Trans. Commun., voI.

41, no. 2, pp. 285-290, Feb. 1993.

[33] A. Dnel-Hallen, J. Holtzman and Z. Zvonar, " IVlultiuser detection for CDNIA

systems" , IEEE Personal Commu,n'icat'ions, vol. 2, no. 2, pp. 46-58, April 1995.

[34] D. Falconer, S. L. Ariyavisitakul, A. Benyamin-Seeyar and B. Eidson, "Fre-

quency domain equalization for single-carrier broadband wireless channels",

IEEE Commun. Magz., pp. 58-66, Apr. 2002.

[35] G. J. Foschini, "Layered space-time architecture for wireless comûtunication

in fading environment when using muiti-element antennas" , Bell Labs Techni,cal

Journal, pp. 41-59, Autumn 1996.

[36] G. J. Foschini and M. J. Gans, "On limits of wireless communications in a

fading environment when using multiple antennas" , W'ireless Personal Commu-

n'ications, vol. 6, no. 3, pp. 311-335, N'{ar. 1998.

[37] J. Fr,rhl, J-P. Rossi and E. Bonek, "High-resolution 3-D direction of arrival

determination for urban mobile radio" , IEEE Trans. Antennas Propagat., vol

45, no.4, pp. 672-682, Apr. 1997.

[38] Y. Gong and K. B. Lataief, "Performance evaluation and analysis of space-time

coding in unequalised mr,rltipath fading links" , IEEE Trans. Commun., vol. 48,

no. 11, pp. 1778-1782, Nov. 2000.

163



Bibliography 164

[39] A. Grant and C. Schlegel, "Convergence of linear interference canceilation mul-

tiuser receiver" , IEEE Trans. Commun., vol. 49, no. 10, pp. 1824-1834, Oct.

2001.

[40] S. D. Gray, M. Kocic and D. Brady, "Multiuser detection in mismatched

multiple-access channels", IEEE Trans. Commun., vol. 43, no. 12, pp. 3080-

3089, Dec. 1995.

[41] J. C. Guey, NI. P. Fitz, M. R. Bell and W. Y. Kuo, "Signal design for transmitter

diversity wireless systems over Rayleigh fading channels" , Proc. IEEE Vehtcu,lar

TechnoloslJ Conference, pp.135-140, Atlanta, US, 1996.

l42l T. Hashimoto, "A list-type reduced-constraint generalization of the Viterbi

algorithm" , IEEE Trans. Inform. Theory, vol. IT-33, pp. 866-876, Nov. 1987.

[43] B. N{. Hochwald and T. L. Nlarzetta, "Unitary space-time modulation for

mnltiple-antenna communications in ravleigh flat fäding", IEEE Trans. Inform.

Theory, vol. 46, no. 2, pp. 543-564, l\'Iar. 2000.

144] B. N,I. Hochwald, T. L. N'Iarzetta, T. J. Richardson, W. Sweldens and R. Ur-

banke, "Systematic design of unitary space-time constellations", IEEE Trans.

Inform. Theory, vol. 46, no. 6, pp. 1962-1973, Sept. 2000.

[45] B. iVI. Hochwald and W. Sweldens, "Differential unitary space-time modula-

tion", IEEE Trans. Commun., vol.48, no. 12, pp.204l-2052, Dec.2000.

[46] J. J. Hopfield, "Nenrons with graded response have collective computational

properties like those of two-state neurons", Proc. NatL Acad. Sci,. USA, vol.81,

pp. 3088-3092, NIay 1984.

[47] R. A. Horn and C. R. Johnsor, Matrir Analys'is, Cambridge University Ptess,

1985



Bibliography

[4S] B. L. Hughes, "Differential space-time modulation" , IEEE Trans. Inform. The-

ory, vol.46, no. 7, pp. 2567-2578, Nov. 2000.

[49] E. Jaffrot, M. Siala and I. Fijalkow, "Maximum a posteriori semi-blind channel

estimation for OFDNI systems operating on highly frequency and time selective

channels", submitted to IEEE Trans. Commun'icat'ions,, February 2002.

[50] E. Jaffrot, V. K. Nguyen, NtL Soamiadana, L. B. White, and I. Fijalkow, "Sy*-

bol by symbol reduced complexity highly selective OFDM channel estimation",

Proc. EUSIPCO 2002, Toulouse, France, September 2002.

[51] \,V. C. Jakes Jr. (Ed.), Microwaue Mobi,le Commun'icat'ions, NewYork: Wiley,

165

r974

[52] C. R. Johnson, Jr., et al, "Bl\nd equalisation r,rsing the constant modulus cri-

terion : A review" , Proc. IEEE, vol. 86, no. 10, Oct. 1998, pp. 1927-1949.

[53] G. K. Kaleh and R. Vallet, "Joint parameter estimation and symbol detection

for linear or nonlinear unknown dispersive channels", IEEE Trans. Commun.,

vol. 42, No. 7, pp. 2406-2413, July 1994.

[54] G. Kang, P. Zhang, H. Haas and E. Schulz, "Good space-time codes in terms

of distance spectrum" , Proc. VTC Fall-2002,Vancotlver, Cannada, pp.252-255,

Sept. 2002.

[55] S. N4. Kay, Fundamentals of stati,sti,cal si,gnal processing: Esti,mati,on TheorE,

Prentice-Hall signal processing series, 1993.

[56] G. I. Kechriotis and E. S. iVlanolakos, "Hopfield neural network implementation

of the optimal CDNIA multiuser detector" , IEEE Trans. Neural Networks, voI.

7, no. 1, pp. 131-141, Jan. 1996.



Bibliography 166

157] C. Komninakis, C. Fragouli, A. H. Sayed, and R. D. Wesel, "Adaptive multi-

input multi-output fading channel equalization using kalman estimation", Proc.

ICC 2000, pp. 1655-1659, New Orleans, Louisiana, Jun. 18-22, 2000.

[58] D. N. Knisely, Q. Li and N. S. Ramesh, "cdma2000: A third-generation radio

transmission technology", Bell Labs Tech. Journal, pp. 63-78, Jul.-Sept. 1998.

[59] V. Krishnamurthy and J. B. Moore, "On-line estimation of hidden Markov

model parameters based on the Kullbach-Leibler information measure", IEEE

Tfans. S'ignal Process., vol. 41, no. 8, pp. i557-1572, Aug. 1993.

160] Z. Liu, X. NIa, G. B. Giannakis, uSpace-time coding and kalman filtering for

time-selective fading channels" , IEEE Trans. Contmun., vol. 50, no. 2, pp. 183-

186, Feb. 2002.

[6I] Z. Liu, G. B. Giannakis and B. L. Hughes, "Double differential space-time block

coding for time-selective fading channels" , IEEE Trans. Comrmtn., vol. 49, no.

9, pp. 1529-1539, Sept. 2001.

[62] R. Lupas and S. Verdu, "Linear multiuser detectors for synchronous code-

division multiple-access channels", IEEE Trans. Inform. TheorE, vol. 35, no.

1, pp. 723-136, Jan. 1989.

[63] U. N,Iadhow and iVI. Honig, "MI\4SE interference suppression for direct sequence

spread spectrum CDNIA" , IEEE Tfans. Commun., voI. 42, no. 12, pp. 3178-3188,

Dec. 1994.

[64] J. R. lVlagnus and H. Neudecker, IV[atri,r Di,fferenti.al Calcu,ltts wi,th appli,cattons

i,n stati,sttcs and econornetrics, New York: N'IcGraw-Hill, 1999.



Bibliography 167

[65] L. Mailaender and R. A. Iltis, "iVlultinser detectors with single user parameter

estimation on Quasi-Synchronous CDIVIA channels" , IEEE Trans. Commun.,

vol. 48, no.2, pp. 200-203, Feb. 2000.

[66] C. M. Marcns and R. VI. Westervelt, "Dynamics of iterated-rnap neural net-

works" , Physi,cal Reu'iew A, vol.40, no. 1, pp. 501-504, July 1989.

[67] T. L. Marzetta and B. iVI. Hochwald, "Capacity of a mobile multiple antenna

communication link in rayleigh flat fading", IEEE Trans. Inform. Theory, vol.

45, no. 3, pp. 139-157, Jan. 1999.

[68] NL N4otani and D. R. Brown, "On the convergence of linear parallel interference

cancellation" , ISIT 2001, Washi,ngton DC, June 24-29, 2001.

[69] R. D. iVlurch and K. B. Letaief, "Antenna system for broadband wireless ac-

cess", IEEE Commun. Magz., pp. 76-83, Apr. 2002.

[70] V. K. Nguyen and L. B. White, "Iterative multiuser detection with parameter

estimation", D'igi,tal S'ignal Processing, vol. 12, no. 2,3, pp. 145-158, Apr./Jr-rly

2002.

[71] V. K. Nguyen and L. B. White, "Interference cancellation schemes for CDIVIA

systerrs" , Informati,on, Deci,si,on and Control 2002 Conf., Adelaide, Feb. 2002.

l72l V. K. Nguyen and L. B. White, E. Jaffrot, N¡I. Soamiadana, I. Fijalkow, "Re-

cursive receiver structures for general diversity channels with time correlated flat

fadings",IEEE J. Select. Areas Commttn., vol.21, no.5, pp.754-764, June2003.

[73] V. K. Nguyen and L. B. White, "Recnrsive receiver structures for general di-

versity channels with tirne correlated flat fadings" , Proc. Thi,rd Australi,an Com-

mun'icat'ions Theory Workshop, Canberra, Australia, pp. 48-52, Feb. 2002.



Bibliography

[74] M. J. Omidi, S. Pasupathy, P. G. Gulak, "Joint data and Kalman estimation

of fading channel using a generalized viterbi algorithm" , Internati,onal Conf. on

Commun. pp. 1198-1203, June 1996.

175] P. Patel and J. Holtzman, "Analysis of a simple successive interference cancel-

lation scheme in a DS/CDMA system" , IEEE J. Select. Areas Commun., vol.

12, No. 5 pp. 796-807, June 1994.

[76] S. Perreau and L. B. White, "Nonlinear iterative multiuser detection and equal-

ization for CDNIA receivers in the presence of interchip interference" , D'igi,tal

Si,gnal Process'ing, voi. 11, no. 2, pp. 94-109, Apt. 2001.

l77l E. Pittampalli, "Third-generation CDMA wireless standards and harmoniza-

tion", Bell Labs Tech. Journal, pp.6-18, Jul,-Sept. 1999.

[78] N4. B. Priestley, Spectral Analysis and Ti,me-Series, Academic Press, London,

168

1981.

[79] R. Raheli, A. Polydoros, C. Tzou, "Per-survivor processing: a general approach

to N{LSE in uncertain environments",IEEE Trans. Commun., vol.43, pp.354-

364, Feb. f lVlar. /Apr. 1995.

[80] T. S. Rappaport, Wi,reless Communi,cations: Princles and Practi.ce, Prentice

Hall, New Jersey, 1996.

[81] L. K. Rasmussen, T. J. Lim and A. Johansson, "A matrix-algrebraic approach

to successive interference cancellation in CDIVIA", IEEE Trans. Commu,n., vol.

48, no. 1, pp. 145-151, Jan. 2000.

[82] E. B. Saff and A. D. Snider, Fundamentals of compler analysi,s for mathemati,cs,

sc'ience, and eng'ineering. New Jersey: Prentice-Hall, 1976.



Bibliography

[83] M. Schwartz, W. R. Bennett, and S. Stein, Communi,cati,on Systems and Tech-

nr,ques. New York: NIcGraw-Hill, 1966.

[S4] N. Seshadri and J. H. Winters, "Two signaling schemes for improving the er-

ror performance of frequency-division-duplex (FDD) transmission systems using

transmitter antenna diversity",Int. J. Wireless Inform. Networlcs, vol. 1, no. 1,

Jan. 1994.

[85] N. Sellami, I. Fijalkow and iVL Siala, "Low-complexity iterative receiver for

space-time coded signals over frequency selective channels" , EURASIP Journal

on Appli,ed Sl4nal Processi,ng, special issue on space-time coding and its applica-

tions, No. 5, pp.5I7-524, N,lay 2002.

[86] D-S. Shiu, G.J. Foschini, M. J. Gans and J. NI. Kahn, "Fading correlation

and its effect on the capacity of muitielement antenna systems", IEEE Trans.

Comrnun., vol. 48, no. 3, pp. 502-513, iVlar. 2000.

[87] S. Siwamogsatham, F. P. Fitz and J. H. Grimrn, "A new view of performance

analysis of transmit diversity schemes in correlated Rayleigh fading" , IEEE

Trans. Inform. Theory, Vol. 48, No. 4, pp. 950-956, April 2002'

[8S] F. Swarts and H. C. Ferreira. "N,Iarkov characterization of channels with soft

decision outputs" , IEEE Trans. Commttn., vol. 41, no. 5' pp. 678-682, N'Iay 1993.

[89] V. Tarokh, N. Seshadri and A. R. Calderbank, "Space-time codes for high

data rate wireless communication: perfot'mance criterion and code construction",

IEEE Trans. Inform. Theory, voI. 44, no. 2, pp. 744-765, NIar. 1998.

[90] V. Tarokh, A. Nagr-rib, N. Seshadri and A. R. Calclerbank, "Space-time codes

for high data rate wireless communication: performance criteria in the presence

of channel estimation errors, rnobility and multipaths", IEEE Trans. Commun.,

voI.47, no.2, pp. 199-207, Feb. 1999.

169



Bibliography 170

[91] V. Tarokh, H. Jafarkhani and A. R. Calderbank, "Space-time block codes from

orthogonal designs", IEEE Trans. Inform. Theory, vol. 45, no. 5, pp.7456-t467,

Jul. 1999.

[92] V. Tarokh and H. Jafarkhani, "A differential detection scheme for transmit

diversity", IEEE J. Select. Areas Comrnun., vol. 18, no.7, pp. 1169-1174, Jul.

2000.

[93] L E. Telatar, "Capacity of multi-antenna Gaussian channels" , Technical Report,

AT&T Bell Laboratories, Lucent Technologies, 1995.

[94] D. NI. Titterington, "Recursive Parameter Estimation using Incomplete Data",

J. R. Stati,st. Soc. B, vol. 46, no. 2, pp.257-267,1984.

[95] N,I. K. Tsatsanis, G. B. Giannakis and G. Zhou, "Estimation and equalization

of fading channels lvith random coefficienls" , S'ignal Processing 53, pp. 27I-229,

1996.

[96] D. N. C. Tse and S. V. Hanly, "Linear multiuser receivers: effective interference,

effective bandwidth and user capacity" , IEEE Trar¿s. Inform. Theory, vol. 45,

no. 2, pp. 641-657, iVlar. 1999.

[97] NI. K. Varanasi and B. Aazhang, " Nlultistage detection in asynchronous code-

division multiple-access commltnications" , IEEE Trans. Commun., vol. 38, no.

4, pp.509-519, Apr. 1990.

[9S] \,{. K. Varanasi and B. Aazhang, "Near-optimnm detection in synchronous

code-division rnultiple-access systems" , IEEE Trans. Com,mttn., vol. 39, no. 5,

pp.725-736, NIay 1991.



Bibliography T7L

[99] S. Verdu, "Minimum probability of error for asynchronous gaussian multiple-

access channels" , IEEE Trans. Inform. TheorE, vol. 32, no. 1, pp. 85-96, Jan.

1986.

[100] S. Verdu Mult'iuser Detect'ion, Cambridge University Press, 1998

1101] E. Visotsky and U. lVladhow, "Noncoherent multiuser detection for CDMA

systems with nonlinear modulation: a non-Bayesian approach" ,, IEEE Trans.

Informat'ion TheorE, vol. 47, no. 4, pp. 1352-1367, iVlay 2001.

[102] A. J. Viterbi, "Very low rate convolutional codes for maximum theoretical

performance of spread-spectrnm multiple-access channels" , IEEE J. Select. Areas

Commun., vol. 8, No. 4, pp, 641-649, lVlay 1990.

1103] H. S. Wang and N. Nloayeri, "Finite-state lVlarkov channel - a useful model

for radio communication channels" , IEEE Trans. Veh. Technol., vol. 44, no. I,

pp. 163-171, Feb. 1995.

[104] D. Warrier and U. N4adhow, "Spectrally efficient noncoherent comrnunrca-

tion". IEEE Trans. Inform. TheorE, vol. 48, no. 3, pp. 651-668, NIar. 2002.

[105] F. R. Waugh and R. lVI. Westervelt, "Analog neural networks with local com-

petition. L Dynamics and stability" , Physi,cal Reui'ew E, vol. 47, no.6, PP. 4524-

4536, June 1993.

[106] Y. Xue ancl X. Zhu, "PSP decoder for space-time trellis code based on accel-

erated self-tuning LiVIS algorithm" , Electroni,c Letters, vol. 36, no. 17, pp.l472-

1.474, Ãu5 2000.

[107] Q. Yan ancl R. S. Blum, "Optimum space-time convolutional codes" , Proc.

IEEE WCNC'7Q Chicago, IL, pp. 1351-1355, Sep. 2000.



Bibliography 172

[108] A. Yener, R. D. Yates and S. Ulukus, "CDMA multiuser detection: a nonlinear

programming approach", IEEE Trans. Commun., vol. 50, no. 6, pp. 1016-1024,

June 2002.

1109] Y. C. Yoon, R. Kohno and H. Imai, "A spread-spectrum multiaccess system

with cochannel interference cancellation for multipath fading channels" , IEEE

J. Select. Areas Commun., vol. 11, no.7, pp. 1067-1075, Sep. 1993.

[110] J. Yuan, Z. Chen, B. Vucetic and W. Firmanto, "Performance analysis and

design of space-time coding on fading channels", Submitted to IEEE Trans.

Commun., Sept. 2000.

f111] M. Zeng, A. Annamalai and V. K. Bhargava, "Recent advances in cellular

wireless communications" , IEEE Com,mtm. Magz., pp. 128-138, Sept. 1999.

[112] L. Zheng, D. N. C. Tse, "Packing spheres into the Grassmann manifold: A g"-

ometric approach to noncoherent rrulti-antenna charrnels" , IEEE Trans. Inform.

Theory, Submitted for publication.

[113] S. Zhou and G. B. Giannakis, "Space-time coding with maximum diversity

gains over frequency-selecitve fading channels" , IEEE Si,gnal Process. Letters,

vol. 8, no. 10, pp. 269-272, Oct.2001.




