COMMONWEALTH OF AUSTRALIA
Copyright Regulations 1969

WARNING

This material has been reproduced and communicated to you by or on behalf of The University of Adelaide pursuant to Part VB of the Copyright Act 1968 (the Act).

The material in this communication may be subject to copyright under the Act. Any further reproduction or communication of this material by you may be the subject of copyright protection under the Act.

Do not remove this notice.
THE INFLUENCE OF WATER REGIME ON THE
FLORISTIC COMPOSITION OF LOWER RIVER
MURRAY WETLANDS

Mark Anthony Siebentritt

Cooperative Research Centre for Freshwater Ecology &
Department of Environmental Biology,
University of Adelaide

October 2003
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td></td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
</tr>
<tr>
<td>LIST OF PLATES</td>
<td></td>
</tr>
<tr>
<td>EXECUTIVE SUMMARY</td>
<td>i-iii</td>
</tr>
<tr>
<td>CHAPTER 1. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1 THE INFLUENCE OF FLOOD AND DRAWDOWN ON ACCESS TO PLANT RESOURCES</td>
<td>1</td>
</tr>
<tr>
<td>1.2 WATER REGIME: IMPORTANCE AND CHARACTERISATION</td>
<td>2</td>
</tr>
<tr>
<td>1.3 PLANT STRATEGIES FOR TOLERATING AND RESPONDING TO FLOOD AND</td>
<td>3</td>
</tr>
<tr>
<td>DRAWDOWN</td>
<td></td>
</tr>
<tr>
<td>1.4 THE INFLUENCE OF WATER REGIME ON FLORISTIC COMPOSITION</td>
<td>4</td>
</tr>
<tr>
<td>1.5 CHANGES IN FLORISTIC COMPOSITION UNDER FLUCTUATING WATER LEVELS</td>
<td>5</td>
</tr>
<tr>
<td>1.6 FLORISTIC COMPOSITION OF WETLANDS IN REGULATED RIVER SYSTEMS</td>
<td>7</td>
</tr>
<tr>
<td>1.7 THE MURRAY-DARLING BASIN AND THE LOWER RIVER MURRAY</td>
<td>8</td>
</tr>
<tr>
<td>1.7.1 Description</td>
<td>8</td>
</tr>
<tr>
<td>1.7.2 Flow regulation and its hydrological impacts</td>
<td>9</td>
</tr>
<tr>
<td>1.8 WETLAND PLANTS IN THE LOWER MURRAY</td>
<td>10</td>
</tr>
<tr>
<td>1.9 THESIS OUTLINE</td>
<td>12</td>
</tr>
<tr>
<td>CHAPTER 2. FLORA OF WETLANDS WITH CONTRASTING WATER REGIMES</td>
<td>21</td>
</tr>
<tr>
<td>2.1 ABSTRACT</td>
<td>21</td>
</tr>
<tr>
<td>2.2 INTRODUCTION</td>
<td>21</td>
</tr>
<tr>
<td>2.3 STUDY SITES</td>
<td>23</td>
</tr>
<tr>
<td>2.4 METHODS</td>
<td>24</td>
</tr>
<tr>
<td>2.4.1 Vegetation sampling</td>
<td>24</td>
</tr>
<tr>
<td>2.4.2 Analysis</td>
<td>26</td>
</tr>
<tr>
<td>2.4.3 Hydrograph determination</td>
<td>28</td>
</tr>
</tbody>
</table>
4.3.2 Functional group water regime preferences .. 107
4.3.3 Model description and assumptions ... 107
4.3.4 Model testing ... 111
4.4 RESULTS ... 112
4.4.1 Species water regime preferences ... 112
4.4.2 Functional groups .. 112
4.4.3 Model predictions for species at OP ... 112
4.4.4 General model accuracy for species at OP ... 118
4.4.5 Model accuracy for species .. 119
4.4.6 Model predictions for functional groups at OP 122
4.4.7 General model accuracy for functional groups at OP 122
4.4.8 Model accuracy for functional groups at OP ... 124
4.4.9 Accuracy of species versus groups predictions 125
4.5 DISCUSSION ... 126
4.5.1 Model performance .. 126
4.5.2 Limitations, assumptions and proposed modifications to the model 129
4.5.3 Applicability of the model .. 130

CHAPTER 5. EFFECTS OF AN ENHANCED FLOOD ON RIPARIAN PLANTS

5.1 ABSTRACT ... 139
5.2 INTRODUCTION ... 139
5.3 METHODS .. 140
5.3.1 Sites and sampling ... 140
5.3.2 Water regime ... 142
5.3.3 Analysis .. 142
5.4 RESULTS ... 142
5.4.1 Flood hydrograph ... 142
5.4.2 Plant responses .. 143
5.4.3 Soil conductivity and pH at Wide Waters .. 147
5.4.4 Uncommon species ... 147
5.5 DISCUSSION ... 149
5.5.1 Plant responses .. 149
5.5.2 Future trials ... 151
7.5 RESULTS ... 204
7.5.1 Survival and relative growth rate and its components 204
7.5.2 Species comparison of relative growth rate and its components 208
7.5.3 Morphological responses and biomass allocation 210
7.5.4 Initial response to slow and rapid deep flooding 214
7.5.5 Soil moisture content ... 216
7.5.6 Stomatal conductance ... 216
7.6 DISCUSSION .. 217
7.6.1 Influence of water regime on RGR, NAR and LAR 217
7.6.2 Responses to flooding ... 218
7.6.3 Responses to drawdown .. 219

CHAPTER 8. THE EFFECTS OF WATER REGIME ON THE GROWTH AND
REPRODUCTION OF FOUR EMERGENT MACROPHYTES 245
8.1 ABSTRACT .. 245
8.2 INTRODUCTION ... 245
8.3 METHODS .. 247
8.4 RESULTS .. 247
8.4.1 Relative growth rate ... 247
8.4.2 Impact of flood and drawdown on asexual reproduction 249
8.4.3 Impact of flood and drawdown on sexual reproduction 251
8.5 DISCUSSION .. 252
8.5.1 Growth and asexual reproduction .. 252
8.5.2 Sexual reproduction and its relationship with asexual reproduction 254
8.5.3 Bulbil production for C. gymnocaules .. 255
8.5.4 Predictive model of the impact of water regime on floristic composition 255

CHAPTER 9. GENERAL DISCUSSION ... 277
9.1 THE INFLUENCE OF WATER REGIME UPON FLORISTIC COMPOSITION 277
9.1.1 Morphological and physiological responses .. 277
9.1.2 Establishment and extirpation ... 278
9.1.3 Changes and differences in floristic composition 280
9.2 FURTHER STUDIES ... 280
9.2.1 Establishment .. 281
9.2.2 Extirpation... 282
9.2.3 Salinity.. 283
9.2.4 Water regime characterisation.................... 284
9.3 RECOMMENDATIONS FOR WETLAND RESTORATION.. 284

BIBLIOGRAPHY... 289

APPENDIX 1... 315
APPENDIX 2... 319
APPENDIX 3... 329
APPENDIX 4... 331
APPENDIX 5... 333
EXECUTIVE SUMMARY

This thesis examines the influence of ‘water regime’, or spatial and temporal patterns in the presence of water, on the floristic composition of wetlands on the River Murray in South Australia (henceforth Lower Murray). It explores the hypothesis that the composition of wetland vegetation is determined by components of the water regime, namely depth, duration and the rate and timing of flood and drawdown. This was tested by examining the influence of water regime variations on:

1) floristic composition in individual wetlands;
2) regeneration (establishment, growth, reproduction) and extirpation of species; and
3) morphological and physiological responses of species.

Two field studies and one controlled pond experiment were undertaken. In the first field study, four wetlands characterised by managed flood and drawdown and two unmanaged, permanently inundated wetlands were monitored between October 1999 and March 2001. Periodic flood and drawdown significantly changed the vegetation in the managed wetlands, whereas plants in the permanently inundated wetlands did not respond. Floristic differences between these wetlands increased as the managed wetlands were drawn down, but converged after re-filling. As a result, water regime management over this 18-month period did not consistently promote more diverse or unique florals.

The establishment and extirpation of species indicated responses to flood and drawdown governed by a) the depth, duration, timing and rate of flood and drawdown, b) the prior vegetation, as influenced by c) previous flood and drawdown events. Changes were greatest in the initial 1-3 months of flooding because of extirpation of mudflat annuals such as Centipeda cunninghamii (common sneezeweed, Asteraceae), Persicaria lapathifolia (pale knotweed, Polygonaceae) and Rorippa palustris (marsh watercress, Brassicaceae) and establishment of the submerged macrophyte Vallisneria americana (ribbonweed, Hydrocharitaceae) and emergent macrophyte Typha domingensis (cumbungi, Typhaceae).

A model was developed to predict the presence/absence of species and functional groups. It incorporates water regimes of 3, 4, 5 and 6 months duration and estimated preferences for species and functional groups in a permanently inundated Lower
Murray wetland. Predictions for species were more accurate (76-86%) than for functional groups (64-74%). Predictions were more successful as the duration of hydrograph increased because fewer predictions were made of annuals, which tolerated < 100 days of flood or drawdown. Water regime preferences proved useful for predicting the presence and absence of Lower Murray wetland plants in permanently inundated wetlands where perennial are dominant.

The second field study examined the influence of manipulated water regimes on floristic composition at sites inundated during an enhanced flood in October 2000. Vegetation at three sites was surveyed before and after the flood. Among 32 recorded species, *Atriplex vesicaria* (bladder saltbush, Chenopodiaceae), *Sporobolus mitchelli* (sedge tail couch, Graminaceae) and *Sarcocornia quinqueflora* (samphire, Chenopodiaceae) accounted for 82% of the total cover/abundance. Vegetation changes across the floodplain were due to the growth and germination of flood-tolerant and flood-dependent species (e.g. *S. mitchelli*) and the senescence of flood-insolent species (e.g. *A. vesicaria*). No aquatic plants germinated or established, despite favourable conditions, suggesting an impoverished seed bank or heavy grazing by native herbivores.

Examination of *S. mitchelli* and the perennial shrub *Muhioboeckia florulenta* (tangled ligrum, Polygonaceae) revealed that vegetative growth was the most significant response to floodplain inundation. However, these responses were not strictly aligned with elevation suggesting a non-uniform response to flooding.

Morphological and physiological responses underlying vegetation change were examined through a pond experiment. Four common emergent macrophytes - *Bolboschoenus caldwellii* (three-cornered rush, Cyperaceae), *Cyperus gymnocalotus* (spiny sedge, Cyperaceae), *Juncus articulata* (nussock rush, Juncaceae) and * Schoenoplectus validus* (river club rush, Cyperaceae) were subject to regimes of slow (1 cm d⁻¹) and rapid (5 cm d⁻¹), shallow (20 cm) and deep (60 cm) flood and drawdown. Relative growth rate was correlated with emergent photosynthetic area and root mass for all species. Culm extension enabled *B. caldwellii* and *S. validus* to maintain emergent photosynthetic area when flooded and thus growth. Similarly, root extension was a feature of these plants that maintained growth when exposed to drawdown. These responses were most pronounced when plants were subject to rapid, deep flood and drawdown. Combined with the ability to extend roots, the timing and
magnitude of stomatal conductance changes suggest that *C. gymnocaules* and *J. aridicola* may be better suited to periodic drawdown.

Optimal growth rates led to optimal investment in asexual reproduction for all bar *S. validus*, which decreased culm production despite maintenance of growth when flooded. *B. caldwellii* maintained numerical increase when slow deep flooded by reducing the proportional allocation of biomass to tubers, whereas *S. validus* sacrificed numerical increase to retain investment in rhizomes. The latter response was observed for both species when exposed to deep drawdown. No trade-off was evident between asexual and sexual reproduction for any of the study species.

The pond experiment suggests that tolerance of drawdown requires specific morphological and physiological strategies in the same way that flooding does. A further conclusion is that strategies for responding to drawdown are equally as important as strategies for responding to flooding in determining the distribution of emergent macrophytes across the littoral zone of wetlands.