Alzheimer's disease genes in zebrafish (Danio rerio)

Casper Groth

Submitted in total fulfilment of the requirements of the degree of Doctor of Philosophy

August 2003

School of Molecular and Biomedical Science
The University of Adelaide, Australia
2.4.4. Expression of psem2 in zebrafish
2.4.5. Overexpression of human PSEN1 during zebrafish embryonic development

2.5. Discussion
2.5.1. Zebrafish presenilins have both overlapping and distinct expression domains during embryogenesis
2.5.2. Overexpression of human wild-type or mutant PSEN1 in zebrafish embryos has similar effects on development

Chapter 3
γ-secretase activity controls Notch-dependent and Notch-independent neural crest development
3.1. Abstract
3.2. Introduction
3.3. Materials and methods
3.3.1. Embryos and whole mount in situ transcript hybridisation
3.3.2. Treatment of zebrafish embryos with the γ-secretase inhibitor DAPT
3.4. Results
3.4.1. Blockage of γ-secretase causes severe developmental defects
3.4.2. Anterior-posterior polarity is lost in the paraxial mesoderm when γ-secretase activity is blocked
3.5. Discussion
???????? γ-secretase inhibitor treatment and Alzheimer’s disease
???????? γ-secretase activity controls embryo development
3.5.2.1. γ-secretase may regulate both cranial and trunk neural crest development
3.5.2.2. γ-secretase controls the anterior-posterior polarity of the paraxial mesoderm

Chapter 4
The Runtz-type protease inhibitor domain is evolutionarily conserved and is retained in two zebrafish orthologues of the human Alzheimer’s disease gene amyloid precursor protein
4.1. Abstract
4.2. Introduction
4.3. Materials and methods
4.3.1. Isolation of appa and appb cDNA
4.3.2. Whole mount in situ transcript hybridisation
4.3.3. Sequence and phylogenetic analysis
4.4. Results
4.4.1. Sequence and phylogenetic analysis of zebrafish App
4.4.2. Spatial and temporal expression of app
4.5. Discussion

Chapter 5
Zebrafish fgfr2 is a member of the fgfrs eyeexpression group and is the only fgfr gene expressed at the midbrain-hindbrain boundary
5.1. Abstract
5.2. Introduction
5.3. Materials and methods

II
5.3.1. Cloning of zebrafish fgf14 cDNA
5.3.2. Embryos and whole mount in situ transcript hybridization
5.3.3. Sequence and phylogenetic analysis
5.3.4. Mapping zebrafish fgf14
5.3.5. RT-PCR analysis

5.4. Results
5.4.1. Isolation of zebrafish fgf14
5.4.2. Mapping of fgf14
5.4.3. Developmental expression of fgf14 transcripts

5.5. Discussion
5.5.1. Evolution of fgf14
5.5.2. fgf14 is the only fgf gene expressed at the MHB

Chapter 6
Conclusions

6.1. app and presenilin in situ RNA hybridization and alternatively spliced transcripts
6.2. The γ-secretase complex and presenilin function
6.3. γ-secretase, regulated intramembrane proteolysis and gene regulation
6.4. Is the fgf14-dependent signalling pathway regulated by AD-related genes?

BIBLIOGRAPHY

REFERENCES
ABSTRACT

Accumulation of amyloid β peptide (Aβ) is an early event in the cascade of neurogenerative processes leading to Alzheimer's disease (AD). Aβ is generated by enzymatic cleavages by two sequentially acting proteases, β-secretase and γ-secretase, which liberate the Aβ from its precursor, the amyloid precursor protein (APP). Aberrant processing of the APP by γ-secretase has been suggested to lead to increased formation of a neurotoxic Aβ variant and deposition of amyloid plaques, consequently leading to Alzheimer's disease. Presenilin is essential for cleavage of APP and may be the catalytic subunit of γ-secretase, an intramembrane-cleaving protease. γ-secretase is a multiprotein complex, which in addition to Presenilin consists of three other core components, Nicastrin, APH-1 and PEN-2, that constitute its biological activity. AD pathology is likely to involve the perturbation of numerous molecular mechanisms and signalling pathways, including FGF signalling.

Whereas considerable effort has been undertaken to understand the molecular pathogenesis of Alzheimer's disease, and some genes likely to play pivotal roles in the progression of the disease have been identified, fundamental aspects of its aetiology remain unresolved. Importantly, the normal functions of the major AD-related genes identified so far, and the identity of the genetic networks they interact with, are unknown. Recently it has been realised that genes associated with Alzheimer's disease, and other degenerative diseases, also play important functions during embryogenesis.
The interactions between many important signalling pathways are highly conserved during embryo development and may control cellular responses in widely different embryonic structures, such as the brain, heart and somites (Pires-daSilva and Sommer, 2003). Consequently, it is likely that some of the highly conserved AD-related genes, for example the presenilins, may be components in evolutionarily preserved signalling networks operating to control the development of many different embryonic tissues.

This suggests that investigations of the genetic mechanisms controlling developmental processes in different embryonic tissues may be a relevant approach in order to gain insight into the normal biological functions of AD-related genes and, ultimately, the cause of neurodegeneration, as well as other pathological conditions, in the adult. Thus, I decided to dissect the functions of Alzheimer’s disease genes during embryo development using the zebrafish (Danio rerio) as a model organism.

In chapter 1 our current understanding of the key mechanisms and pathways involved in AD pathology is reviewed. In chapter 2 and 4 the embryonic expression patterns of the zebrafish, presenilin and APP genes are investigated. In chapter 3 the role of γ-secretase activity during embryogenesis is analysed using a potent γ-secretase inhibitor. In chapter 5 the expression pattern of zebrafish fibroblast growth factor receptor 1, a central component in FGF signalling, is described in order to establish the foundation for further investigations of possible interactions between established Alzheimer’s disease genes and other pathways in embryonic zebrafish.