SPATIAL ANALYSIS
OF LAND USE/LAND COVER CHANGE
DYNAMICS USING REMOTE SENSING AND
GEOGRAPHIC INFORMATION SYSTEMS:
A Case Study in the downstream and surroundings of
the Ci Tarum watershed

Asep Karsidi

A thesis submitted in fulfilment of the requirements
for the degree of Doctor of Philosophy

Department of Geographical and Environmental Studies
The University of Adelaide
South Australia

May 2004
Abstract

This study is concerned with land use/land cover change detection, identification, analysis and prediction using remote sensing and GIS techniques in the downstream of the Citarum watershed and its surroundings in West Java, Indonesia. Supervised Maximum Likelihood classification of PCA and NDVI transformed images are used to classify and identify land use/land cover categories. A post-classification comparison approach was used to detect land use/land cover changes, and a Markov Cellular Automata model is then used to predict possible future land use/land cover patterns in the study area. "Leaf on" and "leaf off" phenomena of the broad leaf vegetation cover have been recognised related to dry and wet season as well as rice field (planted) and rice field (unplanted) related to growing season in the study area. Forest and plantation area were extensive in wet season and less in dry season. Rice field (planted) area was large in harvesting time and less in planting time. Settlement has increased continuously and is not influenced by season or weather. Overall, the KIA of the classification was 0.89. Settlement and rice field are the main land use/land cover types that have been changed and this is related to factors such as proximity to roads and to urban and semi-urban centres. There is an indication that land use/land cover in the study area was converted from intensive agriculture land such as rice field to settlement, rather than from less intensive uses such as open/dry land, plantation or forest. Discriminant analysis as well as overlay and simple linear analysis support factors such as proximity to roads, urban and semi-urban centres, as well as slope, as being most influential in land use/land cover change in the study area. The Markov Cellular Automata model affords a powerful descriptive and predictive model for land
use/land cover change and for future land use/land cover distribution in the study area, but it needs some adjustment in order to obtain suitable results. Markov transition, as well as suitability, maps of each land use/land cover category are created.
Contents

Abstract ii
Abbreviations and Glossary iv
List of Figures viii
List of Tables xi
Declaration xiv
Acknowledgement xv

CHAPTER ONE

1.1 Introduction 1
1.2 Aims and Objectives 7
1.3 The Context of the Study 9
1.4 Research Framework 18
1.5 Thesis Outline 21

CHAPTER TWO

2.1 Introduction 22
2.2 Defining Land use/land cover change 22
2.3 The dynamic of Land use/land cover change 23
2.4 Some aspects related to Land use/land cover change 30
 2.4.1 Land use and Demographic pressure 30
 2.4.2 Land use conflict and Regional food security 32
 2.4.3 Land use, Industry and Manufacturing 35
 2.4.4 Land use and Agriculture 37
 2.4.5 Spatial dimension of Land use/land cover change 39
 2.4.6 The Important of Land use/land cover change detection in spatial planning 42
 2.4.7 Land use evolution and demographic pressure in Indonesia 43
 2.4.8 Land use/land cover change detection and spatial planning in Indonesia 47
2.5 Conclusion 50