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Abstract

Artificial neural networks (ANNs), trained to make short term forecasts of algal
blooms in lakes and rivers, are potentially useful decision making tools for the
operational management of eutrophication. This thesis addresses the question of
whether a standardised, generic ANN model representation can be developed to
achieve this goal. It is argued that four requirements need to be addressed; 1) com-
patibility of models with existing water quality monitoring regimes, i) stability
and repeatability of training outcomes, iii) realistic and meaningful estimates of
model performance and iv) explanation of predictions.

ANN model inputs were represented as summary statistics of sliding time win-
dows. This approach was shown to increase the compatibility of typical time-
serics ANN model structures with datasets compromised by missing values and
uneven sampling intervals. To improve stability, models were represented as an
ensemble of ANNSs trained on bootstrap samples of data (ie bagging (Breiman,
1994)). It was shown that the average prediction of the bagging ensemble was
relatively unaffected by variance of the individual member models. Validation set
representation was maximised by use of leave-k-out methods. Comparative error
measures were devised to illustrate model performance characteristics relative to
“naive” controls. A sensitivity analysis through time approach was utilised to
explain the relative importance of input variables and to account complex interac-
tions between variables.

Training data was available from six sites including Lake Biwa (Japan), Burrin-
juck Dam (NSW, Australia), Darling River (NSW, Australia), Lake Kasumigaura
(Japan), Myponga Reservoir (SA, Australia) and Lake Soyang (South Korea).
These datasets were found to differ significantly from each other in terms of
environmental characteristics and data availability. Models were developed to
make one and two week forecasts. Predicted variables included chlorophyll a
concentration and cell counts of the three most abundant algal species for each
dataset. Experimental results showed that site/output specific input layers lead to
better performance than site/output generic models. Furthermore, it is evident that
ANNSs capable of non-linear processing generalise better over local (short term)
time scales, whereas perceptron models constrained to linear decision boundaries
perform better over global (long term) scales. )
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Chapter 1

Introduction

Accelerated eutrophication of freshwater lakes and rivers, as a result of human
activity, leads to increased frequency and severity of algal blooms and a succession
in algal dominance towards potentially toxic cyanobacteria (Young et al., 1996).
Algal blooms adversely affect the value of freshwaters as a natural resource by
increasing treatment costs for drinking water production, reducing recreational
amenity, causing adverse environmental effects such as reduced biodiversity and
causing economic loss to aquacultural and agricultural activities as a result of
toxin release by blue-green algae (Senate Standing Committee on Environment
Recreation and the Arts (Aust.), 1993). Furthermore, cyanotoxins have been
identified as a direct cause of human mortality (Azevedo et al., 2002) and longer
term health risks (Freitas de Magalhés et al., 2001; Ueno et al., 1996; Ueno
and Nagata, 1997). The growing awareness of the potential dangers to public
health posed by cyanotoxins has prompted calls to relieve the emphasis on water
treatment facilities by development of effective in-lake management tactics for
control of algal blooms (Burch and Nicholson, 2000).

Models that predict variables associated with eutrophication are useful decision
making tools for the development of management responses. They may be used
to set goals for strategies to limit nutrient loading (for example, Vollenweider
(1970)), or to carry out scenario analyses by which lake responses to competing
proposals are compared (Ferguson, 1997). Also, time-series models can provide
real-time forecasts of relevant variables to ensure the correct timing of a variety
of tactical responses, such as those listed in appendix A.

French and Recknagel (1994), Recknagel et al. (1997), Maier et al. (1998) and
others suggested that artificial neural networks (ANNSs) be used as an alternative
to classical empirical and deterministic approaches for modelling eutrophication
variables. ANNSs have captured the interest of ecologists because of their proper-
ties as “universal approximators” (Hornik, 1993) — that is, their ability to “learn”
models without the a—priori assumptions or simplifications of existing empirical
and deterministic approaches (Lae et al., 1999; Lek and Guégan, 1999). This
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property promises a purely empirical modelling method that captures the real-
ism of complex deterministic models without the headaches of formalising and
parameterising process equations.

In practice, ANNs have been shown to promise equivalent or superior perfor-
mance to traditional modelling approaches for a wide range of modelling prob-
lems (Lek and Guégan, 1999). Specifically, Recknagel et al. (1997) and Reck-
nagel and Wilson (2000) showed that ANNs applied to time-series modelling of
cutrophication variables, such as algal abundance, can outperform existing empir-
ical and deterministic models. Thus, it is clear that the power of ANNs as model
approximators is sufficient to meet the requirements of operational or strategic
decision making tools. However, Maier and Dandy (2000) points out that, in
practice, ANN models and methods are being applied in an ad-hoc manner leading
to sub-optimal performance, difficulties in making reasonable comparisons and,
most importantly, confusion amongst potential users.

The general thrust of this thesis is to attempt to answer the question; is it possible
to develop standardised or generic ANN model representations and methodolo-
gies for forecasting phytoplankton abundance that guarantee optimum predictive
performance, repeatability and ease of use? Since the ANN development process
model consists of a number of (possible interacting) steps (Maier and Dandy,
2000), the answer to such a question depends on identification and resolution of
not one, but a range of issues. The principle issues identified are as follows;

e Database Compatibility

Being empirical in nature, ANN modelling requires long (5-20 years) time-
series of relevant variables for training purposes. Database compatibility
refers to the problem of selecting appropriate input and output variables for
the ANN model from these time-series. It is argued that two issues need to
be addressed. Firstly, there is the problem of selecting a subset of input vari-
ables that have causative and/or correlative links with the output variables.
A review of six datasets (chapter 3) shows that each study site has a unique
set of monitored variables, which means that the task of input selection
must be addressed for each new model application. This thesis compares
and contrasts three approaches to this task; a generic model comprised of
the set of variables common to all datasets (chapter 5), a forward selection
approach and a backwards elimination approach based on data strip mining
(Embrechts et al., 2001) (chapter 6).

Secondly, there is the problem of modelling links between past, present
and future states of the system. To be useful in a tactical decision support
role ANN models should make forecasts rather than same-day predictions
(Lee et al., 2003), meaning that they must define links between present and
future states of the system by using time delay connections. However, it
is shown in the literature review (chapter 2) and the analysis of six datasets
(chapter 3) that typical monitoring data are rarely well ordered sequences of



observations — sampling is usually irregular and observations are frequently
missing. The usual approach to dealing with this issue is to interpolate a
large number of synthetic observations between the actual sample dates for
each variable.

It is proposed that modelled variables be represented not as values at dis-
crete dates, but as the summary statistic of a sliding window in time. It is
shown that such a representation is capable of approximating forecasting
models in the context of uninterpolated raw datasets. It is argued that, as
a means of ensuring compatibility between time-series ANN models and
typical datasets, the input-window representation has many advantages over
interpolation of data. Also, such a representation provides scope for further
exploration of alternative window summary approaches.

Model Stability

While reasonable model approximation by ANNs on training sets is shown
to be a straightforward task, ensuring optimum generalisation to indepen-
dent population data is somewhat more difficult. Usually, this is carried
out by tuning some determinant of ANN fitting power, such as the hidden
layer size or training time, by means of cross-validation. However, Breiman
(1996b) points out that ANNs belong to a class of inference methods that
exhibit significant instability even when regularised in this way.

It is proposed that, as suggested by Breiman (1994), stabilisation is achieved
by representing the model as an ensemble of many ANNS trained on boot-
strap samples of data (ie bootstrap aggregation or bagging). Such a repre-
sentation is hypothesised to have the effect of “cancelling out” uncorrelated,
erroneous predictions and emphasising the correlated, correct predictions
by member models of the ensemble. It is shown in chapter 4 that bagging
significantly improves modelling outcomes by reducing prediction error and
reducing sensitivity of performance to overfitting.

Performance Estimation

Accurate performance estimation is required to measure the effect of changes
to the model representation and/or methodology and to determine the suit-
ability of the model for its intended purpose. However, it is shown (chapter
2) that, in practice, performance estimation may be compromised in three
ways; poor representation of independent validation sets, the use of vali-
dation data for model selection and contamination of time-series causing
models to have unauthorised access to information from the future relative
to the current forecast period.

It is proposed that validation methods based on resampling (so called rota-
tion estimators) allow use of the entire sample for model performance esti-
mation without seriously limiting training set representation. Furthermore,
it is proposed that, when used in combination with bagging, there is no need
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to use validation data in the process of model selection. Grouping validation
samples into discrete time periods and imposing a hold-out period following
each validation block, is suggested as a means to avoid contamination of
time-series information between training and validation sets. Experiments
with two different types of rotation estimators — the leave-one-out bootstrap
(L10OB) and 20-fold blocked cross-validation (CV) — show that, in the con-
text of a time-series model, the time lag between training and validation
data has a significant affect on performance estimation outcomes.

e Transparency of Predictions

There is concern amongst ecologists regarding the black—box nature of ANNs
— that is, the lack of accompanying explanations with predictions. Trans-
parency of the model, as well as allowing knowledge discovery, enables
further validation that the model is making reasonable inferences from the
data. Sensitivity analysis is most commonly used to determine the relative
importance of input variables. However, it is argued (chapter 2) that existing
approaches to sensitivity analysis do not account for complex interactions
between input variables and do not consider the model’s characteristics
relative to the entire model input—space.

To this end, a sensitivity analysis through time technique is proposed that
takes account of the following assumptions with regards to learned models;

— Inputs are likely to have non—linear relationships with output variables.

— Inputs may have complex interactions with other input variables with
respect to relationships with output variables.

— ANNSs are inherently unreliable when asked to make extrapolations
(Geman et al., 1992).

While none of the ideas proposed are entirely original on their own, together they
represent a new approach to computational modelling based on typical environ-
mental time-series. This thesis presents a validation of this approach for a broad
range of data due to the kindness of a number of scientists and water resource
managers in donating many years of water quality monitoring data and algal
cell counts. Models are developed for a total of six sites including Burrinjuck
Dam, Myponga Reservoir and the Darling River in Australia, Lakes Biwa and
Kasumigaura in Japan and Lake Soyang in South Korea.

Organisation of Thesis

Chapter 2 introduces principles of ANN knowledge representation, supervised
learning and model development. A selection of published applications of ANNs
to time-series modelling of algal abundance is reviewed. Key issues affecting



the development of a generic model representations are identified. Resolutions to
these issues are proposed.

Chapter 3 reviews the six datasets available for this study in terms of situa-
tion, climate, morphometry, water quality and data availability. Two models are
proposed as starting points for the modelling work conducted for this thesis —
a generic model comprised of commonly available variables and a site specific
model unique to each dataset.

Chapter 4 presents results regarding the the effect of a number of ANN “meta—
parameters” on model inference properties. Specifically, this chapter describes the
effect of training algorithm, hidden layer configuration, stopping error of training
and model aggregation through bagging (Breiman, 1994) on approximation and
generalisation characteristics.

Chapter 5 comprehensively validates the generic ANN model identified in chap-
ter 3 for all six datasets at predicting a total of 21 output variables taking into
account the findings of chapter 4. A number of standardised and comparative error
measures are introduced for performing meaningful analysis of the predictive
performance of models. Finally, results of a sensitivity analysis are presented.

Chapter 6 investigates two approaches to identification of optimum site specific
models. Also, an investigation is carried out to determine the interaction between
the validation method, the input layer type and the non-linear processing capacity
of the ANN on model performance outcomes.

Chapter 7 summarises the achievements of the thesis.
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Chapter 2

Development of ANN Models of
Phytoplankton Abundance

2.1 Introduction

This chapter introduces the principles of model representation and supervised
learning by ANNs. It also reviews how ANNSs are being applied to the problem of
modelling the dynamics of phytoplankton abundance in lakes, rivers and marine
ecosystems. Additionally, a number of proposals are outlined for improving the
compatibility of ANN models with typical datasets, increasing the stability of
model inference and improving the accuracy of model performance estimations
and knowledge discovery.

2.2 Knowledge Representation and Inference by Ar-
tificial Neural Networks

2.2.1 ANN Structure and Information Processing

ANNSs are derived from theories of brain structure and function and are intended
to model:

e the ability of the brain to apply principles of parallel processing in solving
difficult problems such as image recognition faster than conventional serial
computing devices.

e the brain’s property of self adaptation — that is, the ability to learn from
experience.

(Cheng and Titterington, 1994)
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Figure 2.1: Schematic of a neuron (after Cheng and Titterington (1994))

Figure 2.1 shows a diagrammatic representation of the fundamental processing
unit of the brain — a neuron. Neurons are comprised of a cell body, or soma
and two types of radiating branching structures called dendrites and axons. In
the brain, neurons are highly networked with the axons and dendrites of many
neighbouring cells being interconnected by means of electro-chemical interfaces
called synapses.

The sequence of events in neural processing commences when an electrical dis-
charge through an axon (ie an action potential), causes the release of neuro-
transmitters across the synaptic cleft separating the transmitting axon from the
receiving dendrite of a connected neuron. The neurotransmitters are bound on
the receiving side of the synapse causing the induction of a small electric charge,
called a post-synaptic potential or PSP, in the relevant dendrite. Incoming PSPs
from a number of receiving synapses diffuse from the dendrites into the soma
where they have either an excitory or inhibitory effect on the total charge of the
cell. When the somatic potential reaches some threshold level, an action potential
is discharged through the axon stimulating the release of neurotransmitters in
“downstream” synapses. Learning is thought to be caused by the adaptability, or
plasticity of certain aspects of the brain’s structure thus allowing the alteration of
neural processing as a result of experience. A key element of the brain’s plasticity
is the efficiency of the synaptic interfaces between interconnected neurons (Amit,
1989).

McCulloch and Pitts (1943) formalised the theory regarding the behaviour of a
single neuron into a simple mathematical model (ie the McCulloch-Pitts neuron)

y=sgn (WO + Z(xiwi)) 2.1)

i=1



2.2. KNOWLEDGE REPRESENTATION AND INFERENCE BY ANNS 9

In this model, x; is a boolean representing the firing of a neuron connected “up-
stream”, w; is the synaptic efficiency (generally called a weight) with respect to x;,
wp represents the threshold of the soma at which an action potential is fired and
y is a boolean indicating whether or not the neuron has fired at a given time step.
The input-output form of the model neuron may be generalised as;

Y= f(¢(X, W)) (2.2)

Including both ¢ and f in the model is useful for identifying the combination
and the activation components respectively (Cheng and Titterington, 1994). ¢
(the combination function) is a vector to scalar function calculating the total input
activation (or the total post synaptic charge, to follow the neuron analogy). f, (the
activation function), calculates the neuron output from the activation (the so-called
firing rate). In practice, ¢ is generally a summation, whereas f is commonly
substituted for one of any number of arbitrary linear, non-linear or step functions
including;

e f(a) = sgn(a), producing binary (41) output.
o f(a)= (sgn(a)+1)/2 producing binary (0/1) output.

e f(a) = (1+e9)~! producing continuous non-linear output between 0 and
1.

e f(a) = tanh(a) producing continuous non-linear output between -1 and 1.
e f(a) = a producing linear output (the identity function).
e f(a) = |a| producing non-negative output.

A key element of the McCulloch-Pitts model is inclusion of time in the form
of an arbitrary delay between presentation of the inputs and the processing of
the output. McCulloch and Pitts (1943) (cited by Amit (1989)) proposed that
when the model neurons are combined into temporal sequences, with the outputs
of one neuron feeding the inputs of another, the activity of the output neuron
will be the truth value of any binary logic operation represented at the input
neurons. More recently it has been shown that ANNs consisting of 3 or more
layers of neurons (ie an input layer, an output layer and an arbitrary number
of interceding hidden layers), where the activation functions of the hidden layer
neurons are continuous and non-linear, are capable, given sufficient hidden layer
neurons, of mapping any continuous function between inputs and outputs (Hornik,
1993). This form of ANN, called a feedforward multi-layer perceptron (MLP), is
represented diagrammatically in figure 2.2.

Cannon and Whitfield (2002) mathematically represent an MLP thus;

y=Y tanh (inlw,-j+1b,-> 2w;+2b (2.3)
i i



10 CHAPTER 2. ANN MODEL DEVELOPMENT

input layer hidden layer 1 hidden layer n output layer

Figure 2.2: Feedforward multilayer perceptron (MLP)

In this model, x; represents the input variable, 'w; ; and 2y ; are the input-hidden
and the hidden-output layer weights and 'b; and ?b are the input-hidden and
hidden-output layer biases. It is assumed that tanh is the activation function of
the hidden layer neurons and that the output layer uses the identity function.

In terms of information processing properties, a single artificial neuron (ie, a per-
ceptron) is functionally equivalent to a multiple linear regression equation (Cheng
and Titterington, 1994). Regardless of the activation function used, a perceptron
with n inputs is able to define a single decision boundary, or hyperplane, of n — 1
dimensions with respect to the n-dimensional input space (Wasserman, 1989). The
weights wy to w; each represent the slope of the decision boundary with respect
to the respective inputs. The threshold (otherwise known as bias) represents the
intercept.

Figure 2.3 shows that the type and complexity of decision boundaries mapped
by a MLP depends on the number and configuration of hidden layer neurons. A
perceptron 1s limited to classification of linearly separable functions. Two units
in a single hidden layer allow the MLP to map open convex decision boundaries.
Three or more units in a single hidden layer allow the MLP to map closed convex
decision boundaries, where the upper limit to complexity depends on the number
of hidden units used. When hidden layer units are arranged into two or more
layers, the MLP can approximate concave decision boundaries. Thus, it can be
concluded that while the processing and memory of each neural processor in an
ANN is very simple, when arranged to allow parallel processing they are poten-
tially powerful computational devices capable of mapping non-linearly separable
classifications (Wasserman, 1989; Hinton, 1992)
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Figure 2.3: Effect of MLP architecture on decision boundaries for a two input
model (after Wasserman (1989))
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2.2.2 Supervised Learning by ANNs

The learning, or approximation, problem describes the task of mapping an m-
space to any n-space within a given distortion criteria and time limit (Takahashi,
1993). Moody (1991) defines the approximation problem as follows; given a set
of real input/output pairs & = {E/ = (x,y);i = 1,...,n} generated by the “signal
plus noise model” outlined in equation 2.4, the task of the approximation exercise
is to estimate a model fi(x) of u(x) on the basis of training set &.

Y = p(x') +¢ 2.4)
where y' = dependent variable
x = independent variable sampled with probability density Q(x)
€ = independent noise sampled with density ¥
u(x) = anunknown function

2.2.2.1 Historical Context

Rosenblatt (1962) outlined the single-unit perceptron convergence theorem show-
ing that if a training set is linearly separable by a single hyperplane into two
distinct classes, application of the generalised delta rule (Widrow and Hoff, 1960)
to updating connection weights allows a perceptron to approximate the hyperplane
in a finite number of steps. However, Minsky and Papert (1969) pointed out the
inability of perceptrons at mapping non-linearly separable functions, such as the
exclusive and/or (XOR) (see figure 2.4), places a limitation on their usefulness.
It was proposed that such a mapping is possible with multi-layered perceptrons
(MLPs), but at the time no suitable training algorithm had been devised for such
architectures.

This limitation was overcome by the development of an adapted version of the
generalised delta rule that was capable of addressing the approximation problem
for MLPs. This discovery was made independently by Werbos (1974), Parker
(1982) and Rumelhart et al. (1986). The latter authors succeeded in introducing
the approach, which they called backpropagation, to a wide audience leading to a
resurgence of interest in ANNSs since the late 1980s (Hecht-Nielsen, 1990).

2.2.2.2 Backpropagation

Backpropagation is a recursive technique based on the principle of gradient de-
scent. As the name suggests, gradient descent involves finding the slope of the
error with respect to the network weights and modifying the weights by an amount
in negative proportion to the slope. This process is iterated until the minimum of
the goal function with respect to the network weights is reached (ie convergence).
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Figure 2.4: Classifying the exclusive OR (XOR)

Thus, if the prediction error with respect to the weights is E(w), gradient descent
can be expressed according to the recursive rule;

_ 4 OEwi())
P aw,-
where ¢ is a positive integer representing the training data iteration number, p is
a small positive constant called the learning rate and JE (w;(t))/ow; is the partial
derivative of E with respect to the weight on input i. Now, given a random starting
point w(0), gradient descent implements a search strategy whereby a sequence of

weight vectors;

wile+1) = wil?) 2.5)

is generated such that;
E[w(0)] > E[w(1)] > E[w(2)] > ... > E[w(t)] > ...

(Hassoun, 1995)

Thus, as ¢ tends to infinity and p tends to 0, gradient descent is guaranteed to
converge on a local minimum on the error surface (Hinton, 1992). Backpropa-
gation applies the chain rule of differential calculus to find the slope of the goal
function with respect to the network weights. In an ANN with i inputs, j hidden
neurons and k output neurons, OE /0w j; (ie the slope of the error with respect to
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the weight of the connection between hidden unit j and output unit k), is calculated
as follows;

oFE JE dy, d
I OF Dk 94k (2.6)
OWjk  cages Ok Oak Oy
where a is the total input and y is the total activation of any given unit. Further
expansion to find 0 /dw;; (ie the slope of E with respect to the weight connecting
input unit i to hidden unit j) can be achieved by further application of the chain

rule;

a_E_ aﬁ%%%% 2.7
aw,-j_ L ayk 8ak ayj aa]- 8w,-j '

Calculation of partial derivatives of E with respect to connection weights, using
the chain rule, requires that the error term and the activation function are both dif-
ferentiable. Hence a continuous activation function, such as the logistic function
f(x) =(14ex)"1, is commonly used. Error is usually calculated thus;

1 /
E=) s0-Y) (2.8)

cases

where y is the desired output and y' is the actual output.

Each presentation of training examples undergoes two phases. Firstly, unit acti-
vations, given a vector of input examples and the current network weights, are
propagated forwards from the input layer to the output layer. Secondly, the er-
ror derivatives, given the target values and activations, are propagated from the
output layer back to the first hidden layer (Weiss and Kulikowski, 1991). At each
backward propagation step, connection weights are updated according to equation
2.5

2.2.2.3 Alternatives to Backpropagation

There are now many learning algorithms for feedforward MLPs that are claimed to
be considerably more efficient than conventional backpropagation. In particular,
methods that utilise second order information of the error surface (ie the curva-
ture) are theoretically able to calculate step size and direction more accurately
leading to faster training (Alpsan et al., 1995). Pandya and Macy (1996) point
out that such second order methods eliminate some of the persistent drawbacks of
backpropagation that cause slow learning (eg local minima and shallow plateaus
on the error surface).

There are many approaches to utilising second order information. One method is
based on Newton’s method,;
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w1 =w—H ' G E (2.9)

where H ! is the inverse of the Hessian matrix of second derivatives. A problem
with this approach is that the memory and time requirements needed to calculate
H~! rise exponentially with the number of connection weights in the ANN (Maier
and Dandy, 2000). This processing bottleneck can be overcome by so-called
“quasi-Newton” methods that estimate H ~1 in a more computationally efficient
manner (Alpsan et al., 1995). Alternatively, conjugate gradient methods, such as
Mgller (1993), utilise line-search methods to determine the step size and analytical
techniques to determine the optimum momentum.

Whilst second order methods are theoretically more efficient than first order ap-
proaches such as backpropagation, Saarinen et al. (1993) argues that they have
two disadvantages that may lead to slow training. Firstly, they have a higher pro-
cessing and memory overhead per iteration than backpropagation. Secondly, poor
“numerical conditioning” of many datasets may lead to bad training performance.

2.2.3 Unsupervised Learning

In contrast to supervised training methods, unsupervised training is not guided
by known output or “answers” in the training data. This approach stems from
the ideas of Hebb (1949), who proposed that repeated firing of a neuron would
affect the efficiency of firing of neighbouring neurons and that the connection
between two neurons strengthened with simultaneous firing. Examples of ANNs
that perform unsupervised learning include the Self Organising Map (SOM) (Ko-
honen, 1982), the Hopfield Net (Hopfield, 1982) and the Boltzmann machine
(Ackley et al., 1985). In practice, unsupervised learning is often used to cluster
objects on the basis of perceived closeness in n-dimensional hyperspace (Lek
et al., 2000). Examples of applications of unsupervised ANNSs include Chon et al.
(1996), Foody (1999) and Brosse et al. (2001). Since the present study is focused
on time-series-models for prediction of phytoplankton abundance, the discussion
will be limited to supervised ANNs.

2.3 Developing Predictive Models — An ANN Model
Development Process-Model

It is proposed that the basic supervised ANN model development procedure, as
carried out by many practitioners, can be reduced to a series of hierarchical steps
illustrated in figure 2.5. This process is relatively straightforward, with a number
of decisions or outcomes at each step. The starting conditions for most applica-
tions are a database of observations and assumptions, or hypotheses, regarding
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input-output relationships between variables. In general, the desired end point of
the process is a model that may be used to generate predictions or to elucidate
knowledge. The intervening steps comprise the model inference process, which,
for the purposes of this discussion, have been decomposed into approximation and
generalisation sub-tasks. This section reviews each of the steps in the procedure
outlining the issues and problems to be dealt with.

v

< >

Database

Knowledge
Hypotheses

.-*""Inputs
Model Design * Outputs
*~.. Time component

.-=*"Model architecture
Training algorithm
*~+._ Data conditioning

-

Approximation

L .+=*"" Complexity
Generalisation ‘.. Bias
-=*"" Test set representation

Validation %

YES

Figure 2.5: A process model for ANN model development.
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2.3.1 Step 1 - Model Design

This step involves selection of independent and dependent variables, from a database,
that will represent the input and output layers respectively of the ANN model.
In general, practitioners choose inputs that are known to have some deterministic
link with the outputs (Maier and Dandy, 2001). Scardi (2001) proposed that inputs
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known to have a correlative rather than deterministic relationship (ie so-called “co-
predictors”) may also benefit modelling outcomes. Where the database used is a
time-series of observations and it is hypothesised that relationships exist between
past and present states in the data, some component representing these links needs
to be built into the model design. A commonly used approach is the “Time Delay
Neural Network™ or TDNN (Waibel, 1989) whereby the inputs were represented
with varying delays in time relative to the output variable. This enables the ANN
to learn the dynamic properties of a set of moving inputs. Figures 2.6 and 2.7
compare the structures of ANN models with and without time-delay connections.

Output variable

Output variable (quantity)

—_— }.
Time
ANN - 3 inputs, 1 output
Input variables
o) e
> e
= ¥ N
g - :
2. \
P
E ] ’2 4 /.—
) . \ /
= T R ) ST k \‘\
=<1 A
>
o
3
B
A
Time

Figure 2.6: The “same day predictor” neural network structure.

One of the problems facing practitioners when designing ANN models is the so-
called “curse of dimensionality”’, whereby the state-space increases exponentially
with an increase in the dimensionality of the problem (Bellman, 1961). According
to Sarle (2001), excessive input dimensionality causes 2 problems;
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Figure 2.7: The TDNN structure with a single lag for all inputs.

1. Poor performance of ANN models as a result of being focused on irrelevant
regions of the state space.

2. Prohibitive data requirements for discovery of the relevant regions of state
space by the ANN.

According to Maier and Dandy (1997), these problems are amplified when train-
ing TDNNs since there is essentially no upper limit to the number of lags that may
be included for each input variable. These authors demonstrated empirically that
improvement in modelling outcomes can be achieved by reducing the problem
dimensionality. Suggested approaches included guiding input selection by rele-
vant domain knowledge, adding inputs in a stepwise fashion and implementing
analytical techniques to discover input relevance a-priori (such as Haugh and Box
(1977)).

Embrechts et al. (2001) devised a feature selection method called “data strip



2.3. AN ANN MODEL DEVELOPMENT PROCESS-MODEL 19

mining”. This approach compares the bootstrapped sensitivity of the candidate
inputs with a dummy input drawn from a random distribution. Inputs that are
less sensitive than the dummy inputs are deemed to be irrelevant to the model and
are discarded. The process is iterated until only relevant inputs remain. These
authors showed that data strip mining is capable of identifying 35 relevant inputs
from a feature set of 300-1000 variables, leading to significantly improved model
performance.

Olden and Jackson (2000) reviewed a variety of model selection methods com-
monly used for the purposes of identifying variables for multiple regression stud-
ies. These included forward selection, backwards elimination, stepwise selection,
exhaustive search and bootstrapping. They used Monte-Carlo simulation to show
that all model selection methods are biased in that they include irrelevant variables
or exclude relevant variables. They found that the nature of bias varies according
to the quantity of data available for model inference. It was found that where
60 or more records were available, a bootstrapping approach was the least biased
approach to model selection in the context of multiple regression.

Recurrent neural networks (RNNs) (Pineda, 1987; Elman, 1990; Connors et al.,
1994) have been proposed as a better approach to modelling sequences of data
such as time-series. RNNs implement a feedback loop that uses hidden to output
layer activations as additional inputs to the model. This provides the RNN with a
hidden “temporal context” that is supposed to improve performance in the context
of time-series data. Examples of time-series modelling applications using RNNs
to predict phytoplankton dynamics include Jeong et al. (2001), Walter et al. (2001)
and Jeong et al. (2003).

2.3.2 Step 2 — Model Approximation (Training)

This step is concerned with the issue of ANN learning, which is referred to as the
approximation problem (Moody, 1991). The general principles of ANN learning
by gradient descent based methods are described above in section 2.2.2. This
section reviews some of the key decisions to be made when configuring learning
algorithms and some of the causes for learning failure.

2.3.2.1 Numerical Conditioning

Analytic results by Saarinen et al. (1993) showed that learning by ANN training
algorithms is inhibited by numerical ill-conditioning of the Jacobian matrix (ie the
matrix of second derivatives of the prediction error with respect to the network
weights and biases). It was concluded that “rank-deficiency” of the Jacobian
causes the training algorithm to retrieve incomplete search information resulting
in prolonged training. An outcome of this conclusion is that network configu-
rations that do not solve a problem exactly are not necessarily parsimonious in
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terms of their parameterisation. Thus they may exhibit redundancy as a result of
the ill-conditioning of the problem. According to Van Der Smagt and Hirzinger
(1998), the ill-conditioning is reflected by many saddle points and flat areas on the
error landscapes.

Van Der Smagt and Hirzinger (1998) suggests that stochastic learning methods
can overcome the problem of ill-conditioning. However, they concede that such
methods are not well suited to problems where rapid training is required. Haykin
(1994) made the following suggestions for overcoming ill-conditioning where
gradient descent based training methods are used;

I. Every adjustable network parameter (ie weight) should have its own learn-
ing rate parameter.

2. Every learning rate parameter should be allowed to vary from one iteration
from the next.

3. Similar dw signs on consecutive iterations should cause the learning rate to
be increased.

4. Dissimilar dw signs on consecutive iterations should cause the learning rate
to decrease.

Sarle (2001) states that preprocessing of input data may have a positive influence
on the conditioning of Hessian and Jacobian matrices leading to superior learn-
ing performance — particularly where gradient descent based training algorithms
such as backpropagation are utilised. It is suggested that standardising inputs, so
that they have a mean of 0 and a standard deviation of 1, is beneficial to ANN
learning. This is because, providing ANN connection weights are initialised to
small random values, the hyperplanes described by the hidden layer units will
effectively pass through the data cloud thus avoiding areas on the error surface
that are not conducive to learning. Sarle (2001) concludes that Saarinen et al.
(1993) overstated the effect of ill-conditioning on ANN learning because in their
empirical investigations, they do not standardise input data.

2.3.2.2 Incremental vs Batch-Mode Training

Learning is termed as being either incremental or batch-mode, depending on
the frequency of backward propagation of error derivatives. In incremental or
on-line training, back propagation steps (and thus weight updates) occur with
each presentation of a random vector from the training sample. On the other
hand, batch or off-line training conducts the backward propagation step after
presentation of the entire database of training vectors.

Haykin (1994) and Bertsekas and Tsitsiklis (1996) argue that incremental mode
training has a number of advantages over batch mode training. The stochasticity
introduced by random selection of training records makes the trajectory taken
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through weight space variable. This has the benefit of making entrapment of
training at local optima less likely. Also, incremental learning potentially has
a much lower computational overhead on large training sets than batch-mode
training leading to faster training (eg see results of Alpsan et al. (1995)). Despite
these advantages, the stochasticity of incremental training means that, unlike batch
mode methods, it is not conditionally guaranteed to converge at a minimum in the
cost function (Gori and Tesi, 1992).

2.3.2.3 Training Meta-Parameters: Learning Rate and Momentum

The approximation characteristics of backpropagation are highly sensitive to the
learning rate (p) and momentum (0) meta-parameters (Weiss and Kulikowski,
1991). Large p leads to rapid progression of learning towards the minimum of
the cost function (Adeli and Hung, 1995). However, it also causes convergence
on a “limit cycle” of oscillations around but not on the minimum (Bertsekas and
Tsitsiklis, 1996). Small p on the other hand leads to a smoother more accurate
trajectory through weight space and convergence on a limit cycle closer to the
minimum. However if p is too small, training time may be excessively long
(Haykin, 1994). Clearly there is a need to find a compromise value that enables
reasonable training times, but is not subject to unstable, oscillatory behaviour.
Most authors agree that a good value of p tends to be problem specific.

The performance of backpropagation is significantly improved by momentum. In
momentum training, the current weight update is the sum of the calculated weight
update and a proportion of the previous weight update as follows;

I
Awt = + (XAW[_] (2 10)

_pE
where o is the momentum coefficient. This approach (sometimes called the “heavy
ball” method (Bertsekas and Tsitsiklis, 1996)) considers second order information
about the error surface using a one step memory. This makes it computationally
far cheaper than more complex algorithms, such as Newton’s method, that need
to compute matrices of second order derivatives (Alpsan et al., 1995). Momentum
endows backpropagation with the following properties;

e Filtering of higher frequency variations of error surface thus reinforcing
overall training direction (Gallant, 1993; McClelland and Rumelhart, 1988;
Bertsekas and Tsitsiklis, 1996).

e Acceleration of learning through regions of the error surface that have sim-
ilar slope.

e Stabilisation of oscillatory behaviour in learning (Haykin, 1994).

e Avoidance of shallow local optimum on the error surface (Haykin, 1994).
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Figure 2.8: Example of global and local minima of f(x) = sin(1/x).

2.3.2.4 Local Minima

A potentially major source of training error is caused by the fact that gradient
descent does not guarantee global optimisation of the cost function. Global op-
timisation in the context of ANN approximation can be defined as the problem
of finding a value of the weights w* such that the cost function E(w*) takes on
the extreme minimum value. The problem is that the surface of the cost function
E(w) may contain local optima. w* is defined as being a local optimum of E
if E(w*) < E(w) for all w such that ||w* — w|| < € for some & > 0 (Hassoun,
1995). Figure 2.8 displays an example where the aim is to find the value x which
minimises f(x) = sin(1/x) where x € [0.05,0.5]. Assuming that a gradient descent
based method is used to find the minimum, if x(0) € [0.05,0.13], the minimum
converged on will be one of the two local minima on the left hand side of figure
2.8 and not the global minimum in the centre.

According to Gallant (1993) and McClelland and Rumelhart (1988), local optima
may present a greater problem to learning in low dimensional problems, since
higher dimensional problems permit a greater chance of escape. Furthermore,
Gori and Tesi (1992) point out that the linearity of the function underlying the
data may also affect the propensity for entrapment at local optima, since linear
functions do not have this problem.

Several approaches have been suggested for dealing with local optimum. Many
authors point out that a certain level of stochasticity in the optimisation procedure
can help “shake” the weight vector out of shallow “hollows” in the objective
function. This can be achieved by the use of “global” optimisation procedures
such as genetic algorithms or simulated annealing, in combination with “local”
methods such as gradient descent (eg Masters (1994)). Haykin (1994) points
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out that stochasticity introduced by incremental weight updates instead of batch
updates during gradient descent can be helpful. Another approach is to train with
many random starting conditions and allow the user to choose the best approxima-
tion. Momentum in training is able to carry training through shallow local optima
(Haykin, 1994). Gallant (1993) suggests that sufficiently high dimensionality of
the problem definition will make entrapment at bad optima unlikely.

2.3.3 Step 3 — Generalisation

The generalisation problem describes the task of finding a model estimation that
achieves reasonable prediction accuracy on population data outside of the training
sample. Moody (1991) defines the generalisation error as the expected error
Ely(x),7i(x)] on new data taken over all possible training sets of size n and all
possible test sets, where fi(x) is the model estimation. This author points out
that all possible training sets should be considered in estimating E because u
is estimated from a finite, noisy, training sample, meaning that it is an implicit
function of the random variables {&;i = 1,...,n}.

The generalisation performance of ANNs is known to be influenced by the re-
lationship between the complexity of the mapping achieved and the number of
training set records available. Theoretical studies suggest that generalisation is
most likely when the quantity of training data, relative to the size or complexity
of the ANN model, is large (Abu-Mostafa, 1989; Kung, 1993; Nejad and Gedeon,
1995). If this condition is not met, the ANN may exhibit a condition characterised
by accurate mapping of training set data, but poor performance on independent
population data. This behaviour, known as overfitting, is a result of high model
variance caused by the large number of parameters available to fit the data (Geman
et al., 1992). On the other hand, if there is insufficient ANN complexity for the
approximation task at hand, the model will be underfitted, leading to consistent
errors on training and test set data characteristic of prediction bias. Therefore, the
task of maximising the generalisation ability of ANN models is one of finding the
right compromise between too little or too much model complexity to optimise
the bias/variance tradeoff. This problem, described by Moody (1991) as the
minimisation of prediction risk, is illustrated in figure 2.9.

Traditionally the key to achieving this minimisation task has been to bias the
ANN by limiting the model complexity somehow (Cannon and Whitfield, 2002).
According to Prechelt (1998), there are two widely applied approaches to limiting
model complexity to prevent overfitting;

1. Reduce the number of dimensions in the parameter space (ie reduce the
number of connection weights).

2. Reduce the size of the dimensions in the parameter space (ie reduce the
magnitudes of connection weights).
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Figure 2.9: Minimisation of prediction risk (after Moody (1991)).

A number of approaches to achieving the first of these options have been ap-
plied. According to Prechelt (1998), these include greedy constructive learning
(eg Fahlman and Lebiere (1990)), pruning (eg LeCun et al. (1990); Hassibi and
Stork (1993); Levin et al. (1994)) and weight sharing (eg Nowlan and Hinton
(1992)). Techniques for achieving the second option include regularisation by
weight decay (eg Krogh and Hertz (1992); Weigend et al. (1991)) and early stop-
ping of training (eg Morgan and Bourlard (1990)). Prechelt (1998) states that
out of these techniques, early stopping is the most widely applied because it is
well understood and relatively easy to implement. Finnoff et al. (1993) showed
that early stopping produces superior outcomes in terms of model performance to
other methods.

A key problem with these techniques is how to determine the optimum com-
plexity for a given dataset. Analytical work that considers quantities such as
the Vapnik-Chervonenkis (VC) dimension (Vapnik and Chervonenkis, 1971), the
Akaike Information Criterion (AIC) (Akaike, 1969) or Bayesian prior probabil-
ities, have been shown to be potentially useful. However, Moody (1991) points
out that, in practice, their utility is limited by two problems; firstly, the calcula-
tions involved may be very difficult and secondly, they frequently give worst case
bounds of network complexity that may be inappropriate for many applications.
Practitioners are therefore generally left to determine complexity empirically by
cross-validation; either by manual “off-line” determination or by some automatic
“on-line” procedure (de la Maza, 1991).
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The criteria for empirically determining optimum parameterisation is generally
ad-hoc (Prechelt, 1998). Breiman (1996b) points out that in the context of limited
data, selection of the optimum regulariser (ie, a model smoothed by limiting
complexity) is subject to “predictive loss” arising from inaccuracies of cross-
validation. Predictive loss is defined by these authors as the difference in error
rate between the modeller’s selection based on cross-validation and the “crystal
ball” selection (ie where unlimited test data is available). It is highest for unstable
inference methods, such as ANNs, where small changes in training sets and/or
learning processes can cause large changes in models (Breiman, 1996b). To
combat predictive loss and model instability in general, Breiman (1994) proposed
bootstrap aggregation, or bagging (from bootstrap aggregation). In bagging, the
model representation is defined as an ensemble of perturbed predictors, where the
aggregation is conducted by voting or averaging the outputs of the members of
the ensemble. This proposal is summarised as follows;

Given a learning set £ consisting of data {(y,,x,),n=1...N} where
y is a response variate to input x, we can form a predictor @(x, L).
If we are given a sequence of learning sets {£;}, where cach set is
N independent observations form the same underlying distribution as
L, it is possible to obtain a better predictor by taking the average
of @(x, L) over k — ie @4(x) where A denotes aggregation. Since
most applications only have a single learning set £ available without
replication, a simulated aggregation can be made by taking repeated

bootstrap samples { LB} and forming {¢(x, £B)} 1.

Breiman (1994) showed that the aggregated model @4 is always better than ¢
in theory, although the amount of improvement depends on the extent of variation
between individual models. For unstable classifiers, aggregation is shown to make
large improvements, whereas the improvements for relatively stable inference
methods are generally slight. According to Andersen et al. (2001), bagging works
best when errors between variables and predictions are uncorrelated, which is
most likely when using complex predictors. Cannon and Whitfield (2002) and
Wilson and Recknagel (2001) showed that the stabilising effect of bagging on
ANN learning reduces or eliminates the problem of increasing variance caused
by overfitting. Thus, it can be hypothesised that bagging may even eliminate the
need for a model selection procedure on the basis of complexity.

Cannon and Whitfield (2002) proposed that bagging promotes greater data effi-
ciency by reducing the importance of cross-validation to determine stopping error
or hidden layer configurations. Furthermore, it complements the “leave-one-out
bootstrap” error estimator (Efron and Tibshirani, 1997), where the “out of bag”
records not included in each bootstrap sample (on average, 37% of L) are used as
validation set data. Embrechts et al. (2001) points out that another advantage of

11t is assumed that the bootstrap distribution, taken by randomly sampling N samples from £
with replacement approximates the distribution underlying £. See Efron and Tibshirani (1993) for
more information about bootstrap samples.
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bagging over early stopping is that it overcomes the effects of model instability
and thus variance resulting from different initialisation of network weights be-
tween runs. However, Breiman (1994) points out that the downside to the gains
in model performance and data efficiency is the ioss of a simple interpretable
structure.

Empirical evidence from Lawrence and Giles (2000) and Alpsan et al. (1995)
suggests that the training algorithm used may also have a significant impact on
the generalisation performance achieved by an ANN. Lawrence and Giles (2000)
compared the performance of backpropagation, conjugate gradients and a polyno-
mial approximation method at undertaking a simple curve fitting exercise. They
found that backpropagation was the only algorithm to achieve good performance
over the entire function without overfitting. It was reasoned that backpropagation
is biased towards smoother solutions because of difficulties in learning the larger
connection weights required by relatively complex, discontinuous mappings. Alp-
san et al. (1995) compared many different learning algorithms at learning a real-
world medical problem and found that backpropagation trained in batch mode
produced better generalising ANNs than any more advanced algorithm such as
the “modified backpropagation algorithms” or second order training methods.

2.3.4 Step 4 — Model Validation

The empirical check of model performance is an important stage in the overall
ANN model development process. It enables the modeller to estimate perfor-
mance on newly sampled data and thus determine how well the ANN is gen-
eralised. It is emphasised by Weiss and Kulikowski (1991), Flexer (1995) and
others that a resubstitution approach, whereby the model error rate is estimated
as the performance of the ANN on the training set, is not an acceptable means
of validation because it leads to an optimistically biased expectation of model
performance. Therefore, the generally recommended approach is cross-validation
(Stone, 1974), where the model error rate reported is calculated on an independent
validation set sampled from the same distribution as the training set but held out
from training.

According to Weiss and Kulikowski (1991) and Flexer (1995), when data is lim-
ited, splitting the sample into training and validation subsamples may result in
suboptimal performance. This is because the data requirements for a statistically
significant validation set may deplete training set representation to the point where
model inference is impaired. These authors suggest the use of a so-called rota-
tion estimator. This approach (often referred to as leave-k-out cross-validation)
divides the data into k equally sized subsamples. Each subsample is used in turn
as a validation set while the remainder are pooled as a training set.

Frequently, there is a need to empirically tune meta-parameters related to ANN
learning to obtain optimum model performance. This is particularly the case
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Table 2.1: Minimum requirements for evaluation of ANN model (after Flexer
(1995))

Separate train and test set.

Computation of multiple runs to avoid random influences in

training set composition, trajectory through weight space and

weight initialisation.

3. A third independent validation set where parameter tuning is
performed.

4. Reporting of mean, variance and confidence intervals of
performance measures.

5. Computation of statistical tests (¢-test) for performance compari-

son.

[\

where “early stopping” of training is utilised to bias the ANN model, since there is
a need in this case to empirically determine the stopping criteria Prechelt (1998).
Flexer (1995) points out that such tuning necessitates the use of a third indepen-
dent dataset to assess the effect of the tuning parameters, since the use of the
validation set to choose between candidate models will make performance esti-
mations optimistically biased. Mosteller and Tukey (1977) refer to this approach
as double cross-validation, although many ANN practitioners refer to it as simply
“cross-validation”. Flexer (1995) further suggests that where meta-parameter
tuning is carried out, statistical inference is necessary to verify that the observed
effects on model performance are real and not due to random chance. Thus,
conclusions about meta-parameter effects must be inferred statistically from a
distribution of models.

In summary, Flexer (1995) proposes a list of minimum requirements for evaluation
of ANN models, which are outlined in table 2.1.

2.3.5 Step 5 - Knowledge Discovery

Explanation of model predictions is generally seen as a priority by ecologists. A
frequent criticism of ANNs is that they are a “black-box” approach to modelling,
since the internal state of the model is generally considered to be hidden. How-
ever, a review by Olden and Jackson (2002) showed that a number of approaches
have been developed to elucidate knowledge from trained ANNs in an ecological
context. These authors state that since the contribution of each input variable
depends on the connection weights within the ANN, analysis of these weights,
either directly or indirectly, is the key to knowledge discovery from ANNs.
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Sensitivity analysis of trained ANNSs to quantitatively determine the effect of each
input variable on the output is the most widely employed approach to knowledge
discovery. Each input is varied in turn to determine its effect on the output variable
while the remaining input variables are held or “blocked” at set values. According
to Olden and Jackson (2002) a commonly employed form of sensitivity analysis
is Lek’s algorithm (Lek et al., 1996) whereby “response curves” are determined
by varying each input across a number of intervals of that input’s range. These
authors implemented this approach while holding the blocked values at 20th,
40th, 60th and 80th percentiles in order to illustrate the interactions between input
values.

Other variations of the sensitivity analysis procedure employed by ecologists in-
clude an approach by Sivonen and Jones (1999) where small quantities of white
noise were added to the input of interest, while the remaining inputs where swept
across the entire database. Schleiter et al. (1999) used a “senso-net” method
employing an additional weight for each input neuron representing the relevance
of that variable. These sensitivities were then adapted by the training process,
enabling an effective online feature reduction system. Recknagel and Wilson
(2000) used a scenario analysis technique that grouped input variables into rel-
evant subsets (such as physical or chemical conditions). The effects of changes to
these subsets on the output variable were then observed.

Statistical validation of the relationships observed by sensitivity analysis was first
performed by Baxt and White (1995). In this application, the bootstrap sampling
was used to generate 1000 perturbed training sets from which 1000 ANN models
were trained. Sensitivity analysis of each bootstrap model created distributions of
effects. Statistical testing was then used to determine the significance of the ob-
served effects of inputs on the output variable. Embrechts et al. (2001) employed
a similar approach utilising bootstrapping to allow statistical significance testing
which is described above in section 2.3.1. Furthermore, this author extended the
sensitivity analysis procedure to account for non-monotonic relationships within
overall input sensitivity. Sensitivities of each input variable to multiple pertur-
bations across the range were observed, with blocked values held at their median
values (as per Lek’s algorithm). The calculated sensitivity for a single input record
was calculated from the output responses thus;

Sobs - (lRpos|max + (lRp0s|max - |R1.O|)) + (|Rneglmax + (’Rneg'max - 'R—I.OI))
(2.1D)

Figure 2.10 shows an example of how the approach outlined above in equation
2.11 accounts for non-monotonic relationships between input and output vari-
ables.

Neural Interpretation Diagrams, initially used in an ecological application by
Ozesmi and Ozesmi (1999), enable a qualitative assessment of the effect of each
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Figure 2.10: An example of total sensitivity calculation. § = Rpeg + Rpos + Rex: -

input variable by representing the relative strengths and signs of connection weights
visually. The weights of connections are represented by the pixel weights of
lines and the sign of the connection by the colour of the line. An advantage of
this approach is that it allows determination of interactions between different
input variables through the investigation of the relative signs of input to hid-
den layer connection weights. However, Olden and Jackson (2002) points out
that interpretation can be difficult in complex ANNSs and that there is no way to
differentiate between significant and insignificant connection weights. Garson’s
method (Garson, 1991) is an approach that numerically quantifies the relative
contributions of input variables. While this approach is effective at determining
overall contribution of input variables, it does not differentiate between excitory
or inhibitory effects of variables.

Olden and Jackson (2002) proposed that a randomisation approach be used to
improve aspects of both the NID interpretation and Garson’s method. Specifi-
cally, it performs a significance test on the connection weights of a trained ANN,
facilitating the interpretation of NID by eliminating non-significant weights, thus
reducing network complexity. It determines whether the overall contribution of
an input variable, as discovered by Garson’s method, is statistically significant.
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2.4 A Review of ANN Models of Eutrophication Vari-
ables

2.4.1 Introduction

As discussed in section 2.2, the properties of ANNs as universal approximators
make them a very attractive method for modelling ecosystem properties. This
is because ecosystems are known to be characterised by multivariate, non-linear
processes that are difficult to handle using conventional deductive and inductive
modelling approaches (Lek et al., 1996, 2000). According to Lek et al. (2000),
Colasanti (1991) was the first to propose that ANNs might be a useful ecological
modelling technique due to the similarities to ecosystems. French and Recknagel
(1994) were early adopters of the technique, developing an ANN application for
the prediction of algal blooms in Lake Saidenback, Germany. Since then there has
been an increasing number of applications of ANNs and other machine learning
methods for modelling all kinds of natural resource variables; including prob-
lem domains such as taxonomy, plant physiology, pollution assessment, forestry,
weather forecasting, soil science, ornithology and others. Table 2.2 reviews the
modelled variables and study sites of 22 applications of ANNs and other machine
learning approaches to modelling eutrophication variables. These models share a
number of attributes in that;

e They consider time-series data.

e They aim to make predictions or forecasts of phytoplankton biomass or
productivity.

e They use supervised training methods — in other words, model approxima-
tion is guided by targets in the training data.

Most applications model variables in lakes and reservoirs; however 6 studies are
applied to rivers (Jeong et al. (2001); Maier et al. (1998, 2000); Recknagel et al.
(1997); Wilson and Recknagel (2001); Whitehead et al. (1997)) and 4 studies are
applied to marine environments (Barciela et al. (1999); Sivonen and Jones (1999);
Scardi (2001); Lee et al. (2003)). The following sections review how the studies
presented in table 2.2 have undertaken the ANN modelling procedure outlined
above in section 2.3

2.4.2 Model Design

Table 2.2 shows that nearly all applications consider algal biomass as an output
variable; expressed either as an overall productivity indicator such as chlorophyll
a or as cell counts of individual species, genera or functional groups. The most
commonly modelled output variables are chlorophyll a concentration and cell
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counts of species of cyanobacteria. By contrast, Sivonen and Jones (1999) and
Scardi (2001) train models to predict primary productivity in terms of mg Cm 2
day ! in marine environments.

Most applications listed in table 2.2 consider inputs known to have a deterministic
link with the model outputs. Thus they consider various chemical, physical and
biological conditions known to influence the processes of photosynthesis and
trophic interactions. The following sections review the common variables used
and how they may have a causative or correlative relationship with phytoplankton
growth and species succession.

2.4.2.1 Inputs Describing Nutrient Availability and Chemical Properties

Nearly all models reviewed in table 2.2 consider concentrations of the macronutri-
ent elements nitrogen and phosphorus. Nitrogen is expressed as concentrations of
NO,, NO3, NHy, total dissolved nitrogen or some combination of these species.
Similarly, phosphorus is expressed as concentration of either POy, total dissolved
phosphorus, total phosphorus or a combination thereof. These two elements are
key plant macronutrients and have been well established to be frequent growth
limiting factors in lakes and rivers. Measures of the availability of these two
nutrients, particularly phosphorus, are widely used by simple empirical models
for classifying the trophic state of waters (eg Vollenweider (1970), Vollenweider
(1976), Sakamoto (1966) and Dillon and Rigler (1974)). Nitrogen is known to be-
come a more important growth limiting factor in tropical lakes (Harris, 1986). In-
creasing overall nutrification is known to lift primary productivity and reduce the
diversity of phytoplankton species observed in favour of dominance by cyanobac-
teria (Dokulil and Teubner, 2000; Zevenboom and Mur, 1980).

As well as the extent of nutrification, dynamics of the ratio of nitrogen to phospho-
rus are known to play a key role in determining the species dominance observed
(Teubner et al., 1997; Takamura and Aizaki, 1991; Takamura et al., 1992). Low

N:P ratios tend to favour cyanobacteria for a number of reasons including;

e Certain species of cyanobacteria fix atmospheric nitrogen, giving them a
competitive advantage against non N-fixing phytoplankton. However, de-
spite this fact, low N:P ratios tend to favour even non-fixing species of
cyanobacteria over other algae (Dokulil and Teubner, 2000).

e Cyanobacteria have relatively high phosphorus requirements leading to a
competitive disadvantage in high N:P conditions.

e High nitrogen levels tend to favour faster growing species such as green
algae (Winder and Cheng, 1995).

The species of nitrogen may also influence the species dominance observed —
for example, non N-fixing cyanobacteria have been shown to prefer NHy, while
N-fixing species prefer NO3 (Dokulil and Teubner, 2000).
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Table 2.2: ANN phytoplankton models — site and modelled variables

Refersnce Site Outpui(s) Nutrients & Chemical  Physical properties Biological
properties inputs
Barciela et al. (1999) Ria de Arousa (Spanish coast) chl-a N temp, rad, mix depth, up-  chl-a
welling
Bobbin and Recknagel (2001) Lake Kasumigaura (Japan) 3 blue—green spp. N, P, pH temp, trans
French and Recknagel (1994) Lake Saidenbach (Germany) Cyanophyceae, 3 green spp., Chloro- N, P, pH, DO temp, rad, trans chl-a, zoo
phyceae, nanoplankton
Jeong et al. (2001) Nakdong River (Korea) chl-a N, P, Si, pH temp, trans, rad, flow, zoo
precip
Karul et al. (2000) Keban, Mogan, Eymir Lakes (Turkey) chl-a, tot. cell count, 3 blue—green spp. N, P, pH, EC temp, trans zZ00
Lee et al. (2003) Hong Kong coast Chlorophyll-a, Skeletonema spp. N, P, DO temp, rad, trans, wind, lagchl-a
tide, precip
Maier et al. (1998) Murray River (Australia) Anabaena spp N, P, Fe temp, turb, colour, flow
Maier et al. (2000) Murray River (Australia) Anabaena spp. N, P, Fe temp, turb, colour, flow
Olden (2000) Grenadier Pond (Canada) chi-a, phyto. community composition N, P Z00
Recknagel et al. (1997) Lake Kasumigaura, Lake Biwa (Japan), Dar-  blue-green spp., functional groups N, P, Si, pH, DO, temp, trans, colour, flow, zoo
ling River (Australia), Lake Tuusulanjirvi HCOs3, EC strat, wind, cloud, depth
(Finland)
Recknagel and Wilson (2000) Lake Kasumigaura (Japan) 3 blue-green spp. N,P temp, trans, rad, depth chl-a, zoo
Recknagel et al. (1998) Lake Kasumigaura (Japan) 5 blue-green spp. N, P temp, trans, rad, depth chl-a, zoo
Scardi and Harding Jr (1999) Chesapeake Bay (USA) Primary productivity salinity temp, rad, euph. depth, chl-a
station depth, lat, long,
ext. coeff
Scardi (2001) Western Mediterranean, East Pacific Primary productivity temp, rad, depth, lat, long, chl-a
date, day length
Todorovski et al. (1998) Lake Glumsoe (Denmark) Primary productivity N, P temp Z00
Whitehead et al. (1997) River Thames (UK) Chlorophyll-a temp, rad, flow upstream
chl-a
Wilson and Recknagel (1997) Lake Kasumigaura (Japan) 8 blue—green spp. N, P temp, rad, trans, depth chl-a, zoo
Whigham and Recknagel (2001) Lake Kasumigaura (Japan) chl-a N, P, pH, DO temp, trans Z00
Wilson and Recknagel (2001) Lake Biwa, Lake Kasumigaura (Japan), chl-a N, P temp, trans chl-a
Burrinjuck Dam, Darling River, Myponga
Dam (Australia), Lake Soyang (Korea)
Walter et al. (2001) Burrinjuck Dam (Australia) chl-a N.P temp, rad, depth, volume,
surface area
Wei et al. (2001) Lake Kasumigaura (Japan) 4 blue—green spp. N, P, pH, DO, COD temp, turb, Z00
Yabunaka et al. (1997) Lake Kasumigaura (Japan) chl-a, 5 blue—green spp. N, P, Si, pH, DO temp, trans Z00
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Five applications listed in table 2.2 (Jeong et al. (2001); Maier et al. (1998, 2000);
Recknagel et al. (1997); Yabunaka et al. (1997)) consider one or both of the mi-
cronutrients silica and iron. Available silica is an important nutrient for the growth
of diatoms. Also cyanobacteria are known to have a higher demand for trace
elements in general (Dokulil and Teubner, 2000). Many models also consider
dissolved oxygen level, which may be be an indirect driving variable since anoxic
conditions lead to phosphorus release from sediments (Trimbee and Prepas, 1988).
Since pH determines availability of dissolved COj; in the water column, this too
can play a role in species dominance. It has been shown that cyanobacteria
compete well in environments with relatively high pH and resultant low carbon
availability (Dokulil and Teubner, 2000).

Sivonen and Jones (1999), Scardi (2001) and Whitehead et al. (1997) do not
consider any nutrient data in their models.

2.4.2.2 Inputs Describing Physical Conditions

Temperature, considered by all models reviewed, is a key driving variable as it
determines rates of chemical and biological processes. Different species of phy-
toplankton have varying temperature optimums, with higher temperatures tending
to favour cyanobacterial growth (Dokulil and Teubner, 2000; Robarts and Zohary,
1987). However, temperature alone does not determine dominance — there is
generally a complex interaction with other conditions (Robarts and Zohary, 1987).
For example Takamura and Aizaki (1991) and Takamura et al. (1992) report a
succession in Lake Kasumigaura, Japan, from Microcystis spp to Oscillatoria
spp. dominance arising from an interaction between temperature and nutrient
availability. This succesion caused a drop in overall primary productivity.

Temperature can also affect other physical conditions such as the mixing regime.
Thermal stratification can act as a physical barrier separating regions of high
light/low nutrient conditions from regions of high nutrient/low light conditions.
The presence of stratification tends to favour species of cyanobacteria adapted,
through buoyancy control, to overcoming the physical separation of light and
nutrients (Ganf and Oliver, 1982; Reynolds, 1987). Recknagel et al. (1997) rep-
resents the presence of thermal stratification to the model explicitly, while Jeong
et al. (2001), Lee et al. (2003), Whitehead et al. (1997), Maier et al. (1998) and
Maier et al. (2000) included variables that may affect the mixing regime such as
wind or flow rate in the case of rivers.

All models also considered one or more variables indicating the level of light
available for photosynthesis — incident solar radiation, cloud cover, secchi-disc
depth, turbidity and colour. Light availability is a key driving variable for pho-
tosynthesis and light attenuation can have a significant impact on overall primary
productivity (Ruley and Rusch, 2002). Light intensity may affect species dom-
inance. For example, cyanobacteria are able to harvest low light intensities of
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wavelengths unusable by other species making them highly competitive in low
light conditions (Mur et al., 1999). Light availability has also been shown to
interact with the level of nutrification in determining species succession. Zeven-
boom and Mur (1980) showed that non N-fixing Oscillatoria spp. dominates over
N-fixing types in severely hypertrophic lakes even when growth is N-limited as a
result of superior low light efficiency.

Some applications reviewed, such as Walter et al. (2001), use morphometric in-
formation such as depth, surface area and volume as inputs. This information has
been shown to have a deterministic relationship with eutrophication and species
dominance. Shallow lakes have been observed to favour dominance by filamen-
tous cyanobacteria, while deeper lakes favour colony forming types (Schreurs,
1992) (cited by Ruley and Rusch (2002)). Recruitment of cyanobacteria is as-
sumed to decrease as lake depth increases due to the reduction of the sediment
area/volume ratio (Trimbee and Prepas, 1988). Fetch, combined with wind speed,
has an effect on the mixing conditions and thus the degree of thermal stratification
within a water body.

In addition to inputs with an established deterministic relationship with photo-
synthetic or ecological processes, Scardi (2001) used “co-predictor” variables as
inputs — that is, variables known to be correlated to dynamics of the dependent
variable, but not necessary causative. It is argued that since ANNSs are relatively
robust with regards to redundant inputs, extra correlative information provide a
low risk means of improve model prediction accuracy. In this study and in Sivonen
and Jones (1999), information regarding the latitude and longitude of measuring
stations, date and day length were found to be helpful for model predictions.

2.4.2.3 Inputs Describing Biological Factors

11 studies consider zooplankton abundance in some form and 8 studies include
overall algal abundance expressed as chlorophyll a in the input layer. Zooplankton
can impose a top-down control of algal biomass through grazing and may have an
impact on species dominance, since certain species of cyanobacteria limit their
grazing mortality due to adaptations to make them inedible (Dokulil and Teubner,
2000) giving them a competitive advantage. Chlorophyll a has an impact on
light availability, with higher concentrations reducing light availability through
the shading properties of algal cells. Also it may influence the chemical properties
in terms of nutrient availability (as a result of consumption) or pH.

24.24 Modelling time-series Interactions

Table 2.3 reviews the length and sampling interval of databases used, model han-
dling of time and the division of data into training and testing sets. It can be seen
that the lifespan of the time-series used for modelling varies considerably, from
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2 months for Todorovski et al. (1998) to 18 years for one case study outlined in
Whigham and Recknagel (2001). Most applications have between 5 and 10 years
of data available. In most cases, the sampling intervals in the time-series used is
in the order of weeks, although it varies from 4-5 days (Todorovski et al., 1998)
to 1 month (Wei et al., 2001). It can be seen that the model time step is generally
more frequent than the actual sampling frequency of the databases, with daily time
steps being most commonly used. This increase in sampling frequency is achieved
by interpolation of the modelled variables between the actual sample dates. The
mode of interpolation was not described by any applications except for Yabunaka
et al. (1997), who use linear interpolation and Todorovski et al. (1998), who use
predictions by domain experts.

Out of the 22 applications reviewed, 9 trained models to make forecasts of future
phytoplankton abundance given current environmental values, while the remain-
ing models were trained to predict phytoplankton abundance on the same observa-
tion date as the input variables. Where a forecasting structure was implemented,
a TDNN structure was applied whereby the input variables lagged the outputs by
the required forecast period. This lag period was generally between 1 and 4 weeks
which is consistent with the real sampling frequency of the time-series used. In
some studies, such as Maier et al. (1998), Recknagel et al. (1998) and Recknagel
and Wilson (2000), multiple lags of a single variable were used.

Jeong et al. (2001) and Walter et al. (2001) used a recurrent network structure
(RNN) to further extend the time dynamic behaviour of the models. The RNN
copies hidden to output layer activations at time ¢ — 1 and uses them as inputs for
time t2. These authors state that the recurrent ANN paradigm offers a superior
structure for time-series modelling, as the activations of the recurrent connections
represent the model state at previous time steps in a manner comparable to many
deterministic modelling approaches.

In contrast with the majority of studies reviewed, Sivonen and Jones (1999),
Scardi (2001), Karul et al. (2000) and Whitehead et al. (1997) did not present
the model predictions as a time-series since there was no intention in these cases
to display the model’s handling of dynamics in phytoplankton abundance over
time. This differentiates these applications from the remaining studies where the
models were explicitly trained and validated to exhibit time-dynamic behaviour.

2.4.3 Model Inference

Table 2.4 outlines technical aspects of the reviewed models including the model
structure, approximation method (ie training algorithm), a-priori bias, approach to
complexity tuning, elucidation method and controls used. The following sections
provides further description of each of these aspects of the reviewed studies.

2See Pineda (1987); Elman (1990); Connors et al. (1994) for more complete descriptions of
the methodology regarding recurrent ANNs.
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Table 2.3: ANN eutrophication models — time series information, train/test set partitioning and forecast interval

Reference Time series Sampling in- Model time step Forecast in-  Train/Test set
length terval terval

Barciela et al. (1999) 3 years 1 week 1 day, 1 week, season 0 3/3 years

Bobbin and Recknagel (2001) 11 years 2-4 weeks 2 — 4 weeks 0 9/2 years

French and Recknagel (1994) 5 years 7-10 days 1 day 1 day 3/2 years

Jeong et al. (2001) 5 years 1 week 1 day 0-40 days 5/1 years

Karul et al. (2000) 4 years ? ? 0 NU? years

Maier et al. (1998) 7 years 1 week 1 week 1-4 weeks 6/1 years

Maier et al. (2000) 7 years weekly weekly 14 weeks 6/1 years

Lee et al. (2003) 4, 18 years 1, 2 weeks 1 day & 1, 2 weeks 1-15 days 10/8 years

Olden (2000) 1 year 2 weeks 2 weeks 0, 2 weeks 1?7

Recknagel et al. (1997) 8-12 years 1-4 weeks daily 0 6-10/2 years

Recknagel and Wilson (2000) 10 years 2-4 weeks daily 0 8/2 years

Recknagel et al. (1998) 10 years 2-4 weeks daily 0 8/2 years

Scardi and Harding Jr (1999) 12 years ? ? 0 100/226 records

Scardi (2001) 5, 7 years 1 day 1 day 0 1261/630/631 records

Todorovski et al. (1998) 2 months 4-5 days 0.1 day 1,2, 5 days 2/2 months

Whitehead et al. (1997) 3 years 1 week 1 week 0 80%/20%

Wilson and Recknagel (1997) 10 years 2-4 weeks daily 0 10/10 years

Whigham and Recknagel 10 years 2-4 weeks daily 0 8/2 years

(2001)

Wilson and Recknagel (2001) 818 years 2-4 weeks 1 month 0, 1 month 8-18/8-18 years

Walter et al. (2001) 18 years 1-4 weeks 1 day 1 week 15/3 years

Wei et al. (2001) 15 years 1 month 1 month 0 10/5 years

Yabunaka et al. (1997) 12 years 24 weeks 1 day 1 week 11/1 years
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2.4.3.1 Approximation

Table 2.4 shows that most studies utilise MLP structures trained with the back-
propagation algorithm. As mentioned above, Jeong et al. (2001); Walter et al.
(2001) augment the traditional MLP approach with recurrent connections to better
model time dynamics. Three studies utilised a second order training method
instead of backpropagation — Wilson and Recknagel (1997) and Wilson and Reck-
nagel (2001) employ the conjugate gradient training method and Karul et al.
(2000) use a Levenberg-Marquardt algorithm.

Several more recent studies use alternative model representations and approxi-
mation methods. Bobbin and Recknagel (2001) apply principles of evolutionary
computation to evolve a ruleset from data to predict algal biomass. Similarly,
Whigham and Recknagel (2001) utilises the same principles to evolve equations to
achieve the same task. Todorovski et al. (1998) uses a similar approach to equation
discovery as Whigham and Recknagel (2001), the difference being that instead
of using genetic algorithms for the training process, a non-linear optimisation
technique is used. Maier et al. (2000) uses a B-spline associative network trained
using a linear optimisation method. In each of these cases, the aim is to achieve
a more transparent representation of knowledge learned from the training data
than is possible with ANNs within a model-free approximation framework. These
approaches have been developed in response to the common criticism of ANNs
that they are an opaque means of representing knowledge compared to traditional
deductive and inductive modelling approaches.

2.4.3.2 Generalisation

A few of the models reviewed impose an a-priori bias to somehow restrict the
range of models that may be discovered during training to those that make sense
from the point of view of domain experts. Scardi (2001) achieves this by means
of a “constrained training” approach, whereby an error penalty is applied during
training if the model approximates undesired solutions. In this case, the model was
biased towards primary productivity response surfaces that had 1 maximum and
4 minima with respect to irradiance and biomass values. It is claimed that such a
bias has the effect of restricting the complexity of the trained model thus reducing
overfitting and ensuring that the model retained a degree of “biological sound-
ness”. Todorovski et al. (1998) and Whigham and Recknagel (2001) imposed a
“declarative language bias” on their equation discovery models that restricted the
model terms and grammar that could be used to those that made ecological sense.
In addition, Todorovski et al. (1998) further biased the model by using synthetic
data predicted by domain experts for training.

All models reviewed, apart from Bobbin and Recknagel (2001) and Lee et al.
(2003), used some means of tuning the model complexity to prevent overfitting.
The most common approach for models based on MLPs was through empirical
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Table 2.4: ANN eutrophication models — methodology - model inference, tuning, elucidation and controls

Reference Structure Approx. method a-priori  model  Complexity tuning Elucidation method Controls
bias
Barciela et al. (1999) MLP backprop none hidden layer size none deterministic model
Bobbin and Recknagel (2001) Ruleset GA none none Examination of leamed ruleset  none
French and Recknagel (1994) MLP backprop none hidden layer size none none
Jeong et al. (2001) recurrent ANN backprop none hidden layer size sensitivity curves none
Karul et al. (2000) MLP Levenberg— none early stopping of training none
Marquardt
Lee et al. (2003) MLP Backprop none none sensitivity analysis, weight in-
terpretation
Maier et al. (1998) MLP Backprop none hidden layer size sensitivity analysis none
Maier et al. (2000) B—spline AMN LMS none no. basis functions fuzzy interpretation of  backprop ANN
B-spline basis functions
Olden (2000) MLP Backprop none hidden layer size, connec-  neural interpretation diagrams none
tion pruning
Recknagel et al. (1997) MLP Backprop none hidden layer size sensitivity analysis empirical, deterministic,
time—series, heuristic &
fuzzy models
Recknagel and Wilson (2000) MLP Backprop none hidden layer size sensitivity, scenario analysis none
Recknagel et al. (1998) MLP Backprop none hidden layer size none none
Scardi and Harding Jr (1999) MLP Backprop constrained train- jitter, early stopping, hid-  sensitivity analysis none
ing den layer size
Scardi (2001) MLP Backprop constrained train-  jitter, early stopping, hid-  sensitivity surfaces none
ing den layer size
Todorovski et al. (1998) Equations Levenberg— language  bias, equation length analysis of discovered equa-  naive models, linear model
Marquardt data synthesis tions
Whitehead et al. (1997) MLP Backprop none training time extraction of equation time series analysis, dy-
namic mass balance model
Wilson and Recknagel (1997) MLP Conjugate Grad. none hidden layer size none none
Whigham and Recknagel (2001) Equations GA language bias depth of program tree analysis of discovered equa- none
tions
Wilson and Recknagel (2001) MLP SCG none hidden layer size, early none perceptron
stopping
Walter et al. (2001) recurrent MLP Backprop none early stopping sensitivity curves deterministic model
Wei et al. (2001) MLP Backprop none hidden layer size sensitivity analysis none
Yabunaka et al. (1997) MLP Backprop none hidden layer size sensitivity analysis none
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determination of the optimum number of hidden layer units by cross-validation. In
addition to this measure, Sivonen and Jones (1999), Scardi (2001) and Wilson and
Recknagel (2001) stopped training early as a further control against overfitting.
Karul et al. (2000) and Walter et al. (2001), by contrast, only used early stopping
and did not perform any optimisation of hidden layer size. Olden (2000) used
an online connection pruning approach in addition to hidden layer optimisation,
where connection weights below a threshold value were pruned from the network.
Sivonen and Jones (1999) and Scardi (2001) added a small Gaussian noise com-
ponent to the input data at each training epoch with uy = 0 and 6 = 0.01 in addition
to hidden layer tuning and early stopping. This perturbation, known as “jitter>,
is claimed to smooth or regularise function approximations by ANNSs leading to
superior generalisation characteristics.

With respect to the alternative model structures reviewed, Maier et al. (2000)
determined the optimum number of basis functions to include in the AMN. Todor-
ovski et al. (1998) and Whigham and Recknagel (2001) defined a maximum
equation length to prevent the model getting too complex and thus overfitting
training data.

2.4.4 Validation

The final column in table 2.3 shows the division of data between training and
validation sets in terms of time. Most applications used 1-3 years of data for
validation and the remainder for training, with the training and validation data
being retained as discrete blocks in terms of time (such as years). In general, this
meant that the majority of the data (80% or more) was used for training. Karul
et al. (2000) and Scardi (2001) also used a third “tuning” dataset which was used
to tune the training time of the MLP (this is denoted in table 2.3 as train/tune/test
rather than train/test). Wilson and Recknagel (1997, 2001) used all the data for
training and validation by means of 10-fold-crossvalidation and the leave-one-out
bootstrap estimator respectively.

The final column in table 2.4 shows whether the machine learning model in each
case was compared to a conventional modelling approach. It can be seen that
in 6 of the 22 studies reviewed, some reference was made to other model types,
whether by direct comparison or through discussion of the calibre of performance
observed.

Barciela et al. (1999) found that MLPs were capable of more accurate predic-
tions of marine primary productivity than a deterministic model, particularly at
short time scales. It was reasoned by these authors that the performance of the
deterministic model is hampered by difficulties associated with estimating some
parameters. Maier et al. (2000) compared the prediction accuracy of B-spline

3See Gyorgyi (1990) for more background to this technique.
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AMN networks with conventional MLP networks for forecasting Anabaena spp.
biomass in the Murray river. It was concluded that the AMN networks performed
slightly better than MLPs and had the additional feature of providing a more
transparent knowledge representation. Recknagel et al. (1997) argued that MLPs
are capable of superior prediction accuracy than existing empirical, deterministic,
time-series, heuristic and fuzzy ruleset models due to their ability to resolve to
species level compared to chlorophyll a or functional groups and their ability to
resolve timing of growth to day or weeks compared to months, seasons or years.

Todorovski et al. (1998) compared the models developed by means of equation
discovery system LAGRAMGE with a linear model form and 2 “naive” models
— “no-change” and “same-change”. The no-change model predicts that the value
of the output for the next time step will be the same value as for the current time
step (phyt(r 4 h)=phyt(¢)). The same-change model predicts that the change in
the output will be the same as the change from the previous time step (phyt(z +
h)-phyt(¢t)=phyt(z)-phyt(t — h)). It was found that the LAGRAMGE model had
superior prediction accuracy to the linear model and the no-change model. The
same-change model performed better than LAGRAMGE at small prediction in-
tervals, but was not as robust in that it did not perform as well when the prediction
interval was increased. Similarly, Wilson and Recknagel (2001) compared the
performance of MLP models with perceptron models to determine the importance
of the ability of MLPs to map non-linear decision boundaries. It was found
in a study involving forecasting chlorophyll a abundance in 5 lakes and 1 river
that the MLPs generally performed marginally better than the perceptron models,
although in 2 instances the perceptron model performed best.

Whitehead et al. (1997) compared the MLP model with both conventional time-
series analysis and a deterministic model for predicting chlorophyll a biomass
in the River Thames. These authors found that the MLLP model performed very
similarly to the conventional modelling approach, although they commented that
the MLPs had the advantage that no “subjective information is required to de-
termine the model structure or estimate parameters”. However, it was noted
that, since ANNs do not explicitly represent processes, interpretation of processes
could only be made at the most general level compared to conventional modelling
approaches. Thus, as is the general consensus regarding ANNSs, these authors
found that ANNs are most useful in situations where analysis of large datasets is
required without a-priori knowledge.

2.4.5 Knowledge Discovery

Many studies reviewed employed some technique to elucidating knowledge from
trained models. The most common approach for the MLP models was sensitiv-
ity analysis (see section 2.3.5). Jeong et al. (2001), Scardi (2001) and Walter
et al. (2001) further enhance the information retrieved by reporting the sensitivity



2.4. ANN MODELS OF EUTROPHICATION VARIABLES 41

“surfaces” or “curves” retricved with respect to the output when the input or
inputs of interest are varied over their entire range (ie “Lek’s algorithm”) enabling
elucidation of non-linear relationships. Recknagel and Wilson (2000) applied a
scenario analysis by means of observing the effect on the output by modifying
input variables in related groups. In this case, the effect on the output of 4 separate
scenarios was observed where data was swapped between the 2 validation years
for the following groups of inputs — i) nutrients, ii) zooplankton, iii) physical
data, iv) chlorophyll a. This enabled the elucidation of the causes of a species
succession that occurred between the two validation years.

Several authors used a more direct approach to knowledge discovery than sen-
sitivity analysis by interpreting ANN connection weights. Olden (2000) used
neural interpretation diagrams (NID) to visualise the strongest connection weights
and thus the most important driving variables. Similarly, Lee et al. (2003) used
a method to interpret the connection weights to elucidate the driving variables.
Whitehead et al. (1997) used a method to extract an equation from the connection
weights, although the exact method of interpretation was not outlined in this case.

Where novel forms of model approximation such as GA or equation discov-
ery were used, knowledge discovery was facilitated by the transparent nature
of knowledge representation learned. In the case of the models developed by
Bobbin and Recknagel (2001), Whigham and Recknagel (2001) and Todorovski
et al. (1998), elucidation was simply a matter of interpreting either the rulesets or
equation sets discovered by training. Maier et al. (2000) used an interpretation
method to gain a fuzzy ruleset from the trained associative network.

2.4.6 Discussion and Conclusions
2.4.6.1 Choice of Input Variables

It is widely recognised that none of the driving variables considered by applica-
tions of ANNs and machine learning to modelling eutrophication variables can
determine primary productivity or species dominance alone. A number of studies
have illustrated complex interactions between nutrient levels, light availability,
lake morphometry and temperature with respect to the spectrum and abundance of
algal species favoured (Ruley and Rusch, 2002). It is not surprising, therefore, that
the models reviewed in table 2.2 generally utilise input layers that are highly mul-
tivariate considering input variables from each of the 3 classes specified. Indeed,
this is the type of modelling that ANNs are well suited to, since they can handle
multivariate modelling tasks where the relationships are complex and unknown.

However, there are several conflicts in approaches to model design in evidence
amongst the reviewed papers. Two studies, (Maier et al., 1998; Lee et al., 2003),
stress the need to reduce the risk of redundant inputs being included in the model.
This is reasonable since Aussem and Hill (1999), Aoki et al. (1999) and others
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point out that noise introduced by redundant inputs can reduce performance and
increase the likelihood of overfitting. Scardi (2001), on the other hand, states
that the robust nature of ANNs with respect to input redundancy enables a wider
range of inputs to be considered than was previously possible. As discussed in
section 2.3.1, there is a need to achieve the right balance between the “curse
of dimensionality” on the one hand and the flexibility to include novel input
variables on the other. The contradictions apparent in the literature with regards
to this issue suggests there is a need to determine the practical importance of this
tradeoff. Furthermore, with the issue of database compatibility in mind, a relevant
question is whether a generalised, or “generic” set of highly available inputs can
be identified that can be used to create models that have similar performance to
ad-hoc, database specific architectures.

In terms of the choice of input variables, the review showed that no models
explicitly considered the possibility of interspecific competition through inclusion
of species cell counts in input layers. This is in spite of the fact that many studies
reviewed make predictions of species abundances. Therefore, the question arises
whether species succession in freshwater ecosystems is driven primarily by envi-
ronmental conditions, interspecific competition, or both? Also, it is known that
there may be considerable spatial variability in algal density in water bodies de-
pending on the extent of stratification and the effects of wind. This is particularly
the case with respect to cyanobacterial blooms which tend to be concentrated on
the surface due to overbuoyancy (Reynolds, 1987) and therefore highly vulnerable
to the effects of wind. Yet no studies reviewed explicitly included information
regarding spatial variability of algal biomass in the structure of the model, or
made mention of this factor as a possible influence on the observed data.

Given this review, the following can be concluded;

e The problem of input selection needs further investigation to determine how
robust ANNs are with regards to redundant input variables.

e There is a need to identify “generic” models compatible with a wide range
of databases, as well as application specific models.

e There is a need to investigate the importance of input variables describing
spatial variability and/or competition between species or groups of phyto-
plankton.

2.4.6.2 Modelling Time Series

Table 2.3 shows that about 50% of the models reviewed do not explicitly represent
links between past and present states in the model design, either by means of lag
inputs or by recurrent network connections. This is in spite of the fact that nearly
all models are trained using time-series data and are evaluated in terms of their
ability to handle dynamics in algal biomass over time. Lee et al. (2003) points
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out that models not designed to make forecasts are not useful in a management
sense, since they predict algal biomass for the same time as the input variables
are measured. It can also be argued that, unless a time component is explicitly
considered, a model’s use as an elucidatory tool is compromised by a lack of
clarity with regards to the direction of causality being modelled. For example, it
is possible that a “same day prediction” ANN model has learned to predict algal
biomass from the consequences of high primary productivity, such as nutrient
consumption and low secchi disk depth, rather than the causes.

Many studies reviewed enforce a higher frequency model time step than the actual
sampling frequency by means of interpolation. In some cases it is stated that
interpolation creates a regular time step necessary for compatibility between the
dataset and TDNN and/or RNN structures. However, Lee et al. (2003) argues that
using interpolated data to train a TDNN model may cause a blurring of past and
future conditions giving the model access to information that, when applied to new
data, would not be available. Figure 2.11 illustrates the potential problem — it can
be seen that on the right hand side of the diagram where the lag interval falls below
the actual sample intervals, the input data is calculated from observations that are
in the future relative to the model output. This “temporal contamination” is a
particular problem where the model considers an autoregressive component, that
is, where one of the input variables is the output variable with a time lag imposed,
since, in such a case, it means that the input data has been derived from the
same real values in the time-series as the output (Lee et al., 2003). These authors
provide an elegant demonstration of the pitfalls of this approach by showing that
an ANN with lagged inputs can model a series of interpolated random numbers
very accurately, despite there being no model underlying the real, uninterpolated
values.

Logically, the use of interpolation to enforce dataset compatibility with time-series
modelling structures such as time delay or recurrent connections raises a number
of other problem issues including;

e The method of interpolation used (linear, splines etc) will affect the model
learned by the ANN. As yet, there are no documented results known to the
author that empirically differentiate between interpolation methods for an
ANN application modelling natural resource variables.

e It adds significantly to the overall data processing task, since it necessitates
extensive, error prone preprocessing. Also, the inflation of dataset sizes by
up to 10-30 times their original record count increases training times.

e The assumptions made about the dynamics of variables between sample
dates may be incorrect — particularly for highly dynamic variables such as
phytoplankton abundance.

Given the issues raised by this discussion, it can be concluded that more research
is needed to develop a time-delay model representation that is compatible with the
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Figure 2.11: Use of lag inputs with interpolated data.

sampling structure of typical limnological datasets. Such a representation needs
to be characterised by the following qualities;

e It must reduce the probability of “temporal contamination” when used with
time delay or recurrent connections.

e It must, as far as possible, avoid assumptions or simplifications regarding
dynamics between sample dates.

2.4.6.3 Approximation and Generalisation

This review shows that a number of innovations in ANN and machine learning
techniques are being applied to the eutrophication modelling problem in recent
years. These include the use of time delay and recurrent network connections to
represent prior model states, alternative model representations and approximation
methods to either speed up learning or enable the use of more transparent knowl-
edge representations and the use of a-priori bias to guide model approximations.
These innovations are motivated by recognition of the following requirements;

e The desire to develop models that are sound from an ecological perspective.

e The desire to “peak into the black box” to gain a better explanation of the
system being modelled.

e The desire to raise the efficiency and robustness of the model approximation
process.
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The review of applications clearly shows that practitioners have few problems
obtaining reasonable model approximation in terms of mapping training data de-
spite the theoretical difficulties with ill-conditioning and local optima outlined
in section 2.3.2. Conversely, achieving reasonable generalisation evidently re-
quires greater attention since nearly every application reviewed biased modelling
outcomes by limiting complexity to prevent overfitting. With respect to ANNs,
combinations of up to 4 meta-parameters determining complexity are being tuned,
including hidden layer size, training time, weight decay and jitter. Where alter-
native model approximation methods were used, some means of limiting overall
size or complexity of outcomes was often applied.

In a review of 43 papers describing ANN application to modelling ware resource
variables, Maier and Dandy (2000) concluded that the process of choosing ANN
complexity for a task (ie stopping criteria, hidden layer geometry etc) is generally
described poorly and/or carried out inadequately leading to sub-optimal perfor-
mance and difficulty in attaining meaningful comparisons between models. It
can be argued, given the review of parameters controlling ANN generalisation
in section 2.3.3, that the reason that sub-optimal generalisation of models may
be occurring in practice is that the problem of minimising total bias+variance is
fraught with difficulties. Analytical approaches to the problem are unwieldy and
yield loose complexity bounds (Moody, 1991) and empirical approaches based on
cross-validation are inherently error prone in the context of an unstable classifier
such as ANNs (Breiman, 1996b).

Also, it is possible that interactions between the effects of different complexity
determining meta-parameters and/or model approximation methods further re-
duces the efficiency of this optimisation task. Studies such as Alpsan et al. (1995)
and Lawrence and Giles (2000) go some way towards determining the effects of
these issues on generalisation performance. However, with the proliferation of
methods available today, the task of searching the space of possible combinations
of methods and parameters is a task beyond even the most well equipped water
resource manager.

It can be concluded that the issue of achieving optimal ANN model generalisation
requires further research.

2.4.6.4 Validation

As stated in section 2.3.4, Flexer (1995) proposed a list of five minimum re-
quirements for evaluation of ANN models (listed in table 2.1). No applications
reviewed satisfied all five requirements, with most only satisfying the first re-
quirement for separate training and validation sets. Furthermore, for most appli-
cations, only one to two years of data expressing extreme conditions with respect
to the output variable were chosen for validation — for example, “bloom” and
“non-bloom” years. While such an approach seems reasonable for estimating
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model performance in extreme conditions, a number of obvious shortcomings are
evident;

erate output conditions.

e No information is yielded regarding model performance under more mod-

e There is no consideration of the values of the independent variables. For
example, it may be desired to validate model performance for unusually
warm or cool years.

o For datasets where the sampling interval is high, such an approach leads to
questions about the significance of the performance estimates.

e Validation data is grouped into contiguous blocks of one or two years. This
means that most validation set records will separated in time from training
set records by more than one sample interval. This does not provide a
realistic validation for a real-time forecasting application where the ANN
is constantly retrained using the most up to date data.

Few applications reviewed compare modelling outcomes of machine learning ap-
proaches with more conventional inductive or deductive approaches. It can be
argued that comparisons need to be made over a wider range of case studies in
order to put the utility of ANNS in this application in a broader context. In partic-
ular, only 2 studies, Wilson and Recknagel (2001) and Todorovski et al. (1998),
make a direct comparison between model inference constrained to multiple linear
relationships and the unconstrained, non-linear machine learning approach. This
is in spite of the fact that a key hypothesis to be investigated in any model-free
model inference application is that unconstrained model inference provides out-
comes that are superior as a result of increased flexibility.

It can be concluded that more robust approaches to validation need to be employed
that provide the following features;

e Improved validation set representation.
e Does not use validation data for model selection purposes.
e Enables the use of statistical tests for performance comparisons.

e Provides comparisons with conventional or naive modelling techniques to
providc a mcaningful context for performance estimates.

2.4.6.5 Knowledge Discovery

This review shows that sensitivity analysis is the most used approach to elucidat-
ing knowledge and that the methodology has in recent times advanced to the point
where it can illustrate non-linear relationships between input and output variables
and interactions between input variables. However, it can be observed that in most
cases, input variables besides the input under investigation are blocked at median
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values. If there are interactions between inputs with respect to their effects on
the output variable, which is a reasonable assumption given the non-linear nature
of ANNSs, observed sensitivity will depend on the values of the blocked input
variables. This means that the sensitivity determined will only be relevant given a
tiny region in the input space rather than representative of the generalised effect.
Furthermore, it is possible that blocking all inputs at median values may push the
input space into a region outside that which was used to create the model, because
it is likely that in the reservoir or lake under investigation, all the environmental
variables are never observed to be at median values simultaneously. This means
that the sensitivities often reported in the literature may actually be indicative
of the model’s behaviour when it is effectively extrapolating, which, as Geman
et al. (1992) explains, is when model-free inference methods such as ANNs are
inherently unreliable.

It can be concluded that there is a need to determine how sensitivity analysis can
be implemented in a way that assumes the following facts about learned models;

e Inputs are likely to have non-linear relationships with output variables.

e Inputs may have complex interactions with other input variables with re-
spect to relationships with output variables and

e ANNSs and other model-free inference methods are inherently unreliable
when asked to make extrapolations.

2.5 Proposals for ANN Model Representation

The previous discussion arrived at a number of conclusions regarding require-
ments for further research. This section proposes a number of developments
to the ANN model representation and methods that are intended to overcome
the identified shortcomings of existing approaches. It is hypothesised that the
suggested changes enhance the performance, stability and compatibility of the
ANN modelling paradigm in the context of a decision support framework for

operational control of algal blooms®*.

2.5.1 An “Input Window” Model Representation

It is proposed that an input window model representation can ensure compatibility
between raw time-series data and TDNN models without the need to interpolate
a regular sampling frequency. This approach represents input (and/or output)
variables as summary statistics over a defined window of time relative to the

4See appendix A for a list of operational control measures for dealing with algal blooms that
may benefit from short term forecasts.
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output date as illustrated by figure 2.12. The summary statistic may be the mean,
median, variance, range, trend, or any other appropriate statistic or model output.
It is hypothesised that such an “input-window” representation has a number of
benefits in the context of typical limnological time-series, since;

¢ Given a sufficiently long summary interval, the technique guarantees a high
proportion of matching input records for a given output variable and lag
interval. A short summary period will be adequate where the sampling
frequency of the input variable is similar to that of the output variable.
Longer summary periods can be used to access input variables that are
sampled less frequently than the output variable without altering the overall
data representation.

e By defining strict bounds on the time period input data is summarised, the
technique eliminates the problem identified by Lee et al. (2003) that blurred
boundaries between past, present and future states will bias performance
expectations. It can be guaranteed that the model will not access informa-
tion effectively “in the future” relative to the output date when making a
prediction unless it is explicitly intended.

e Since interpolation is no longer necessary, any bias caused by assumptions
of dynamics is eliminated. Also, the overall information processing task is
significantly reduced.

e It provides scope for experimentation with the summary method, since in-
puts can be represented quantities describing many dynamic and/or statisti-
cal properties.

2.5.2 Improving Generalisation Qualities by Bagging

It is proposed that bagging (Breiman, 1994) can be used to stabilise ANN models
to improve generalisation qualities. It is hypothesised that, as shown by Cannon
and Whitfield (2002) and Wilson and Recknagel (2001), when bagging is applied,
model error first decreases with increasing fitting power and then stabilises at a
minimum, since aggregation effectively “cancels out” the variance component of
model error typical in the overfitting phase®. Thus, as long as sufficient fitting
power in terms of hidden layer configuration and training epochs is applied to
prevent underfitting, bagging guarantees optimum generalisation eliminating the
need for error prone analytical or empirical determination of model complexity.

3The relative importance of bias and variance in overall prediction error with increasing fitting
power is illustrated in figure 2.9.
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Figure 2.12: Time delay model using summary period.

2.5.3 Model Validation by Rotation Performance Estimators

It is proposed that representation of validation sets be increased by use of rotation
estimators, where multiple subsamples of training and validation sets are used to
gauge model performance. The following two approaches are suggested;

e Leave-one-out bootstrap is efficiently carried out in combination with bag-
ging. N records are randomly subsampled with replacement from a training
set of size N giving a training set of 67% of the available data on average
(Weiss and Kulikowski, 1991). The “out-of-bag” records (on average, 33%
of data) left behind by the subsampling process are used as validation set
records. This process of bootstrap sampling and model training and valida-
tion is repeated a number of times until a reasonable distribution of model
predictions on the out-of-bag data is obtained.

e Leave-k-out cross-validation is conducted by dividing sample into k equally
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Table 2.5: Procedure for blocked 20-fold-crossvalidation with bagging

Loop for i = 30 replicates
Block time-series into k “sub time-series” — starting position ¢
Loop for k = 20 blocks
Sample training pool — all data except block &
Take a bootstrap sample of training data from pool
Train ANN
Generate predictions on current block and save,
End block loop
t=t+1
End replicate loop

sized subsamples each used in turn as a validation set while the remainder
are pooled as a training set.

Logically, random sampling of validation records from throughout the time-series
may lead to different expectations of performance than if the validation data is
blocked into a contiguous period. This is because non-stationarities in the time-
series may lead to differences in the ANNs ability to generalise on short term
“local” time scales as opposed to longer term “global” time scales. To investigate
this possibility, it was elected to define a blocked leave-k-out crossvalidation,
where the data is divided into k& smaller time-series as illustrated in figure 2.13.
Furthermore, a hold-out period from both training and testing of 90 days was
designated after the final record in each block. This hold-out period was enforced
when a given block was used for validation (but not training) (see figure 2.14).
The purpose of this hold-out period is to decrease the potential for temporal
contamination of validation data by reducing the likelihood of short-term serial
correlation existing between it and data that is in the future in the time-series.

Blocked leave-k-out was combined with bagging by taking bootstrap samples of
training data and running the entire leave-k-out procedure a number of times
to get a reasonable bootstrap sample of model predictions on validation data.
With each replicate, the times at which the divisions are defined is altered to
maximise training and set variability. The entire procedure is summarised in
table 2.5. It is proposed that double cross-validation (ie use of a third “tuning”
set) is not necessary, since the bagging methodology eliminates the need to tune
complexity related meta-parameters to maximise generalisation (thus satisfying
the third requirement outlined in table 2.1). The use of bagging in combination
the rotation performance estimator effectively permits the remaining requirements
in table 2.1 to be satisfied.
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Figure 2.13: Dividing data into k = 5 discrete blocks in the time series.

2.5.4 Sensitivity Analysis Through Time

It is proposed that the sensitivity analysis method generally applied be broadened
in several ways to provide a more accurate measure of the relative importance
of inputs and to pave the way to discovering more detailed information about
interactions between inputs. To take account of the assumption that ANNs learn
non-linear relationships between input and output variables, it is proposed that the
input variable in question be swept over a range of discrete values as per Lek’s
algorithm (Lek et al., 1996). Furthermore, to gain data regarding interactions
between the effects of inputs, it is proposed to conduct the sensitivity analysis for
each input where the values of the remaining inputs are blocked at each dataset
value in turn (ie a sensitivity analysis through time). Implementation of these two
strategies is described by the procedure in table 2.6. This procedure results in a
database of model responses indexed by the input variable, perturbation value and
output date. The following information can be retrieved from this database;

e Overall model sensitivity to a defined input.

e Model sensitivity to a defined input where other inputs and outputs fall
within a given range of values.

e Model sensitivity to a defined input within a give time period where the time
period is defined either by dates, or by a relationship to other unmodelled
variables.

It is proposed that overall model sensitivity to a given input be calculated to take
account of non-monotonic relationships that may have been learned between input
and output variables. This can be achieved using the approach developed by
Embrechts et al. (2001) described by equation 2.11 in section 2.3.5.
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Figure 2.14: Division into train and test data with a hold-out period.

Table 2.6: Procedure for bagged sensitivity analysis through time

Loop for i bootstrap samples
Loop for every j test set dates
Loop for k inputs
Loop for m perturbations
Calculate output from input for date j using model i substituting
input k with input k + perturbation m
End perturbation loop
End input loop
End date loop
End bootstrap loop

If bagging is employed, the sensitivities will be represented as a bootstrap distri-
bution allowing statistical significance tests.

2.5.5 “LakeNet” — a Platform for ANN Model Implementation

Implementing the model representations and methodology proposed above re-
quires repeated preparation of training and validation sets followed by ANN train-
ing and testing. This process is computationally intensive because the modelling
task considers a number of dimensions including;

e 6 datasets (see chapter 3).
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e Many possible model designs, encompassing a range of input/output vari-
ables, lag times and input windows lengths and types.

e Many ANN “meta-parameter” settings such as training algorithm, number
of hidden layer nodes and training time where experiments regarding these
features is required.

e Training of many member models to make up a bagging ensemble.

e The use of rotation performance estimators requiring multiple training and
validation samples.

e The use of the sensitivity analysis through time procedure with a number
perturbations for each date-input.

Such a procedure requires training of thousands of individual ANNs with unique
training and test sets. Even with access to fast computers, this is a huge computa-
tional and data management task. Such an undertaking would be time consuming
and error prone using an interactive approach, where data preprocessing is done
using spreadsheet applications and ANNs are trained using desktop software ap-
plications.

It is proposed that the middleware application “LakeNet” be developed to facil-
itate the information processing task. Middleware is software designed to be an
intermediary between a client program and a database server. LakeNet performs
the task of retrieving and preprocessing data and messaging the ANN client with
appropriate control information and data. This messaging is achieved by means of
the application programming interface (API) of the ANN client software. At the
completion of training, validation and sensitivity analysis, LakeNet then retrieves
the corresponding predictions from the ANN client and, after performing any
necessary post-processing, inserts the information back into the database. It is
proposed that LakeNet be implemented in the Java language (Sun Microsystems
Inc., 2001) to maximise platform independence.

For the purposes of LakeNet, it is proposed that all data, including monitoring data
from each of the study sites, configuration data for experiments and ANN clients
and model predictions, be stored in tables in a relational database management
system (RDBMS)®. Storing data in a RDBMS permits data to be defined in terms
of its relationships to certain keys. This means that, unlike a “flat file” system
such as a spreadsheet or text file, the positional information of a record or piece
of information is not relevant. Compared to a flat file system, a RDBMS has the
following advantages;

®In the present study, MySQL version 3.23.47 MySQL AB (2002) was used as the database
platform and the command line client of SNNS version 4.1 was used as the ANN simulator.
Any other RDBMS software that supports Structured Query Language (SQL), such as Microsoft
Access, Oracle, or Postgres, would also be suitable.
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Figure 2.15: Database entity relationship diagram (ERD)

e The structure is much more flexible with respect to the insertion of new
records or variables, since the interface with retrieving applications is kept
constant.

e There is less risk of errors being made with respect to data manipulation or
retrieval.

Figure 2.15 shows an entity relationship diagram describing the tables used to
store water quality data.

2.6 Conclusion

ANNS are very flexible model representations that;

e May approximate a decision surfaces characterised by non-linear decision
boundaries.

e In the context of a suitable training algorithm and proper “data condition-
ing”, may learn decision surfaces from data within specified distortion cri-
teria.

These properties are particularly useful when tackling modelling tasks for which
there is a lack of sufficient domain knowledge to apply conventional modelling
approaches. In addition, unlike conventional empirical models, they are not con-
strained by simplifying assumptions with respect to the data such as normality or
linearity. The process model for developing models using supervised ANNs is
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well established and it has been proven that ANNs can be used to develop models
with prediction accuracy comparable or superior to conventional models.

However, it was argued that a number of practical issues concerning compatibility
of time-series representations with typical historical datasets, stability of model
inference, performance estimation and knowledge discovery affect use of ANNs
in a decision support role. The following changes to model representation and
approximation were proposed with respect to each of these issues;

e Representation of inputs as sliding time windows rather than discrete lags to
increase the compatibility of TDNN structures with “typical” environmental
datasets without extensive data preprocessing.

e Representation of models as bootstrap ensembles by bagging to increase
the stability of model inference and increase resistence to the effects of
overfitting.

e Use of rotation performance estimators such as k-fold cross-validation or
the leave-one-out bootstrap to improve the accuracy of performance esti-
mation leading to better judgements about the model’s usefulness and more
accurate tuning of parameters that effect model performance.

e Use of the sensitivity analysis through time to yield more accurate informa-
tion regarding the relative importance of model inputs.

This thesis will investigate the utility of each of these proposals.
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Chapter 3

Study Sites and Data

3.1 Introduction

One of the aspects that sets the present study apart from other related studies is
that, through the kindness of a number of many scientists and ecologists, there is
a wide range of datasets available from which ANN models can be trained and
validated. This is fortunate, since, as the aim of the present study is to develop
more generalised “compatible” approaches to ANN modelling, it is important
to that the methods be tested on the widest possible range of data. This allows
determination of interactions between the effects of model design and site specific
properties such as eutrophication, the morphometry and residence time of the
water body, various chemical attributes of the water, climate, the regularity and
span of monitoring and other relevant attributes. Historical data collected by water
quality management authorities was donated from 6 sites, including;

e Lake Biwa, Japan

e Burrinjuck Dam, New South Wales, Australia

Darling River, New South Wales, Australia
e Lake Kasumigaura, Japan

e Myponga reservoir, South Australia

e Lake Soyang, South Korea

Sections 3.2.1 to 3.2.6 briefly review the conditions of each of these water bodies
and the characteristics of the available data. Section 3.3 compares the trophic
states of each site discovered by investigation of the available data. Section 3.4
proposes site generic and site specific model designs for ANNs based on the
observed data availability.

57
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Table 3.1: Six freshwater bodies: water quality, monitoring, and database information

Lake Biwa  Lake Burrinjuck Darling River Lake Kasumigaura Myponga Reservoir  Lake Soyang
(Japan) (NSW, Australia) (NSW, Australia) (Japan) (SA, Australia) (South Korea)

Water Quality

mean Chl a (ug/) 9.32 15.8 20100" 60.5 7.45 4.30

max Chl a (ug/l) 385 579 281000* 280 41.6 98

std dev Chl a (ug/1) 6.5 28.7 26100* 425 6.77 6.81

mean annual min temp (°C) 49 9.1 9.7 4.5 9.7 5.1

mean annual max temp (°C) 29.5 25.6 27.2 28.8 22.3 27.0

mean transparency 1.76 m** 1.55 m** 101 NTU** 0.84 m** 5.09 NTU™* 3.9 m**
Morphometry

max depth (m) 103 63.5 n/a 7 36 118

mean depth (m) 41 56.6 n/a 4 not avail. 353

area (km?) 670 42 n/a 220 not avail. 46.5

volume (10 m?) 27800 756 n/a 900 26.8 1650

retention time (years) 5.5 >2 0.002 0.55 <1 0.77
Database

lifespan of database 1984-91 1978-97 1978-93 1978-93 1970-97 1984-95

no. chl-a sample dates 151 330 628 125 646 120

approx. sampling interval (days) 17 22 9 47 16 37

no. variables sampled 31 56 65 105 236 21

no. sample sites 1 13 1 3 2 1

depth of sampling? no yes no no no yes

* Chlorophyl a data not available. Total cells/ml used instead.
** Depth of secchi disk.
* % % Turbidity
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3.2 Study Sites

3.2.1 Lake Biwa

Lake Biwa, located on the island of Honshu approximately 10 km from the city
of Kyoto, is the largest freshwater lake in Japan. As one of the oldest freshwater
lakes in the world, it has attracted considerable scientific interest on account of
its unique biota and fossil rich sediments. It is of great economic importance to
the surrounding Shiga prefecture as the host of Japan’s largest freshwater fishery
and an important source of freshwater for domestic, industrial and agricultural
purposes.

Figure 3.1 shows that the morphometry of Lake Biwa is comprised of two basins
joined by a 1.3 km wide narrows. The northern or “main” basin is the largest
and has an average depth of 43 metres making it the second deepest lake in this
study (see comparison in table 3.1). The southern or “secondary” basin has an
average depth of only 4 metres. The two basins have considerably different water
quality and biological conditions as a result of the different morphometry. The
large surface area of 670 km? and high average depth mean that lake Biwa has
a volume of approximately 27800 * 10% m3 which is by far the largest of all the
lakes studied. Also it has the longest water retention time of 5.5 years.
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Figure 3.1: Lake Biwa (Japan).

This lake was once considered oligotrophic. Many wetlands and smaller lakes
surrounding Lake Biwa have had a beneficial effect on water quality. However,
since World War 2, increasing land reclamation of the wetlands and industrialisa-
tion in surrounding areas have caused a decline in water quality to the point that
it is now considered meso-eutrophic. In recent years, “red-tides” resulting from
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dinoflagellate blooms and potentially toxic cyanobacterial blooms have become a
regular occurrence.

Figure 3.2 shows that the summer climate of Kyoto near Lake Biwa is sub-tropical
with high rainfall and relatively warm maximum and minimum temperatures. The
winter months however are cool to cold with average minimum temperatures from
December to February near freezing point.
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Figure 3.2: Average temperature and precipitation — Lake Biwa

A total of 31 measured variables were available for this lake measured over an
eight year period from 1984 to 1991. Table 3.2 shows that the database for lake
Biwa contains commonly measured chemical water quality parameters including
plant macro-nutrients (nitrate and phosphate), dissolved oxygen, pH and a sin-
gle micro-nutrient (Si). Physical information is represented by temperature and
underwater light penetration (Secchi disk depth). In addition to these common
physical variables, there is basic information on weather conditions such as wind
speed and a trinary variable indicating fine, cloudy and rainy conditions.

The biological variables include chlorophyll a as a measure of total algal biomass.
Phytoplankton data (see table 3.3) are resolved to species level. The average,
maximum and standard deviation information regarding cell densities indicate that
the mixotrophic flagellate Euglena americana is the most abundant and dynamic
phytoplankton species in Lake Biwa. This species is known to form an algal
bloom every spring when phosphorus becomes limiting (Urabe et al., 1999). Other
dominant algae include species of diatoms (eg Melosira granulata) and green
algae (eg Pediastrum biwae).

Table 3.2 shows that there were between 104 and 190 unique sampling dates.
Chemical properties such as NO3, PO4 and Si were the least well represented
with 104 dates. Chlorophyll a measurements are present for 151 dates and the re-
maining variables are available for 190 dates. For months when observations were
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Table 3.2: Lake Biwa: Sampling Frequency

Lifespan Obs. dates Obs months  Obs. per mo.

Water quality & physical variables

Chlorophyll a 1984-91 151 96 1.6
Dissolved oxygen 1984-91 190 96 2.0
NO3 1984-91 104 96 1.1
POy 1984-91 104 96 1.1
pH 1984-91 190 96 2.0
Secchi depth 1984-91 190 96 2.0
Si 1984-91 104 96 1.1
Water temperature 1984-91 190 96 2.0
Weather (0 fine 05 cloudy 1 rain) 1984-91 190 96 2.0
Wind speed 1984-91 190 96 2.0
Phytoplankton

Ankistrodesmus fal v mirabile 1984-91 190 96 2.0
Asterionella formosa 1984-91 190 96 2.0
Coelastrum cambricum 1984-91 190 96 2.0
Cyclotella glomerata 1984-91 190 96 2.0
Euglena americana 1984-91 190 96 2.0
Melosira granulata 1984-91 190 96 2.0
Micractinium pusillum 1984-91 190 96 2.0
Pediastrum biwae 1984-91 190 96 2.0
Planktosphaeria spp. 1984-91 190 96 2.0
Rhodomonas spp. 1984-91 190 96 2.0

Table 3.3: Lake Biwa: 10 most abundant phytoplankton species (cells/ml)

Var. name av. var. stdev. var. max. var.
Euglena americana 549 1789 18780
Melosira granulata 304 618 3345
Pediastrum biwae 141 555 5056
Asterionella formosa 128 525 4400
Ankistrodesmus fal v mirabile 120 279 2526
Rhodomonas spp. 89 205 1838
Coelastrum cambricum 88 572 6000
Dictyosphaerium spp. 81 230 2175
Cyclotella glomerata 77 163 963

Micractinium pusillum 48 135 1300
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conducted, there was an average sampling rate of between 1.1 and 2 observations
per month.

3.2.2 Burrinjuck Reservoir
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Figure 3.3: Lake Burrinjuck (NSW, Australia).

Lake Burrinjuck is a major storage for the Murrumbidgee Irrigation Area in New
South Wales, Australia. It was created in 1908 by damming the Murrimbidgee
river downstream of the junctions with the Yass and Goodradigbee rivers. It is
located approximately 340 km southwest of Sydney near the township of Yass. As
well as being an important water supply for irrigators, it is popular for recreational
activities such as fishing, boating and water-skiing. Figure 3.3 shows that Lake
Burrinjuck is dendritic in shape with the main basin being joined by several long,
narrow arms corresponding to the Goodradigbee, Murrimbidgee and Yass rivers.
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There are many small bays and inlets along its edges. This lake is considered to be
meso- to eutrophic and has experienced recurrent algal blooms since the 1960’s.

Figure 3.4 shows that Lake Burrinjuck has a warm temperate climate with more
precipitation occurring in winter months than summer months. Whilst the average
summer maximum temperatures are similar to those of the 3 Asian lakes fea-
tured in this work, the summer minimum temperatures are considerably warmer.
Winters in South Eastern Australia are relatively mild with average maximum
temperatures in the mid teens and minimum temperatures above freezing.
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Figure 3.4: Average temperature and precipitation — Lake Burrinjuck

A total of 56 variables were available for this lake measured over a 22 year period
from 1976 to 1997. Table 3.4 shows that the chemical information in the database
includes several representations of both phosphorus and nitrogen including dis-
solved and total phosphorus, ammonia, oxidised nitrogen and total nitrogen. Also
included are data for dissolved oxygen. However, there are no data for important
micro-nutrients such as silica. The physical data includes variables describing
water temperature, underwater light (Secchi depth) weather information (sunshine
hours, precipitation, wind and evaporation) and water inflow rates from a number
of tributary streams and rivers (“Ginnind & Charnwood”, “Goodradigbee”, “Mo-
longlo Coppins”, “Mountain Creek”, “Murrum Mt McD”, “Yass” and all variables
commencing with “S410”). Also there is data for the lake volume and surface area
—information particularly relevant for this site given the large fluctuations in water
level caused by irrigation drawdown and evaporation in summer.

The biological data (see table 3.5) include variables describing total algal biomass
(chlorophyll a) and abundance of a number of families of zooplankton and a
single macro-invertebrate group (nymphs). Phytoplankton abundance is resolved
at functional group level rather than species level. It is clear from this table
cyanobacteria are by far the most productive and dynamic phytoplankton group



CHAPTER 3. STUDY SITES AND DATA

Table 3.4: Burrinjuck Dam: Sampling Frequency

Lifespan  Obs. dates  Obs months  Obs. per mo.

Water quality & physical variables

Air temp — maximum 1976-96 7055 250 28.2
Air temp — minimum 1976-96 7236 250 28.9
Area 1976-96 7671 252 304
Chlorophyll a 1977-97 283 190 1.5
Dirn 900 1976-91 2515 89 28.3
Dissolved oxygen 1978-97 207 162 1.3
Dissolved phosphorous 1977-97 359 205 1.8
Evaporation 1976-96 7455 247 30.2
Ginnind & Charnwood 1976-97 7673 253 30.3
Goodradigbee 1976-96 7671 252 30.4
Molonglo Coppins 1976-97 7673 253 30.3
Mountain Creek 1976-96 7671 252 30.4
Murrum MtMcD 1976-97 7673 253 30.3
NH4 1977-97 353 207 1.7
NO, 1977-97 363 207 1.8
Precipitation 1976-96 7572 250 30.3
Relative humidity 1500 1976-96 7671 252 304
Relative humidity 900 1976-96 7671 252 30.4
5410008 1976-96 7671 252 30.4
5410700 1976-97 7673 253 30.3
5410731 1976-97 7673 253 30.3
$5410745 1976-97 7673 253 30.3
5410761 1976-97 7673 253 30.3
Secchi depth 1979-97 173 143 12
Stratification 1977-97 295 193 1.5
Sunshine hours 1976-96 7640 251 304
TKN 1982-96 165 129 1.3
Total nitrogen 1977-97 50 42 1.2
Total phosphorous 1977-97 358 204 1.8
Volume 1976-96 7671 252 30.4
Water level 1976-97 7672 253 30.3
Water temperature 1977-97 350 200 1.8
Wind speed 1500 1976-96 6916 250 27.7
Wind speed 900 1976-96 7090 250 28.4
Yass 1976-96 7671 252 30.4
Phytoplankton

Chlorophyta 1977-97 295 193 1.5
Chrysophyta 1985-97 126 105 1.2
Cyanophyta 1977-97 295 192 1.5
Diatoms 197797 289 195 1.5
Euglenophyta 1985-97 113 94 1.2
Total Algae 197797 302 196 1.5
Xanthophyta 1985-97 114 93 1.2
Zooplankton

Ciliophora 1984-97 45 41 11

Cladocera 1982-97 116 106 1.1

Copepoda Calanoida 1985-97 113 101 1.1

Copepoda Cyclopoida 1985-97 106 97 1.1

Copepoda Harpacticoida 1993-97 38 34 1.1
Nymphs 1982-97 134 122 1.1
Rotifera 1983-97 80 74 1.1
Total zooplankton 1982-97 135 123 1.1
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Table 3.5: Burrinjuck Dam: Most abundant phytoplankton groups (cells/ml)

Var. name av. var. stdev. var. max, var.

Cyanophyta 27499 624228 34122240

Chlorophyta 2612 8983 386640
Diatoms 1527 3496 77100
Chrysophyta 1162 3039 77100
Euglenophyta 30 228 8253
Xanthophyta 10 84 1500

in this reservoir. Also, the maximum values column indicates the occurrence of
significant blooms of green algae and diatoms during the monitoring period.

Table 3.4 shows that data availability varies from 38 dates in 34 months for
Copepoda Harpacticoida to over 6900 dates in approximately 250 months for
variables describing meterological conditions and inflow. The observation density
ranges from 1.1 to 1.8 dates per month for most water quality variables including
phytoplankton, to an average of 1 observation per day for the data describing
meterological conditions and inflow.

3.2.3 Darling River

The Darling river is a significant part of the Murray-Darling system, which at 3780
km in total combined length is Australia’s largest and the world’s forth largest,
river system. This river system drains the Murray Darling Basin which is a region
of approximately 1 million km? comprising a variety of alpine, temperate and
arid landscapes to north and west of the Great Dividing Range. This area has
great economic importance to Australia as it supports a large pastoral, cropping
and irrigation based agricultural industry. Also, it provides domestic and industrial
water supply to many towns and cities — the most significant being Adelaide which
derives approximately 50% of its domestic water supply from the Murray River
(McKay and Moeller, 2001).

The Darling River drains the north part of the Murray-Darling basin including
much of northern NSW and southern Queensland. It is a major source of water
for urban, industrial and agricultural purposes throughout this region. The Darling
river joins the Murray river close to the township of Mildura which is on the
western part of the border between Victoria and NSW. At this juncture it has an
average annual flow rate of 1890 GL (Weston, 1987).

The Darling River has a number of water quality problems including taste, salin-
ity, turbidity and occasional cyanobacterial blooms. In 1991, the Darling River
experienced the world’s largest recorded algal bloom, with floating scums of
cyanobacteria being observed over a 1000km length of the river (McKay and
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Moeller, 2001). In general, these problems are attributed to poor quality water
flowing from tributaries arising from excessive soil erosion and agricultural runoff
and natural salinity compounded by high evaporation rates (Weston, 1987).

Figure 3.5 shows the climate information for Wentworth, NSW which is ap-
proximately 60 km south of Burtundy where the data used in this study was
collected. This region of Australia is warm and arid with low average rainfall and
high summer maximum temperatures. Winters are mild with average maximum
temperatures in the teens.
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Figure 3.5: Average temperature and precipitation — Darling River (location
Wentworth NSW)

A total of 65 variables were available in the Darling River database measured
over 16 years from 1978 to 1993. Table 3.6 shows that macro-nutrient data is
represented by dissolved and total phosphorus, oxidised nitrogen and TKN. Also
it is clear that salinity is a particular concern in the Darling river as there is data
for electrical conductivity and a number of relevant ions. Silica concentration
and pH are also represented, but no dissolved oxygen data is available. Physical
variables include temperature, but not Secchi disk depth. Instead, underwater
light conditions are represented by turbidity and colour. The presence of flow data
distinguishes this water body as a river rather than a lake. There are no weather
data available.

Chlorophyll a concentration is not represented amongst the biological variables
in this database. However, unlike the other databases, heterocyst counts are avail-
able indicating the innoculum levels for certain species of cyanobacteria. Phy-
toplankton data, represented by functional groups rather than species (see table
3.7), shows that the Darling River is equally dominated by cyanobacteria and
chlorophyta. These two groups were responsible for approximately double the
overall phytoplankton biomass of flagellates which were the next most dominant
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Table 3.6: Darling River: Sampling Frequency

Lifespan Obs. dates Obs months Obs. per mo.

Water quality & physical variables

Bicarbonate 1978-93 390 175 2.2
Calcium 1978-93 513 164 3.1
Chloride 1978-93 494 176 2.8
Colour 1979-93 175 140 1.3
E.C. - field 1978-93 721 172 4.2
E.C. - lab 1978-93 662 170 3.9
Flow 1978-93 5479 180 30.4
Magnesium 1978-93 513 164 3.1
NO, 1978-93 600 177 34
pH - field 1978-93 710 175 4.1
pH - lab 1978-93 574 166 35
Potassium 1978-93 510 164 3.1
Silica 1978-93 611 177 35
Sodium 1978-93 512 164 3.1
SRP 1978-93 529 164 32
Sulphate 1978-93 398 175 23
Water temperature 1978-92 656 159 4.1
TKN 1979-91 454 139 33
Total phosphorous 1978-93 613 178 34
Turbidity 1978-93 744 178 4.2
Phytoplankton

Chlorococcales 1980-92 628 148 4.2
Chlorophyta 1980-92 628 148 42
Cyanophyta 1980-92 628 148 4.2
Centric diatoms 1980-92 628 148 42
Unicellular diatoms 1980-92 628 148 4.2
Ditomophyta 1980-92 628 148 42
Flagellates 1980-92 628 148 42
Planctonema spp. 1980-92 628 148 4.2
Scenedesmus spp. 1980-92 628 148 4.2

Ulothricales spp. 1980-92 628 148 4.2
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Table 3.7: Darling River: 10 most abundant phytoplankton groups (cells/ml)

Var. name av. var. stdev. var. max. var,
Cyanophyta 3541 5896 67533
Chlorophyta 3170 5887 63233
Flagellates 1658 2398 25000
Ulothricales spp. 1414 5063 62729
Chlorococcales 1195 1703 19725
Planctonema spp. 972 4543 62729
Ditomophyceae 923 1465 11388
Centric diatoms 754 1351 11388
Unicellular diatoms 668 1141 9689
Scenedesmus spp. 557 883 13280

group. The maximum value column in table 3.7 indicates that significant blooms
of the flagellates, ulothricales and planctonema have also occurred at some point
in the time-series.

Table 3.6 shows that the data availability varies from 175 observations over 140
months for colour, to 5479 observations over 180 months for flow. Most vari-
ables, including phytoplankton data, have a reasonably high sampling density of
between 3 and 4.2 observations per month. Flow rate was observed every day.

3.2.4 Lake Kasumigaura

Lake Kasumigaura, located on the Kanto plain 50km north-east of Tokyo, is the
second largest lake in Japan after Lake Biwa. It has had high economic importance
as a fishery throughout the twentieth century (Otsuki et al., 1987) and is also
popular for recreational uses such as boating. The lake is large and shallow with
an average depth of 4m and a surface area of 171km?2. It is very low lying with
an elevation of only 1m. Figure 3.6 shows that it comprises a main basin of
approximately 20 km length and 10 km wide at the widest points. There are
two bays approximately 10 km length and widths ranging from 1 to 5 km. The
shallow depth means that significant thermal stratification is a rare event in this
lake.

This lake has become a highly eutrophic water body over the course of the twenti-
eth century, especially following industrialisation and urbanisation in the vicinity
after World War 2, the introduction of net pen carp culture in 1965 and flow
regulation with the construction of a dam in 1974. Cyanobacteria such as Micro-
cystis, Anabaena and Aphanizomenon were observed as early as 1910 and became
dominant after succeeding Melosirain 1957 (Takamura et al., 1987). A succession
in dominance from Microcystis to Oscillatoria occurred in 1987 (Takamura and
Aizaki, 1991). In general, cyanobacterial blooms start forming in both of the bays
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Figure 3.6: Lake Kasumigaura (Japan).

in late spring and early summer and eventually spread out over the entire lake by
late summer (Otsuki et al., 1987).

Table 3.7 shows that Tokyo (approx 60 km south west of Lake Kasumigaura) has
a subtropical climate with a warm summer and high summer and autumn rain-
fall. However, like Lake Biwa, this area has mild to cool winters with minimum
temperatures close to freezing.

A total of 105 variables were available in the Lake Kasumigaura database mea-
sured over a 16 year period from 1978 to 1993 in the case of phytoplankton and
from the early 1980’s to 1993 for the remaining variables. Table 3.8 shows macro-
nutrient data being represented by NO,, NO3, NHy4, dissolved inorganic nitrogen,
total nitrogen, orthophosphate, dissolved total phosphorus and total phosphorus.
Also among the available chemical variables are silica, pH and dissolved oxygen.
The physical variables include transparency (Secchi depth), water temperature and
water depth data. Weather information is also present with rainfall, radiation time
and intensity variables available from a number of stations in the vicinity of the
lake. Wind information is not present.

The biological database for this lake is relatively rich with data available for
chlorophyll a4, a number of groups of zooplankton and phytoplankton cell counts
resolved to either species or genus level (see table 3.9). The phytoplankton data
indicates that Lake Kasumigaura is hypertrophic with very high average and max-
imum cell counts for numerous species of cyanobacteria (in particular Micro-
cystis spp. and Oscillatoria spp.). Diatoms and flagellates are also important
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Table 3.8: Lake Kasumigaura: Sampling Frequency

Lifespan Obs. dates Obs months Obs. per mo.
Water quality & physical variables
Chl-a 1983-93 125 122 1.0
Water depth 1983-93 93 88 1.1
Dissolved inorganic nitrogen 1981-92 155 140 1.1
Dissolved oxygen 1983-93 127 119 1.1
Dissolved total phosphorous 1983-93 135 125 1.1
Light 1981-93 222 155 1.4
NH4 1983-93 135 125 1.1
NO, 1983-93 128 120 1.1
NOs 1983-93 128 120 1.1
pH Om 1983-93 124 116 1.1
POy 1983-93 135 125 1.1
Radiation time (Kashima) 1981-92 4299 144 29.9
Radiation time (Tsuchiura) 1981-92 4299 144 29.9
Rain (Kashima) 1981-92 4299 144 29.9
Rain (Tsuchiura) 1981-92 4299 144 29.9
Total silica 1981-92 155 140 1.1
Total nitrogen 1983-93 134 125 1.1
Total phosphorous 1983-93 135 125 1.1
Water temperature 1983-93 134 124 1.1
Phytoplankton
Anabaena flos-aquae 1978-93 2717 178 1.6
Cyclotella sp. 1 1978-93 277 178 1.6
Gomphosphaeria spp. 1978-93 277 178 1.6
Merispodeia spp. 1978-93 277 178 1.6
Microcystis aeruginosa 1978-93 277 178 1.6
Microcystis wesen 1978-93 277 178 1.6
Ochromonas spp. 1978-93 277 178 1.6
Oscillatoria spp. 1978-93 277 178 1.6
Phormidium spp. 1978-93 277 178 1.6
Synedra rumpens 1978-93 277 178 1.6
Zooplankton
Bosmina fatalis 1981-92 211 136 1.6
Cladocera 1981-92 211 136 1.6
Copepoda 1981-92 211 136 1.6
Diaphanosoma brachyurum 1981-92 211 136 1.6
Rotifera 1981-92 211 136 1.6
Total zooplankton 1981-92 211 136 1.6
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Figure 3.7: Average temperature and precipitation — Lake Kasumigaura
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Table 3.9: Lake Kasumigaura: 10 most abundant phytoplankton species (cells/ml)

Var. name av. var. stdev. var. max. var.
Microcystis aeruginosa 36899 87793 670000
Oscillatoria spp. 18302 53049 502320
Gomphosphaeria spp. 9773 31204 331240
Phormidium spp. 9097 31920 385476
Anabaena flos-aquae spp. 4247 18073 230000
Ochromonas spp. 3267 8294 127399
Synedra rumpens 3149 10913 143634
Merismopedia spp. 2738 26926 604250
Cyclotella spp. 1 2403 7556 75420
Microcystis wesen 1767 10414 141232
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groups with high maximum cell counts indicating blooms of Synedra spp. and
Ochromonas spp. taking place during the time-series.

Table 3.8 shows data availability varying from 93 dates in 88 months for water
depth to 4299 dates in 144 months for rain and radiation time. Most water quality
data availability is in the region of 120-150 dates and measurements of phyto-
plankton were made on 277 dates. The sampling density varies between 1 and
1.6 observations per month, although the density for rain and radiation time is
approximately once per day.

3.2.5 Myponga Reservoir
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Figure 3.8: Myponga Reservoir (SA, Australia) (from Lewis et al. (2002)).

Myponga Reservoir, located approximately 60 km south of Adelaide, South Aus-
tralia, was constructed in 1962 by damming the Myponga river in order to provide
reticulated water supply to the towns and industries in the region from the town-
ship of Myponga to the southern metropolitan area of Adelaide. The catchment
area for this reservoir is 125 square kilometres of predominantly agricultural land
which takes in the township of Myponga (Government of South Australia, 1962).
With an area of 3.2 * 10 m? and a volume of 26.8 * 10° m?, Myponga reservoir
is the smallest of the lakes investigated in this study. Figure 3.8 shows that the
reservoir is a dendritic shape with a number of bays extending from the main
basin. The long arm corresponds to the inundated path of the Myponga River.

The water quality has been characterised by high colour and recurrent cyanobac-
terial blooms since the dam’s construction (Harvey, 1992; Velzeboer et al., 1991).
Copper sulphate has been applied up to 3 times a year since 1963 to combat the
cyanobacterial blooms and the associated water quality problems (McAuliffe and
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Rosich, 1989). Artificial destratification by means of aeration was commenced in
1980 primarily to prevent problems with phantom midge larvae entering the retic-
ulated water supply. Unfortunately this has had no significant effect on cyanobac-
terial growth (Harvey, 1992).

Figure 3.9 shows that the Myponga reservoir experiences a Mediterranean climate
with warm dry summers and mild wet winters. The Myponga region has the
coolest summers of all the lakes studied with average maximum temperatures
in the mid to high twenties. Like the other Australian lakes, winter minimum
temperatures are relatively mild being not less than 5 degrees Celsius.
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Figure 3.9: Average temperature and precipitation — Myponga Reservoir

In terms of the number of variables measured, Myponga presents the richest
database in this study with 236 ficlds. However a number of fields contained
less than 20 observations making them unsuitable for use for ANN modelling
purposes. Table 3.10 shows the better represented variables with 20 or more
records. It can be seen that sampling occurred from 1970 to 1997 for a few
variables such as turbidity, although the database is richest in the period from
1984 to 1997.

Macro-nutrient data include variables representing NH3z, NO,, NO3z, TKN, or-
thophosphate and total phosphorus. A range of trace elements are recorded includ-
ing aluminium, iron and manganese but not silica. Copper data is also available
which is to be expected in light of the regular copper sulphate dosing to control
phytoplankton growth. Other chemical variables include pH, dissolved oxygen
and dissolved organic carbon data. Also there is a number of variables alluding to
taste or odour not listed in table 3.10 (“geranium”, “sweetish”, “fishy”, “earthy”,
“peaty”, “musty”, “mouldy”, “odour” and “vegetable”). Amongst the physical

data, information is available for temperature and underwater light properties
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Table 3.10: Myponga reservoir: Sampling Frequency

Lifespan  Obs. dates  Obs months  Obs. per mo.

Water quality & physical variables

E. coli 1970-97 560 136 4.1

Aluominium — soluble 1984-97 148 147 1.0
Aluminium — total 1984-97 148 147 1.0
Chlorophyll a 1985-97 645 143 4.5
Chlorophyll b 1985-97 643 143 4.5
Coliforms 1970-97 365 97 3.8
Colour — true (395nm) 1971-91 1066 240 4.4
Colour — true (456nm) 1991-97 273 73 3.7
Conducitvity 1984-92 92 76 1.2
Copper — soluble 1984-97 148 147 1.0
Copper — total 1984-97 148 147 1.0
Cyclopoida 1971-78 30 25 1.2
Dissolved organic carbon 1984-97 145 136 1.1

Dissolved oxygen 1992-97 175 61 2.9
Iron - soluble 1984-97 205 147 1.4
Iron — total 1984-97 204 148 14
Iron — total 1984-97 185 148 1.3
Manganese — soluble 1984-97 185 148 1.3
Manganese — total 1984-97 204 148 1.4
NH4 1984-97 194 140 1.4
NO, 1984-97 205 148 1.4
NO; 1984-97 206 148 1.4
Odour - cold 1970-97 1326 309 4.3
QOdour — hot 1970-97 1259 302 42
pH 1984-97 76 5 1.0
Secchi depth 1981-85 176 46 3.8
TKN 1984-97 186 147 1.3
Total dissolved solids 1984-92 92 76 1.2
Total organic carbon 1984-90 67 62 1.1

Total phosphorous 1984-97 205 147 1.4
Turbidity 1971-97 1329 308 4.3
Water temperature 1983-97 630 160 3.9
Phytoplankton

Anabaena circinalis 1991-97 91 26 3.5
Anabaena spp. 1972-90 32 24 1.3
Ankistrodesmus sp. 1 1988-96 163 39 4.2
Ankistrodesmus sp. 2 198997 96 33 29
Chlorella spp. 1984-97 50 20 2.5
Dictyosphaerium spp. 1972-97 444 114 3.9
Dictyosphaerium very small sp. 1988-95 24 12 2.0
Microcystis spp. 1975-93 109 48 2.3
Pseudanabaena spp. 1992-97 20 10 2.0

Scenedesmus spp. 1971-97 379 138 2.7
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Table 3.11: Myponga reservoir: 10 most abundant phytoplankton species
(cells/ml)

Var. name av. var. stdev. var. max. var.
Chlorella spp. 10476 27123 170000
Scenedesmus spp. 7530 18444 139392
Anabaena spp. 5216 24295 150000
Microcystis spp. 3633 12288 114200
Ankistrodesmus sp 1 1674 2862 20160
Ankistrodesmus sp 2 1360 2871 27714
Pseudanabaena spp. 762 2437 10500
Dictyosphaerium very small spp. 749 3121 17136
Dictyosphaerium spp. 642 1568 22102
Anabaena circinalis 588 1488 11400

(Secchi depth, turbidity and colour) and weather data including radiation and wind
direction.

The biological database includes total algal biomass (chlorophyll a and b) and
individual numbers of several zooplankton groups. However, compared to other
variables, zooplankton data is relatively poorly represented with less than 35
records available from a short time span in the 1970’s. E. Coli presence is well
represented over the entire time-series. The phytoplankton'data (see table 3.11)
is resolved to genus or species level. It is evident that the Myponga reservoir
experiences significant blooms of green algae (Chlorella spp. and Scenedesmus
spp.) and cyanobacteria (Anabaena spp. and MicrocyStis spp.). Unfortunately,
Chlorella spp. and Anabaena spp. are not well represented in this database with
only 52 and 33 records respectively.

Table 3.10 shows that data availability is highly variable between fields, with some
variables measured over a long period of time, such as turbidity and colour, having
over 1000 sampling dates. The sampling density ranges from 1 observation per
month to 4.5 observations per month in the case of chlorophyll a.

3.2.6 Lake Soyang

Lake Soyang is the largest and deepest reservoir in Korea. It is situated approxi-
mately 100 km to the north east of Seoul in the far north of South Korea. It was
constructed by damming the North Han river in 1973. 90% of the lake inflow
comes from the Soyang river. It is of great importance as a supply of drinking
water and it has, at times, been host to a net cage fish farming industry (Kim et al.,
2000).
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The morphometry of Lake Soyang is a complex dendritic structure with one main
arm and many branching inlets of up to S km in length (see figure 3.10). Itis a
deep lake with a mean depth of 42m and a maximum depth of 110m. It has a
retention time of 0.7 years which is the highest of South Korea’s freshwater lakes.
Much of the inflow into Lake Soyang occurs in the monsoonal months of July and
August, when over 50% of the region’s annual rainfall occurs.
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Figure 3.10: Lake Soyang (South Korea).

Nutrient loadings to Lake Soyang originate from non-point agricultural sources
and the fish farming industry. By contrast there is an insignificant level of in-
dustrial influence on the reservoir. The lake is considered meso-eutrophic, with
significant “monsoonal eutrophication” regularly occurring in the summer months
as a result of several precipitation events of >100 mmday~! (Kim et al., 2000).
Like most Korean lakes, cyanobacteria are the dominant phytoplankton species in
Lake Soyang during the summer months (Kim et al., 1997). Kim et al. (1999)
observed that by l