Antigen Specific B Cells in the Immune Response to *Haemophilus influenzae* type b PRP Conjugate Vaccine

Aruna P. Kodituwakku M.B.B.S

Department of Paediatrics
Faculty of Health Sciences
University of Adelaide
SOUTH AUSTRALIA

A thesis submitted for the degree of Doctor of Philosophy

March 2004
TABLE OF CONTENTS

List of contents ... 1
Index of figures .. IX
Index of tables .. XII
Summary .. XV
Declaration .. XVIII
Acknowledgements .. XIX
Publications and presentations arising from this thesis XXi
Abbreviations and standard units XXII

CHAPTER 1

INTRODUCTION

1.1. Biology of *Haemophilus influenzae* type b 4
1.2. Pathogenicity and clinical manifestation of invasive *Haemophilus influenzae* type b disease 2
1.3. Epidemiology of invasive Hib disease 4
1.4. Immune response to Hib 7
1.5. Polysaccharide antigens 8
1.6. Antibody response to polysaccharide antigens 10
 1.6.1 Late antigen .. 11
 1.6.2 Isotype restriction 11
 1.6.3 Low affinity 13
1.6.4 Lack of effective memory response
1.6.5 Initiation of anti-polysaccharide response
1.6.6 Marginal zone B cell involvement
1.6.7 Germinal center formation
1.6.8 T cell and accessory cell involvement
1.6.9 Unresponsiveness to polysaccharide antigens in early childhood

1.7 Antibody response to PRP polysaccharide antigen
1.7.1 Anti-PRP antibody isotypes
1.7.2 Anti-PRP antibody repertoire
1.7.3 Anti-PRP antibody affinity
1.7.4 T cell help

1.8 Haemophilus influenzae type b vaccines
1.8.1 Pure PRP polysaccharide vaccine
1.8.2 PRP conjugate vaccines

1.9 Safety and efficacy of Hib conjugate vaccines

1.10 Hib conjugate vaccination schedules

1.11 Impact of Hib conjugate vaccination

1.12 Antibody response to Hib conjugate vaccines
1.12.1 Anti-PRP antibody isotypes
1.12.2 Memory response
1.12.3 Anti-PRP antibody affinity
1.12.4 Anti-PRP antibody repertoire
1.12.5 Priming with carrier protein
1.12.6 Combining with other vaccines
1.12.7 Protective anti-PRP antibody levels

1.13 Antigen specific B cells
CHAPTER 2
MATERIALS AND METHODS

2.1 Buffers and solutions

2.1.1 Phosphate buffered saline
2.1.2 PBS-Tween
2.1.3 PBS-Azide
2.1.4 PBS-BSA
2.1.5 Carbonate buffer
2.1.6 Casein solution
2.1.7 Conjugate buffer
2.1.8 Tris buffer
2.1.9 Red cell lysis solution
2.1.10 RPMI 1540
2.1.11 Fetal calf serum
2.1.12 Penicillin Streptomycin Glutamine
2.1.13 RF 10
2.1.14 HAT
2.1.15 HT

2.2 Reagents

2.2.1 USFDA standard anti-βib antibody serum
2.2.2 Quality control serum for anti-PRP ELISA
2.2.3 Reagents for immunofluorescence staining
2.2.4 Reagents for ELISA
2.2.5 Mouse serum
2.2.6 Biotinylated tetanus toxoid

2.3 Vaccines

2.3.1 PRP conjugate vaccines
2.3.2 Tetanus toxoid vaccines

2.4 Methods

2.4.1 Biotinylation of PRP
2.4.2 PRP biotinylation and antigenicity testing
2.4.3 PRP tarmination
2.4.4 Separation of mononuclear cells
2.4.5 Immunofluorescence staining
2.4.6 Flow cytometric analyses for detection of antigen specific B cells

2.5 Statistical analyses

2.6 Ethics
CHAPTER 3

ATTEMPTED ISOLATION OF PRP SPECIFIC B CELLS FROM PERIPHERAL BLOOD FROM IMMUNISED ADULTS BY FLOW CYTOMETRY

3.1 Introduction 83

3.2 Methods 84
 3.2.1 Recruitment of adult volunteers 84
 3.2.2 Immunisation with PRP conjugate vaccine 85
 3.2.3 Blood sampling, serum and PBMC collection 86
 3.2.4 Anti-PRP antibody levels in serum 86
 3.2.5 Immunofluorescence staining and flow cytometric analyses 87
 3.2.6 Blood sampling and PBMC collection for TT specific B cell isolation 88
 3.2.7 Immunofluorescence staining and flow cytometry for TT specific B cell isolation 89

3.3 Results 89
 3.3.1 Anti-PRP antibody response in blood following immunisation 89
 3.3.2 Flow cytometric analyses for PRP specific B cell isolation 90
 3.3.3 Flow cytometric analyses for TT specific B cell isolation 104
 3.3.3.1 Phenotyping of TT binding non B cells 105
 3.3.3.2 Binding of TT to non B cell through Ig 105

3.4 Discussion 111
 3.4.1 PRP antigen specific B cells 111
 3.4.2 Detection of TT specific B cells 114
 3.4.3 Detection of TT binding non B cells 115
 3.4.4 Previous studies of isolation of TT specific B cells 117
CHAPTER 4

PRODUCTION AND CHARACTERISATION OF MURINE ANTI-PRP MONOCLONAL ANTIBODIES

4.1 Introduction

4.2 Methods

4.2.1 Immunisation of mice and spleen cell collection

4.2.2 Hybridoma production

4.2.3 Selecting anti-PRP antibody secreting hybridomas

4.2.4 Isotyping

4.2.5 Specificity of anti-PRP monoclonal antibody

4.2.5.1 Inhibition assay

4.2.5.2 Agglutination assay

4.2.6 Biological activity of anti-PRP monoclonal antibodies

4.2.6.1 Bactericidal assay

4.2.6.2 Chemiluminescence assay

4.3 Results

4.3.1 Isotyping

4.3.2 Inhibition assay

4.3.3 Agglutination assay

4.3.4 Bactericidal assay

4.3.5 Chemiluminescence assay

4.4 Discussion
CHAPTER 5

USE OF ANTI-PRP MONOCLONAL ANTIBODIES IN INDIRECT IMMUNOFLUORESCENCE STAINING FOR ISOLATION OF PRP SPECIFIC B CELLS

5.1 Introduction 145
5.2 Methods 150
 5.2.1 Lymphocyte preparation 151
 5.2.2 Immunofluorescence staining 151
 5.2.3 Flow cytometric analyses 153
5.3 Results 153
5.4 Discussion 160

CHAPTER 6

ISOLATION OF ANTI-PRP AND ANTI-TT ANTIBODY SECRETING CELLS FROM IMMUNISED MICE

6.1 Introduction 163
6.2 Methods 165
 6.2.1 Immunisation of mice 165
 6.2.2 Spleens and blood collection 166
 6.2.3 Obtaining MNC from spleens and leukocytes from blood 166
 6.2.4 Immunofluorescence staining and flow cytometric analyses 167
 6.2.5 ELISPOT assay 167
6.3 Results 170
 6.3.1 Flow cytometric analyses of spleen cells 170
6.3.2 Anti-PRP and anti-TT antibody secreting cells in spleen 171
6.3.3 Anti-PRP and anti-TT antibody secreting cells in blood 172

6.4 Discussion 181
6.4.1 Previous studies on anti-TT ASC in murine spleens 183
6.4.2 Previous studies on anti-PRP and anti-TT ASC in blood from humans 184

CHAPTER 7

ISOLATION OF ANTI-PRP AND ANTI-TT ANTIBODY SECRETING CELLS FROM TONSIL TISSUES IN YOUNG CHILDREN

7.1 Introduction 122
7.2 Methods 193
 7.2.1 Tonsil collection 193
 7.2.2 Isolation of MNC from tonsils 194
 7.2.3 ELISPOT assay 194
7.3 Results 195
7.4 Discussion 198

CHAPTER 8

GENERAL DISCUSSION 203

APPENDIX 212
REFERENCES 213
SUMMARY

Haemophillus influenzae is a pathogenic gram negative bacterium, which exists in encapsulated and non-encapsulated forms. The serotype b of the encapsulated form can cause invasive infections such as epiglottitis, meningitis, septic arthritis, and septicemia in humans.

The protective immune response to *Haemophillus influenzae* type b (Hib) results from antibodies developed against the polyribosylribitol phosphate (PRP) capsular polysaccharide of the bacterium. Polysaccharide antigens are less immunogenic than protein antigens. In early childhood the immune response to polysaccharides is even more restricted compared to adults, due to the immaturity of the immune system. Children under two years are more susceptible to invasive Hib infections, as they are unable to mount an adequate antibody response against the PRP polysaccharide. To prevent invasive Hib infections in early childhood, infants in most developed countries are immunised against Hib with PRP conjugate vaccines as part of the routine immunisation schedule. Effective Hib vaccines have been developed by conjugating PRP with a carrier protein to elicit a strong response which has some characteristics of T-dependent antigen responses.

However, the details of the development of the antibody response to Hib conjugate vaccines are not fully understood. The aim of this study was to develop potential methods to identify, enumerate and characterise PRP specific B cells in young children and in adults following immunisation with Hib conjugate vaccines and compare with antigen-specific B cell responding to a pure protein antigen, tetanus toxoid (TT).
Immunofluorescence staining followed by flow cytometry was performed on peripheral blood lymphocytes (PBL) from Hib conjugate vaccine and TT immunised adults. PRP binding specific B cells could not be detected in PBL of immunised adults by immunofluorescence staining and flow cytometry, although TT binding specific B cells were identified, suggesting that PRP binding specific B cells may be present in very small numbers in peripheral blood or may be relatively confined to lymphoid tissues.

As an alternative, immunofluorescence staining procedure, murine anti-PRP monoclonal antibodies were developed for use in indirect immunofluorescence assays in an attempt to detect PRP specific B cells by flow cytometry. The anti-PRP monoclonal antibodies were of IgM class and had functional activity against Hib. However, the monoclonal antibodies proved not to be useful for isolating PRP binding specific B cells due to binding to lymphocytes through non-PRP molecules.

To test the hypothesis that PRP specific B cells may be relatively confined to secondary lymphoid tissue, flow cytometry and enzyme linked immune spot (ELISPOT) assays were developed and performed on PRP-T immunised (PRP conjugated to tetanus toxoid) mouse spleen and peripheral blood cells. Significant numbers of anti-PRP and anti-TT antibody secreting cells were identified by ELISPOT assays in spleen cells of mice after booster immunisation. The percentage of anti-TT antibody secreting cells identified was nearly twice the percentage of PRP antibody secreting cells. Very few anti-TT antibody secreting cells were identified in peripheral blood of immunised mice and the number of anti-PRP antibody secreting cells was extremely low in peripheral blood samples from these mice. In contrast to the ELISPOT results, PRP and TT binding specific B cells were not able to be identified by flow cytometry using spleen cells from immunised and boosted mice.
ELISPOT assays were performed on tonsil cells of children less than four years of age, who were immunised with Hib conjugate vaccines and TT vaccines as part of routine immunisation schedules, to identify anti-PRP antibody secreting cells. Anti-PRP and anti-TT antibody secreting cells were identified by ELISPOT assays in tonsil cells. The percentage of TT antibody secreting tonsil cells was two and a half times greater than that of PRP antibody secreting tonsil cells.

These results demonstrate that compared to TT specific B cells, PRP specific B cells are either not present in peripheral blood or circulate in very low numbers after immunisation with Hib conjugate vaccine. Furthermore, the generation of anti-PRP antibody secreting cells may be low in comparison to the generation of anti-TT antibody secreting cells, and the cells that are present may be relatively restricted to lymphoid tissues. In conjunction with previous studies, these findings further support the concept that Hib conjugate vaccines does not ensure a full TC response in spite of being coupled to a carrier protein. Since isolation of PRP antigen specific B cells using the techniques has proven to be a challenging task an alternative approach is proposed for characterization of B cells involved in antibody response to Hib conjugate vaccines.