A CASE STUDY OF THE PHYSICAL, CHEMICAL AND BIOLOGICAL FACTORS AFFECTING DISSOLVED ORGANIC CARBON IN THE WARREN RESERVOIR, SOUTH AUSTRALIA

TANJA JANKOVIC-KARASOULOS
B.Sc (Hon).

A thesis submitted for the degree of Doctor of Philosophy
April 2004

Department of Soil and Water
Faculty of Science
The University of Adelaide
TABLE OF CONTENTS

LIST OF FIGURES ... 8
TABLES ... 22
TABLE OF ABBREVIATIONS .. 25
DECLARATION ... 26
ACKNOWLEDGMENTS ... 27
ABSTRACT .. 29

CHAPTER 1: GENERAL INTRODUCTION .. 31
1.1 DOC AND WATER QUALITY ... 31
 1.1.1 DOC IN RESERVOIR WATER 31
 1.1.2 SOURCES OF DOC AND ITS FATE INSIDE RESERVOIRS .. 33
 1.1.2.1 Autochthonous DOC .. 34
 1.1.2.2 Allochthonous DOC ... 36
 1.1.3 DOC TRANSFORMATIONS AND REMOVAL FROM RESERVOIRS 39
 1.1.3.1 Impacts of Bacteria on DOC cycling 39
 1.1.3.2 Impact of UV-B Radiation on DOC Chemistry 43
 1.1.3.3 Impact of UV-B Radiation On The Biological Potential for DOC Degradation 47
 1.2 AQUATIC BACTERIAL COMMUNITIES AND FRESHWATER QUALITY 50
 1.2.1 ANALYSIS OF AQUATIC BACTERIAL COMMUNITY STRUCTURES ... 51
 1.2.2 THE RELATIONSHIPS BETWEEN PHYSICOCHEMICAL PARAMETERS
 AND BACTERIAL COMMUNITIES IN AQUATIC ECOSYSTEMS 56
 1.3 RESEARCH AIMS ... 62

CHAPTER 2: GENERAL MATERIALS AND METHODS 63
2.1 INTRODUCTION .. 63
2.2 LOCATION OF THE STUDY .. 63
2.3 SAMPLING SITES ... 66
2.4 SAMPLE COLLECTION AND STORAGE 67
2.5 PHYSICAL AND CHEMICAL ANALYSIS OF WATER 68
2.6 NUTRENT AND COLOUR ANALYSES ... 69
 2.6.1 ANALYSIS FOR TOTAL PHOSPHORUS (TP) 69
 2.6.2 ANALYSIS FOR SOLUBLE REACTIVE PHOSPHORUS (SRP) 70
 2.6.3 ANALYSIS FOR NITRATE ... 70
 2.6.4 COLOUR ... 70
 2.7 UV-VIS ABSORBANCE MEASUREMENTS ... 70
 2.8 DISSOLVED ORGANIC CARBON (DOC) ... 71
 2.9 DOC CHARACTERISATION ... 71
 2.9.1 ABSORBANCE AND RELATED ANALYSES 71
 2.9.2 HIGH PRESSURE SIZE EXCLUSION CHROMATOGRAPHY (HPSEC) 71
 2.10 BIOLOGICAL OXYGEN DEMAND (BOD) .. 73
 2.11 CHLOROPHYLL-A .. 73
 2.12 TOTAL BACTERIA CELL NUMBERS .. 74
 2.12.1 COLLECTION AND PRESERVATION OF BACTERIAL SAMPLES 74
 2.12.2 CELL STAINING FOR EPILUMINESCENCE MICROSCOPY 74
 2.12.3 CELL NUMBERS AND BIOMASS .. 75
 2.12.4 PREPARATION OF A BACTERIAL INOCULUM 76
 2.13 BACTERIAL COMMUNITY ANALYSIS .. 76
 2.13.1 DNA EXTRACTION ... 76
 2.13.2 AMPLIFICATION OF 16S RNA SEQUENCE 77
 2.13.4 CHANGES TO BACTERIAL POPULATIONS 12

CHAPTER 3: DOC IN THE WARREN RESERVOIR ... 85
 3.1 INTRODUCTION .. 85
 3.2 MATERIALS AND METHODS ... 85
 3.3 WATER LEVELS IN THE WARREN RESERVOIR 86
 3.3.1 MURRAY RIVER INFLOW TO THE WARREN RESERVOIR 87
 3.3.2 RAINFALL EVENTS .. 88
 3.3.3 CATCHMENT STREAM INFLOW ... 89
 3.4 DISSOLVED ORGANIC CARBON IN THE WARREN RESERVOIR 93
 3.4.1 DOC LEVELS OF THE WARREN RESERVOIR 93
 3.4.2 INFLOW OF DOC FROM MURRAY RIVER PIPELINE TO THE RESERVOIR ... 97
 3.4.3 INFLOW OF DOC FROM CATCHMENT STREAMS TO THE RESERVOIR ... 101
3.5 PHYSICAL, CHEMICAL AND BIOLOGICAL PARAMETERS AFFECTING WATER QUALITY IN THE WARREN RESERVOIR ... 103
3.5.1 PHYTOPLANKTON GROWTH IN THE RESERVOIR .. 103
3.5.2 BACTERIAL ABUNDANCE AND BIOMASS IN THE WARREN RESERVOIR .. 104
3.5.3 BACTERIAL POPULATION DIVERSITY IN THE WARREN RESERVOIR .. 107
3.5.3.1 Temporal changes in the reservoir population diversity ... 107
3.5.3.2 Spatial changes in the reservoir population diversity .. 117
3.5.4 THE RESERVOIR WATER COLOUR .. 120
3.5.5 SPECIFIC COLOUR OF THE RESERVOIR WATER .. 121
3.5.6 STREAM WATER COLOUR AND SPECIFIC COLOUR ... 122
3.5.7 RESERVOIR WATER TEMPERATURE ... 123
3.5.8 DISSOLVED OXYGEN CONCENTRATIONS ... 124
3.5.9 TOTAL PHOSPHORUS (TP) .. 125
3.5.10 SOLUBLE REACTIVE PHOSPHORUS (SRP) .. 126
3.5.11 NITRATE (NO₃⁻) ... 127
3.5.12 SALINITY AND pH LEVELS .. 129
3.5.13 TURBIDITY AND LIGHT PENETRATION .. 129
3.6 DISCUSSION .. 132
3.6.1 ORIGIN OF DOC IN THE WARREN RESERVOIR .. 132
3.6.2 ANALYSIS OF THE INTERACTIONS BETWEEN BIOTIC AND ABIOTIC FACTORS IN THE WARREN RESERVOIR ... 144
3.6.2.1 Abiotic factors .. 144
3.6.2.2 Biotic factors (study of bacterial population dynamics) ... 146
3.7 CONCLUSION .. 155

CHAPTER 4: PHOTOOXIDATION OF DOC BY UV-B RADIATION ... 157
4.1 INTRODUCTION .. 157
4.2 MATERIALS AND METHODS ... 158
4.3 RESULTS .. 160
4.3.1 DOC CONCENTRATION ... 160
4.3.2 EFFECTS OF UV-B IRRADIATION ON THE ABSORBANCE SPECTRA OF DOC 162
4.3.3 EFFECTS OF UV-B IRRADIATION ON THE UV ABSORBING PROPERTIES OF DOC 163
CHAPTER 6: DIEL VARIATIONS IN PHYSICAL, CHEMICAL AND BIOLOGICAL PROPERTIES OF WATER FROM THE WARREN RESERVOIR

6.1 INTRODUCTION ... 259
6.2 MATERIALS AND METHODS ... 260
6.3 WATER QUALITY PARAMETERS: DIEL FLUCTUATIONS AND TRENDS 261

 6.3.1 DOC CONCENTRATION ... 261

 6.3.2 ABSORBING PROPERTIES OF LOC ... 261

 6.3.3 BACTERIAL ABUNDANCE AND BIOMASS .. 263

 6.3.4 BACTERIAL POPULATIONS .. 264

 6.3.5 CHLOROPHYLL CONCENTRATIONS ... 273

 6.3.6 PHYSICAL AND CHEMICAL PARAMETERS ... 274

6.4 SHORT-TERM CORRELATIONS BETWEEN DOC CONCENTRATIONS AND VARIOUS WATER PARAMETERS ... 275

6.5 SHORT-TERM RELATIONSHIPS BETWEEN DOC NATURE AND WATER PARAMETERS ... 278

 6.5.1 SUVA ... 278

 6.5.2 E₄/E₆, ABSORBANCE RATIO .. 280

 6.5.3 E₄/E₆, ABSORBANCE RATIO .. 282

6.6 SHORT-TERM RELATIONSHIPS BETWEEN CHLOROPHYLL AND WATER PARAMETERS... 284

6.7 SHORT-TERM RELATIONSHIPS BETWEEN BACTERIAL NUMBERS AND WATER PARAMETERS ... 284

 6.7.1 ABSORBANCE .. 284

 6.7.2 ABSORBANCE RATIOS ... 287

 6.7.3 SUVA ... 288

6.8 SHORT-TERM CHANGES IN BACTERIAL COMMUNITY COMPOSITION AND CORRELATIONS TO VARIOUS WATER PARAMETERS ... 288

6.9 DISCUSSION ... 296

 6.9.1 DIEL WATER QUALITY PATTERNS ... 296
ABSTRACT

The dissolved organic carbon (DOC) present in a reservoir comprises allochthonous inputs from the catchment and autochthonous inputs generated within the reservoir itself. The Warnes Reservoir, South Australia, is characterised by elevated DOC concentrations and elevated water colour. Inventories and dynamics of DOC concentration and nature in the Warnes Reservoir were analysed between April 1997 and August 2001, in order to establish the origins of the reservoir DOC, and determine how the DOC contribution from different sources affects water quality in the Warnes Reservoir on a seasonal timescale. During the course of the study, increased DOC levels were accompanied by changes in the nature of the DOC. Between 1997 and 2001, the nature of the DOC pool changed from being dominated by the allochthonous input of coloured organics, to being dominated by the autochthonous input of DOC with lower composition of the coloured material. It is proposed that increased DOC concentrations in the Warnes Reservoir and decreased levels of coloured DOC are caused by higher levels of phytoplankton growth during the later part of the study. In addition to annual increases in DOC, seasonal peaks in DOC concentration were observed during summer and winter periods. Summer peaks were found to be a result of increased phytoplankton growth, whereas winter peaks in DOC concentrations were due to increased inflow of water from the catchment into the reservoir. Winter inputs of allochthonous DOC were also found to comprise high levels of coloured organics.

During this study, emphasis was also placed on studying the potential of two natural processes, photochemical degradation (using UV-B radiation) and bacterial decomposition, to remove DOC from the surface waters of the Warnes Reservoir. DOC samples were found to be both labile and refractory towards the processes of biotic and/or abiotic degradation and decomposition depending on seasonality, and thus the nature of the DOC material. Exposure of DOC to UV-B radiation resulted in enhanced DOC bioavailability, particularly in the case of allochthonous-dominated winter DOC pool, whereas the summer DOC pool showed enhanced level of direct photo-mineralisation compared to the winter DOC pool. It is proposed that the enhanced DOC bioavailability observed during this study was likely due to the UV-B induced cleavage of higher molecular weight DOC compounds into smaller units. Exposure of reservoir DOC to UV-B radiation was also found to produce changes in the structure of reservoir bacterial communities, as indicated by denaturing gradient gel
electrophoresis (DGGE) analysis of bacterial 16S rDNA sequences, suggesting that certain bacteria may be better able to utilize certain types of DOC compared to others.

As UV-B radiation, which forms a natural component of the solar radiation, is known to be harmful to aquatic organisms including bacteria, further studies were conducted to test the likely effects of UV-B radiation on bacterial communities in Warren Reservoir waters. This was done on the assumption that, although UV-B radiation increased the bioavailability of reservoir DOC, the resulting substrates might not be utilised and degraded by bacterial species in the in situ surface waters, as their growth can potentially be inhibited by UV-B radiation. Thus in terms of the cycling of DOC in the Warren Reservoir, it was important to study the response of native bacterial communities to UV-B radiation in order to be able to determine whether lack of bacterial activity, as a result of UV-B inhibition, is likely to cause DOC accumulation in the reservoir in the long term. The combined findings of a laboratory study and a diurnal in situ reservoir study suggested that UV-B radiation is unlikely to affect the overall growth of reservoir bacteria whereas it has potential to alter its community structure, most likely through its effects on the DOC cycle.