
MARTA L. KASPER

A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy.

Environmental Biology
School of Earth and Environmental Sciences
The University of Adelaide, Adelaide, Australia

April 2004
TABLE OF CONTENTS

FIGURE INDEX ... V

TABLE INDEX .. X

ABSTRACT ... XIII

DECLARATION .. XIII

ACKNOWLEDGEMENTS ... XIV

CHAPTER 1: INTRODUCTION .. 1

1.1 POPULATION DYNAMICS ... 1

1.2 BIOLOGY OF INVASIONS ... 4

1.2.1 Stages of a biological invasion .. 4

1.2.2 Characteristics of successful invaders ... 5

1.3 SOCIAL INSECTS .. 6

1.4 INTRODUCTION TO VESPULA SPP ... 8

1.4.1 Classification ... 8

1.4.2 Morphology and social organisation of V. germanica 9

1.4.3 Determination of sex and caste .. 11

1.4.4 World distribution of V. germanica and V. vulgaris 11

1.4.5 Introduction and spread of V. germanica and V. vulgaris 12

1.5 BASIC BIOLOGY AND ECOLOGY OF VESPULA SPP 15

1.5.1 Nest site selection and preferences ... 15

1.5.2 Life cycle .. 15

1.5.3 Colony development .. 17

1.5.4 Overwintering and polygyny ... 18

1.5.5 Foraging .. 19

1.6 ANNUAL FLUCTUATIONS IN VESPULA POPULATIONS 21

1.7 IMPACT AND CONTROL OF VESPULA SPP ... 23

1.7.1 Impact on native communities .. 23

1.7.2 Impact on humans .. 23

1.7.3 Chemical and biological control ... 24

1.8 RESEARCH OBJECTIVES AND THESIS OUTLINE 25

1.8.1 Overall objectives ... 25

1.8.2 Specific aims ... 25

CHAPTER 2: NEST SITE PREFERENCES AND SEASONAL COLONY GROWTH OF V. GERMANICA IN SOUTH AUSTRALIA .. 28

2.0 CHAPTER SUMMARY ... 28

2.1 INTRODUCTION ... 29

Maria L. Kasper - Population ecology of V. germanica in South Australia
2.2 MATERIALS AND METHODS

2.2.1 Nest destruction scheme

2.2.2 Local councils supporting research

2.2.3 Recording of wasp nest sites

2.2.4 Nest collection

2.2.5 Traffic as an indicator of nest size

2.3 RESULTS

2.3.1 Nest sites

2.3.2 Seasonal abundance

2.3.3 Nest size

2.3.4 Proportions of small and large cells

2.3.5 Colony development

2.3.6 Sex ratios of brood

2.3.7 Eggs per cell

2.3.8 Traffic as an indicator of nest size

2.4 DISCUSSION

2.4.1 Nest sites

2.4.2 Seasonal abundance

2.4.3 Nest size

2.4.4 Large and small cell proportions

2.4.5 Colony development

2.4.6 Sex ratios

2.4.7 Eggs per cell

2.4.8 Traffic as an indicator of colony size

CHAPTER 3: CHANGES IN DAILY AND SEASONAL FORAGING CHARACTERISTICS

3.0 CHAPTER SUMMARY

3.1 INTRODUCTION

3.2 MATERIALS AND METHODS

3.2.1 Study area

3.2.2 Forager sampling

3.2.3 Experimental design

3.2.4 Changes in resource proportions

3.2.5 Changes in relative proportions of prey orders

3.2.6 Changes in sucrose concentration

3.3 RESULTS

3.3.1 Changes in resource proportions

3.3.2 Changes in prey orders

3.3.3 Changes in sucrose concentration
3.4 DISCUSSION ... 73
3.4.1 Overall resource proportions ... 73
3.4.2 Daily changes in resource proportions .. 74
3.4.3 Seasonal changes in relative resource proportions 75
3.4.4 Seasonal changes in prey ... 77
3.4.5 Changes in sucrose concentration ... 78

CHAPTER 4: FACTORS INFLUENCING DAILY FORAGING ACTIVITY 79
4.0 CHAPTER SUMMARY .. 79
4.1 INTRODUCTION ... 79
4.2 MATERIALS AND METHODS ... 82
4.2.1 Data collection .. 82
4.2.2 Modelling factors influencing foraging .. 83
4.2.3 Summary of daily activity pattern .. 84
4.3 RESULTS ... 85
4.3.1 Effect of rain .. 86
4.3.2 Effect of light .. 87
4.3.3 Effect of temperature ... 88
4.3.4 Effect of humidity .. 89
4.3.5 Modelling factors influencing wasp activity 89
4.3.6 Daily foraging activity pattern ... 90
4.3.7 Changes in incoming vs. outgoing traffic 91
4.4 DISCUSSION .. 92
4.4.1 Daily activity pattern .. 92
4.4.2 Environmental influences on wasp activity 93
4.4.3 Effect of rain .. 94
4.4.4 Effect of light .. 95
4.4.5 Effect of temperature .. 96

CHAPTER 5: DIET OF V. GERMANICA AND PREY OVERLAP WITH A NATIVE PAPER WASP POLISTES FUMELIS .. 99
5.0 CHAPTER SUMMARY ... 99
5.1 INTRODUCTION ... 99
5.2 MATERIALS AND METHODS ... 103
5.2.1 Prey collection and visual identification 103
5.2.2 Prey identification by nucleotide sequencing 103
5.2.3 Phylogenetic analysis .. 105
5.2.4 Complete prey inventories .. 106
5.2.5 Prey overlap values ... 107
5.3 RESULTS ... 107
5.3.1 Morphologically identified prey .. 107

Marta J. Kasper - Population ecology of V. germanica in South Australia

CHAPTER 6: POPULATION DYNAMICS

6.0 CHAPTER SUMMARY

6.1 INTRODUCTION

6.2 MATERIALS AND METHODS

6.2.1 Study area and wasp density data

6.2.2 Weather data

6.2.3 Time series analysis

6.2.4 Population model

6.2.5 Forecasts

6.3 RESULTS

6.3.1 Time series analysis

6.3.2 Factors affecting density

6.3.3 Model testing

6.4 DISCUSSION

6.4.1 Nest densities and fluctuations

6.4.2 Modelling annual fluctuations

CHAPTER 7: GENERAL DISCUSSION

7.1 OUTCOMES

7.2 PROBLEMS ENCOUNTERED

7.3 FUTURE RESEARCH

APPENDIX 1: NESTS USED FOR SEASONAL COLONY GROWTH PATTERNS

APPENDIX 2: HIBERNATION IN V. GERMANICA QUEENS

A2.1 BACKGROUND

A2.2 MATERIALS AND METHODS

A2.3 RESULTS

A2.4 DISCUSSION

APPENDIX 3: DETAILED LIST OF V. GERMANICA PREY

REFERENCES
ABSTRACT

Since its introduction in the late 1970s, Vespa germanica has become one of the major urban pests in Australia. Absence of natural competitors and enemies, the ability for long-term spent storage, plus human transportation have enabled the wasp to spread quickly. Despite costly eradication efforts, little is known of the species’ biology under Australian conditions. In this study, the ecology of V. germanica was examined in South Australia. Results indicate that in comparison with its native range in England, milder seasons enable the wasp to be active for seven as opposed to four months. Additionally, three times as many workers and queens are produced per colony. However, at temperatures ≥ 35°C, foraging activity diminishes by 50%, while colony requirements for water increase. Hot summers also have a negative effect on nest densities in the following year.

The possible impact of V. germanica on the environment was assessed by determining its prey diet, and comparing it to the diet of a native paper wasp, Polistes humilis. Prey were identified using a combination of visual and molecular techniques. Results indicate that V. germanica feeds on at least nine arthropod orders, as well as vertebrate prey, while P. humilis is restricted to feeding on Lepidoptera. Phylogenetic analyses reveal that only a small overlap in prey exists. However, future studies need to determine if the numerical dominance of V. germanica gives it an advantage as a competitor.

Apart from hot temperatures, the rainfall in April and number of nests destroyed during the previous year were also significant predictors of future wasp densities in a population model. Thus, the spread and development of V. germanica may be inhibited by weather, and its distribution may be limited by water availability. The population model also indicates that current control measures are effective in suppressing wasp densities, and broad-area poison baiting should occur.

Although this study has provided a basic outline of the ecology of V. germanica in South Australia, future studies on the population genetics of the species and the importance of inter- and intra-specific competition are needed to determine the pathways responsible for its invasion success.

Marta L. Kasper - Population ecology of V. germanica in South Australia