Using variation in cattle growth to develop a predictive model of carcass quality

By

Hamid Reza Mirzaei

A thesis submitted to the University of Adelaide in total fulfilment of the requirements of the degree of

Doctor of Philosophy

THE UNIVERSITY OF ADELAIDE
AUSTRALIA

Disciplines of Animal Science and Biometrics
The University of Adelaide
December, 2004
Table of Contents

Dedication..i
Table of Contents...ii
List of abbreviations ...v
List of Figures ...vii
List of Tables ...ix
Declaration ..xi
Acknowledgments ..xii
Abstract ..xiv

Chapter One: Introduction and review of literature ..1

1.1 Introduction ...1

1.2. Review of literature ..4

1.2.1. Variability in the growth traits ...4
 Pre-weaning growth pattern (Birth to weaning) ...5
 Post-weaning growth pattern (weaning to slaughter)8

1.2.2. Variability in the carcass quality traits ...15

1.2.3. Relationships between growth and carcass quality traits24

1.2.4. Techniques for describing variability in growth and carcass quality ...31

Random regression model (RRM) ...34
Principal component analysis (PCA) ...40

1.3. Research questions ..46

1.4. Thesis overview ..47

Chapter Two: Materials and methods ...48

2.1. The Southern Crossbreeding Project ..48

2.2. Exploratory data analysis ..53

2.2.1. Live body weights ..53

2.2.2. Carcass traits ...59

Chapter Three: Describing variation in growth using principal component analysis 67

3.1. Introduction ..67

3.2. Statistical method ...68

3.3. Results ...72

3.4. Discussion ..78

3.5. Conclusion ...80
Chapter Four: Describing variation in carcass quality using principal component analysis .. 81
4.1. Introduction ... 81
4.2 Statistical method ... 82
4.2 Results .. 83
4.3 Discussion .. 92
4.4 Conclusion ... 95
Chapter Five: Random regression models of growth 96
5.1. Introduction ... 96
5.2 Statistical method ... 97
5.3. Results .. 103
5.4. Discussion ... 112
5.5. Conclusion ... 121
Chapter Six: Multivariate models for analysis of carcass quality traits .. 122
6.1. Introduction .. 122
6.2. Statistical method ... 122
6.3. Results .. 123
6.4. Discussion ... 132
6.5. Conclusion ... 139
6.6. Connection between multi-trait mixed model and PCA 140
Chapter Seven: Joint modeling of growth and carcass quality 144
7.1. Introduction .. 144
7.2. Statistical method ... 144
7.3. Results .. 150
7.4. Discussion ... 154
7.5. Conclusion ... 155
Chapter Eight: Correlation between carcass quality and growth characteristics .. 157
8.1. Introduction .. 157
8.2. Statistical method ... 157
8.3. Results .. 159
8.4. Discussion ... 163
8.4.1. Pre-weaning correlations between body weights and carcass traits .. 163
8.4.2. Post-weaning correlations between body weights and carcass traits .. 167
8.4.3. Correlations between RGR and carcass quality traits

8.5. Conclusion

Chapter Nine: Predicting carcass quality: testing and critiquing the model

9.1. Introduction

9.2. The Model

9.3. Implementation of the model

9.5. Evaluation of the model

9.5.1. Experiment 9.1

9.5.2. Experiment 9.2

9.6. Discussion

9.7. Conclusion

Chapter Ten: Random regression models of growth - Piecewise linear regression

10.1. Introduction

10.2. Statistical method

10.3. Results

10.4. Discussion

10.5. Conclusion

Chapter Eleven: Concluding remarks

11.1. Introduction

11.2. Conclusion

11.2.1. Describing variation in growth

11.2.1. a) using principal component analysis

11.2.1. b) random regression models of growth

11.2.1. c) Piecewise random regression model

11.2.2. Describing variation in carcass quality

11.2.2. a) using principal component analysis

11.2.2. b) using multivariate models

11.2.3. Joint modelling of growth and carcass quality

11.2.4. Estimating correlations between longitudinal growth traits (body weights and relative growth rate) and carcass quality traits

11.2.5. Predicting carcass quality

11.3. Proposal for future work

Reference List

Appendices
Abstract

This thesis utilised body weights at various ages, hot carcass weight (HCWt), fat depth (PD), eye muscle area (EMA) and intramuscular fat percentage (IMF) data for heifers and steers from the "Southern Crossbreeding Project" where 581 purebred Hereford cows were mated to semen of sire breeds Angus (11 sires), Belgian Blue (16 sires), Hereford (10 sires), Jersey (12 sires), Limousin (16 sires), South Devon (15 sires) and Wagyu (17 sires). There were generally 12-15 progeny per sire, with an average of 13 calves per sire and 14 sires per breed. The project comprised 1141 of the heifers (female) and steers (castrated male) born in autumn (average birth date 3rd April) at two locations; 'Straan' near Naracoorte and 'Wandis' near Mount Gambier in the south-east of South Australia (S.A.). Calves stayed with their dams on pasture until weaning and calves were grown until 12 to 18 mo of age and then transported to a commercial feedlot. The mixed model for growth traits included fixed effects of sex, sire breed, age (linear, quadratic and cubic), and their interactions between sex and sire breed with age. Random effects were sire, dam, management (location-year-post-weaning groups) and permanent environmental effects. For carcass analysis fixed effects were sex, sire breed, slaughter age nested within sex and random effects were sire, dam, management and environmental effects. The objective of the work described in this thesis was to model relationships between continuous growth traits and carcass quality traits for steers and heifers. The model is being used to predict the effect of growth path on carcass quality. The analyses were based on the following steps:

Step 1. Describing variation in growth using principal component analysis (PCA) and random regression models of growth
Applying PCA indicated that the first two principal components (interpreted as the overall size and feedlot growth) accounted for 85% of total variation. Sire effect was significant for overall size and feedlot growth traits and management had a big impact on both components.

A cubic polynomial with sire as a random effect was the simplest and most stable model. Twenty two (co)variances were able to be estimated, using random regression analysis. Variance components for genetic variation within breeds were generally low. In contrast, management group accounted for the large proportion (79%) of the total variation.

Step 2. Describing variation in carcass quality using principal component analysis (PCA) and multi-trait mixed models

A large proportion (76%) of variation in the carcass traits were explained by two principal components which were interpreted as market suitability and muscling and were similar for both heifer and steers.

A multi-trait mixed sire model was used to estimate 40 (co)variance components of the four carcass traits. Similar to body weights, non-genetic, in particular management group variation contributed to a large proportion of total carcass variations, up to 50% of total variation.

Step 3. Joint modeling of growth and carcass quality

With perseverance, 99 (co)variance components estimated by the joint model to answer the basic questions of how the correlations between growth traits and carcass quality traits change over time. The magnitudes of the coefficient for management correlations were significantly higher than genetic, dam and permanent environmental correlations. Management correlations between live weight and carcass traits during the pre-weaning period were positive except for IMF. The magnitude of those
correlations decreased from birth to weaning, then increased dramatically up for the feedlot period, where they plateaued except IMF which decreased from 500-700 days. Genetic correlations between live weight with HCWI and EMA were moderate to high and positive. In contrast, genetic correlations between live weight and fat traits were low. The pattern of phenotypic correlations between live weight and IMF as the animal grew indicated that the intramuscular fat is later developing than subcutaneous fat.

Step 1. Predicting carcass quality

The strength of the model developed lies in its simplicity and the capability to give answers to "what if" questions. However, due to using random regression with a polynomial, the model was subject to over estimations at the end of the trajectory. In addition, because of large residual between animal variances and very small covariances between carcass fat traits and body weights, predictions were of lower accuracy than would be desirable for commercial application of the model. The model was tested against an independent data set and gave predictions that were reasonable although not great. The model could be improved by including other growth traits and other data sets with greater variation in pre-weaning growth.

xvi