Energy Minimization of Portable Multimedia Systems through Rate Selection and Dynamic Voltage Scaling

by

Lama Hewage V. P. Caandrasena
BSc(Eng) (Hons)

A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

at the

School of Electrical and Electronic Engineering
The University of Adelaide
Australia

June, 2004
Contents

Abstract

Statement of Originality

Acknowledgments

Publications

Symbols

Abbreviations

1 Introduction

1.1 Energy Minimization in Portable Systems 1

1.2 Research Overview .. 3

1.3 Thesis Outline .. 7

2 Background

2.1 State of the Art in Low Power Design 9

2.1.1 Sources of Power Consumption 9

2.1.2 Power Minimization Techniques 13

2.1.3 Summary ... 21

2.2 Multimedia Computations .. 21

2.2.1 A Review of Multimedia Compression/Decompression 22

2.2.2 MPEG standard ... 23

2.2.3 MPEG-2 Video Standard 27
4.2.3 Summary ... 71
4.3 Research Undertaken 72
 4.3.1 Total Energy of Computation 72
 4.3.2 Research Problem Statement 74
 4.3.3 Research Directions 74
4.4 Platform for Experimentation 75
 4.4.1 Energy Model 76
 4.4.2 Voltage Quantizations 77
 4.4.3 Transition Energy Computation 77
 4.4.4 Multimedia Computation 77
 4.4.5 Test Data 79
 4.4.6 MPEG Codecs 79
 4.4.7 Simulation Environment 79
 4.4.8 Hardware Platform 80
4.5 Summary .. 80

5 Rate Selection: A New Approach 81
 5.1 Problem Analysis 81
 5.2 Rate Selection 83
 5.2.1 Introduction 83
 5.2.2 Concept 85
 5.2.3 A Simple Rate Selection Algorithm 86
 5.2.4 An Example 88
 5.2.5 Operational Details 89
 5.2.6 Computational Overhead 91
 5.2.7 Results 91
 5.3 Summary 92

6 Enhancements to Rate Selection Approach 97
 6.1 Introduction 97
 6.1.1 Relative Energy Costs of Rate Quantizations 97
 6.1.2 Possible Enhancements 98
Abstract

Dynamic supply voltage and frequency scaling involves variation of supply voltage and clock frequency at run-time to minimize the total energy consumption of electronic systems. This method is very effective in reducing energy consumption because of the quadratic relationship between energy and supply voltage. However, use of dynamic voltage and clock scaling requires careful design of systems to function across a range of supply voltages (and frequencies), and additional circuitry such as DC-DC converters.

Dynamic voltage scaling can provide energy savings and extend battery life of portable devices. This thesis focuses on portable multimedia applications operating in fixed throughput mode. These applications have a constant processing requirement, and less than maximum workload levels are characterized by idling, and consequently idle losses. By using dynamic voltage scaling, the processing speed of data samples can be altered at run-time to eliminate idle losses. For optimum energy savings, dynamic voltage scaling requires an infinite number of voltage levels. However, supporting such continuous voltage levels involves introduction of complexities such as closed loop feedback into the DC-DC converter. Moreover, output capacitance of the DC-DC converter must be significantly reduced to achieve fast voltage transitions. This however results in increased output voltage ripple, reduced converter efficiency at low voltages, and decreased system stability. An alternative approach is to use a small number of discrete voltage levels or voltage quantizations and provide open-loop voltage switching. This approach is called the voltage quantization model. Since this approach involves the use of a small number of voltage levels, most workloads can no longer be translated to unique supply voltage levels for voltage scaling, and this leads to selection of higher than ideal voltage quantizations for voltage scaling. This causes idle periods and consequently increased idle losses.
Prior research shows two approaches for reducing idle losses in the voltage quantization model. They are clock gating and voltage dithering. The clock gating technique turns off the clock to minimize energy loss, and this requires special circuitry and special hardware design. Moreover, this technique is only useful when used at a low frequency due to the overheads associated with clock gating. Since fixed throughput mode involves continuous data processing, idle loss reduction through clock gating is ineffective for this class of applications. Voltage dithering, on the other hand, eliminates idle loss by processing a data sample at two voltage quantizations. However, this increases the number of voltage transitions and consequently increases the transition energy cost and switching noise. Moreover, voltage dithering becomes infeasible when the sample period of the computation becomes comparable to voltage transition time.

In this thesis we propose an alternative algorithmic approach to reducing idle losses in the voltage quantization model. The proposed rate selection approach uses the novel concept of transforming the workload distribution of data sequences to eliminate idle losses. The thesis also presents a number of enhancements to the rate selection approach that improve the energy efficiency and minimize the computational overhead. Our experimental results indicate that the rate selection approach is more energy efficient compared to the best existing approaches, while also significantly reducing the total number of voltage transitions.