NEOTECTONICS
OF THE MOUNT LOFTY RANGES
(South Australia)

Victor Tokarev

Thesis submitted for the degree of Doctor of Philosophy in the University of Adelaide, Faculty of Science

February, 2005
TABLE OF CONTENTS

Table of Contents .. 1

List of Figures .. v

Abstract .. vii

Disclaimer .. viii

Acknowledgments .. ix

CHAPTER 1: INTRODUCTION

1.1 Aim and Objectives ... 1

1.2 Geological, Tectonic and Geomorphological Backgrounds ... 2

1.3 Thesis Outline ... 6

CHAPTER 2: METHODS

2.1 Digital Elevation Model (DEM) .. 8

2.2 Use of Geological and Geomorphological Cross-sections .. 12

2.3 Analysis of Planation Surfaces .. 12

2.4 Lithostratigraphic Analysis of Tertiary and Quaternary Sediments 13

2.5 Use of Global Sea-Level Curve .. 13

2.6 Combined Method of Palaeo reconstructions ... 14

CHAPTER 3: PRE-TERTIARY BASEMENT; GEOLOGY AND TECTONICS

3.1 Introduction ... 15

3.2 Proterozoic Complex .. 15

3.3 Late Proterozoic to Early Paleozoic Complex .. 16

3.3.1 Delamerian Structure .. 17

3.4 Late Paleozoic Complex .. 20

3.5 Mesozoic Development ... 24

3.5.1 Triassic through to Middle Jurassic ... 24

3.5.2 Mid-Jurassic through to the Cretaceous ... 25

3.5.3 Mesozoic Igneous Activities ... 27

3.5.4 Summary of Mesozoic Development .. 30

3.6 Mesozoic Plate Reorganisation since the Gondwanaan Breakup 32

3.6.1 Study Region since the Gondwanaan Breakup .. 34

3.7 Separation of the Australian and Antarctic Plates: Potoroo Extensional Tectonic
Regime (~99Ma and ~43Ma) .. 36

3.7.1 Study Region between 99Ma and 43Ma .. 39

3.8 Early Tertiary Environment .. 40

3.9 Pre-Middle Eocene Palaeoplain ... 41
CHAPTER 4: REGIONAL PALæORECONSTRUCTIONS: THE MOUNT LOFTY RANGES AND FLANKING ST. VINCENT AND WESTERN MURRAY BASINS

4.1 Introduction...43
4.2 Regional Stages ...44
4.3 Johannian Stage (~43-37Ma)47
 4.3.1 Johannian Stage in the St. Vincent Basin48
 Norx Mastin Sand ...48
 Clinton Formation ..48
 South Mastin Sand ...51
 4.3.2 Johannian Stage in the Western Murray Basin56
 Olney Formation ..57
 4.3.3 Johannian Stage: Conclusion59
4.4 Aldinga (~37Ma) through to Dalmanian Stages (~14Ma)60
4.5 Aldingan Stage (~37-34Ma)60
 4.5.1 Aldingan Stage in the St. Vincent Basin.................61
 Tortaccilla Limestone61
 Blanche Point Formation64
 Chinaman Gully Formation66
 4.5.2 Aldingan Stage in the Western Murray Basin69
 Bucalues Formation69
 4.5.3 Aldingan Stage: Conclusion72
4.6 Willungan Stage (~34-29Ma)73
 4.6.1 Willungan Stage in the St. Vincent Basin73
 Aldinga Member of the Port Willunga Formation74
 Ruwarung Member of the Port Willunga Formation75
 4.6.2 Willungan Stage in the Western Murray Basin77
 Bucalues Beds ...77
 4.6.3 Willungan Stage: Conclusion78
4.7 Early Janjukian Stage (~29-24Ma)79
 4.7.1 Early Janjukian Stage in the St. Vincent Basin79
 4.7.2 Early Janjukian Stage in Intramontane Basins80
 4.7.3 Early Janjukian Stage in the Western Murray Basin88
 Compton Conglomerate88
 Etrick Formation ...92
 4.7.4 Early Janjukian Stage: Conclusion94
4.8 Late Janjukian Stage (~24-21Ma)95
 4.8.1 Late Janjukian Stage in the St. Vincent and Intramontane Basins95
 4.8.2 Late Janjukian Stage in the Western Murray Basin97
 4.8.3 Late Janjukian Stage: Conclusion98
4.9 Longfordian Stage (~21-16Ma)99
 4.9.1 Longfordian Stage in the St. Vincent and Intramontane Basins99
 4.9.2 Longfordian Stage in the Western Murray Basin101
4.9.3 Longfordian Stage: Conclusion.. 103
4.10 Batesfordian-Baroonian Stages (-16-13Ma)... 104
4.10.1 Batesfordian and Baroonian Stages in the St. Vincent and Intramontane Basins.. 104

 Munno Para Clay Member of the Port Willunga Formation............. 105
4.10.2 Batesfordian-Baroonian Stages in the Western Murray Basin........... 106
4.10.3 Batesfordian-Baroonian Stages: Conclusion................................. 107
4.11 Bairnsdalean and Mitchellinan Stages (-13.5-5.5Ma)............................ 108
4.11.1 Late Miocene Sedimentary Termination, Uplift and Erosion............. 108
4.11.2 Nature of Miocene/Pliocene Unconformity, Erosion and Exhumation...... 110
4.11.3 Marine Bed-load Erosion.. 112
4.11.4 Bairnsdalean and Mitchellinan Stages: Conclusion....................... 114
4.12 Cheltenhamian and Kalimnaian Stages (-5.5-2Ma)................................. 114
4.12.1 Cheltenhamian and Kalimnaian Stages in the St. Vincent Basin........... 115

 Koowonga Formation .. 115
 Dry Creek Sand .. 115
 Hallett Cove Sandstone ... 117
4.12.2. Cheltenhamian and Kalimnaian Stages in the Western Murray Basin...... 118

 Loxtor Sand ... 120
 Parilla Sand ... 122
 Karoonda Surface .. 123
 Norwest Bend Formation ... 124
 Blanchetown Clay .. 125
4.12.3. Cheltenhamian and Kalimnaian Stages: Conclusion....................... 127
4.13 Werrakooian Stage (-2Ma to Present).. 128
4.13.1. Werrakooian Stage in the St. Vincent Basin.................................... 133

 Burtham Limestone .. 133
 Point Ellen Formation ... 134
 Hindmarsh Clay ... 134
 Keswick Clay .. 137
 Gley Clays and Black Earth ... 138
 Glatville Formation ... 138
 Carbonate Pedoderm .. 139
 Poonaka Formation of the St. Vincent Basin 141
 St. Kilda Formation ... 143
4.13.1.1 Werrakooian Stage in the St. Vincent Basin: Conclusion 144
4.13.2 Werrakooian Stage in the Western Murray Basin............................ 145
4.13.2.1 North-Western Murray Basin.. 145

 Blanchetown Clay .. 146
 Burunga Limestone .. 146
 Poonaka Formation in the Western Murray Basin.............................. 146
 Voutiner Formation ... 148
 Molineaux Sand .. 150
Coombabulga Formation .. 150
4.13.2.2 South-Western Murray Basin 151
Coomansook Formation .. 151
Bridgewater Formation .. 153
4.13.3 Werriskooin Stage in the Western Murray Basin: Conclusion 155
4.14 Regional Palaeoreconstructions: Conclusion 156

CHAPTER 5: NEOTECTONICS OF THE MOUNT LOFTY RANGES AND
FLANKING ST. VINCENT AND WESTERN MURRAY BASINS 159
5.1 Introduction .. 159
5.2 Neotectonic Plate Reorganisation .. 162
5.3 Neotectonic Settings .. 165
 5.3.1 Tertiary Extensional Setting: Crustal Segmentation 174
 5.3.2 Tertiary Extensional Setting: Strain Accommodation and Transfer Zones 175
 5.3.3 Lake Bungunnia: A New Assumption 179
 5.3.4 Nature and Regional Significance of Tertiary Strain Transfer Zone 180
 5.3.5 Compressional Neotectonic Setting 185
5.4 Neotectonic Setting: Independence versus Inheritance (Discussion) 191

CHAPTER 6: GEOMORPHOLOGY AND LANDSCAPE EVOLUTION
OF THE MOUNT LOFTY RANGES .. 197
6.1 Introduction .. 197
6.2 Geomorphological Setting of the Mount Lofty Ranges 199
 6.2.1 Major Watershed of the Mount Lofty Ranges 207
6.3 Palaeodrainage Reconstructions .. 210
 6.3.1 Palaeodrainage of the Eastern Poronion of the Mount Lofty Ranges 211
 6.3.2 Palaeodrainage of the Western Poronion of the Mount Lofty Ranges 223
6.4 Landscape Evolution of the Mount Lofty Ranges 235
 6.4.1 Drainage Initiation (Middle-Late Eocene) 236
 6.4.2 Subtle Erosion (Oligocene-Middle Miocene) 237
 6.4.3 Landscape Relaxation (Late Miocene-Early Pleistocene) 241
 6.4.4 Vigorous Erosion (Mid-Pleistocene-Recent) 243

CHAPTER 7: SYNTHESIS & CONCLUSIONS 246
7.1 Introduction .. 246
7.2 Three Stage Neotectonic Model .. 247
 7.2.1 Neotectonic Stage I: Crustal Extension (~43 Ma to ~15 Ma) 247
 7.2.2 Neotectonic Stage II: Transitional regime (~15 Ma to ~1 Ma) 252
 7.2.3 Neotectonic Stage III: Crustal Compression (~1 Ma to Present) 246
7.3 Conclusion .. 258
ABSTRACT

The Mount Lofty Ranges resulted from long-term interaction mainly between neotectonic movements and fluvial processes. This thesis presents an original comprehensive neotectonic study incorporating a structural analysis, lithostratigraphic data interpretations, and various geomorphological investigations. This study begins by introducing a multidisciplinary approach to neotectonic analysis including traditional and advanced methods such as Digital Elevation Models (DEM). Regional stages were used as an appropriate time-framework for palaeo-reconstructions and correlations of basin sedimentation with fluvial stream competence (erosion and sedimentary supply).

In contrast to the traditional hypothesis that Tertiary uplift of the Ranges was due to compressional reactivation of Delamerian structures (~500Ma), this study reveals three principal neotectonic stages associated with specific tectonic regimes: 1) Extensional Stage (Middle Eocene to Middle Miocene); 2) Transitional Stage (Late Miocene to Early Pleistocene); and 3) Compressional Stage (Early Pleistocene to the Present). Several lines of evidence are provided showing the independence of neotectonic structure from basement fabric.

A large region of South Australia was represented by a gently undulating and deeply weathered Palaeoplain during the early Tertiary. In a methodological/analytical first, the global eustatic curve was used to evaluate the altitude of this Palaeoplain (~250-300m above the present sea-level). This study also revealed that the effect of sea-level change on the landscape during the Tertiary was more significant than previously considered. The initial crustal segmentation (Middle-Late Eocene) involved subsidence of the St. Vincent and Western Murray Basins while remnants of the high-standing Palaeoplain became the Mount Lofty Ranges. Further crustal segmentation and subsidence resulted in the formation of embayments, and intramontane basins such as Moonta-Myponga, Hindmarsh Tiers and Barossa. Fundamental attributes of extensional tectonics such as strain transfer and accommodation zones, tilting and crustal segmentation recognised in the Tertiary tectonic setting.

The major compressional tectonic activity was associated with steep reverse faults on both sides of the Ranges. This compressional neotectonic regime resulted in Pleistocene uplift of the Mount Lofty Ranges that resulted in a major lithological change in the sediments of both the St. Vincent and Western Murray Basins. The young and dissected landscape with a number of stream gorges and waterfalls on both marginal sides of the Ranges is correlated with stream gravels including cobbles, pebbles and slope debris. This compressional neotectonic uplift of the Ranges mainly occurred during the Pleistocene (~1Ma) and continues today as indicated by seismic activity and insitu stress measurements.