KINETIC STUDIES ON PROPIONYL-CoA CARBOXYLASE FROM PIG HEART

A thesis submitted by John Brian Edwards B.Sc. (Hons.),
to the University of Adelaide, South Australia,
for the degree of Doctor of Philosophy.

Department of Biochemistry,
University of Adelaide, S.A.
October, 1967.
TABLE OF CONTENTS:

STATEMENT (i)

ACKNOWLEDGEMENTS (ii)

SUMMARY (iii)

ENZYMES (vi)

ABBREVIATIONS (vii)

CHAPTER 1. GENERAL INTRODUCTION:

Introduction 1.

The Biotin Group of Enzymes

 (1) Acetyl-CoA carboxylase 3.
 (2) Propionyl-CoA carboxylase 5.
 (3) 2-methyl protons CoA carboxylase 7.
 (4) Pyruvate carboxylase 8.
 (5) Methyl malonyl-CoA : Pyruvate carboxyl-
 transferase 10.

Active Centres of the Biotin Enzymes 13.

 (1) Role of biotin 13.
 (2) Carboxy-biotin enzyme complex 14.
 (3) Substrate sites 18.
 (4) Activator sites 21.

Reaction Mechanism 24.

Quaternary Structure 31.
(1) Acetyl-CoA Carboxylase

(2) Pyruvate Carboxylase

Aims of the Project

CHAPTER 2. MATERIALS AND METHODS.

Materials

(1) Materials used for enzyme purification

(2) Materials used in assay of propionyl-CoA carboxylase

(3) Materials used in the metal-free studies

(4) Materials required for scintillation counting

(5) Materials required for thiol group investigations

Methods

(1) Protein determination

(2) Propionyl-CoA carboxylase assay

(3) Modification and denaturation of the protein

(4) Hydrolysis of labelled protein precipitates

(5) Paper electrophoresis

(6) Detection of the separated amino acids

(7) Preparation of propionyl-CoA carboxylase for electron microscopy

... 32.

... 34.

... 37.

... 39.

... 40.

... 42.

... 45.

... 45.

... 47.

... 47.

... 48.

... 49.

... 49.

... 49.

... 50.
CHAPTER 3. PREPARATION OF PROPIONYL-CoA CARBOXYLASE

Introduction

Isolation of propionyl-CoA carboxylase

(1) Identification of methyl malonyl-CoA as the product of the reaction

(2) Characterization of propionyl-CoA carboxylase

(3) Electron microscopy of propionyl-CoA carboxylase

CHAPTER 4. THE ESSENTIAL THIOL GROUP OF PROPIONYL-CoA CARBOXYLASE

Introduction

(1) The choice of inhibitor

Results

(1) Order of inactivation with respect to time and N-ethyl maleimide concentration

(2) Effect of pH on the apparent K_m and V_{max} values

(3) Effect of pH on the rate of loss of activity

(4) Effect of chemical modification of the active site

(5) Propionyl-CoA protection against N-ethyl maleimide inhibition
(6) Isolation of the reactive cysteine residue
in propionyl-CoA carboxylase

Discussion

CHAPTER 5. THE ROLE OF POTASSIUM IN THE PROPIONYL-
CoA CARBOXYLASE REACTION

Introduction

Results

(1) K^+ ion stimulation

(2) Time course of activation by K^+ ions

(3) Effect of K^+ ions on the kinetic constants

(4) Effect of K^+ ions on the tertiary structure
 of the enzyme

(5) Supporting evidence for a K^+ induced
 conformational change

Discussion

CHAPTER 6. THE ALLOSTERIC ACTIVATION OF PROPIONYL-
CoA CARBOXYLASE BY MAGNESIUM (Mg^{2+}) AND MAGNESIUM
ADENOSINE TRIPHOSPHATE ($MgATP^{2-}$)

Introduction

Results

(1) Heterotropic co-operative effect of $MgATP^{2-}$

(2) Activation by magnesium
(5) Effect of K⁺
(4) Activation by MgATP²⁻
(5) Inhibition by ATP³⁻

Discussion

CHAPTER 7. INITIAL VELOCITY STUDIES

Introduction

Results

(1) The influence of propionyl-CoA on the HCO₃⁻ kinetics
(2) The influence of HCO₃⁻ on the propionyl-CoA kinetics
(3) The influence of (MgATP²⁻ + Mg²⁺) on the propionyl-CoA kinetics
(4) The influence of propionyl-CoA on the (MgATP²⁻ + Mg²⁺) kinetics
(5) The influence of HCO₃⁻ on the MgATP²⁻ kinetics
(6) The influence of MgATP²⁻ on the HCO₃⁻ kinetics
(7) The influence of HCO₃⁻ on (MgATP²⁻ + Mg²⁺) kinetics,
(8) The influence of (MgATP²⁻ + Mg²⁺) on HCO₃⁻ kinetics

Discussion
(1) Evidence for the existence of an alternative pathway in the reaction sequence 130.

(2) Proposals for the release of the products from the enzyme surface 132.

CONCLUDING REMARKS 135.

BIBLIOGRAPHY 141.
SUMMARY.

Propionyl-CoA carboxylase which catalyses the reaction:

\[
\text{CH}_3\text{CH}_2\text{CO}\cdot\text{SCoA} + \text{ATP} + \text{HCO}_3^- \xrightarrow{\text{Mg}^{2+}} \text{CH}_3\text{CH}_2\text{CO}\cdot\text{SCoA} + \text{ADP} + \text{Pi}
\]

was purified from pig heart and a series of experiments were carried out to investigate some of the chemical and kinetic properties of the enzyme.

The function of the essential thiol group in propionyl-CoA carboxylase was investigated using N-ethyl maleimide as the thiol modifying reagent. The inhibition of the enzyme was first order with respect to time and inhibitor concentration. From an analysis of the data it was concluded that only one molecule of N-ethyl maleimide reacted with the enzyme. The rate of inhibition remained constant between pH 7.0 and 8.0 then increased very rapidly with increasing pH. The inflection point at pH 8.2 in the pH/pK plots indicated that the thiol group was involved in the formation of the enzyme-propionyl-CoA complex. This was confirmed by a comparison of the kinetic constants of the native and the chemically modified enzyme which showed that the apparent K_m value for propionyl-CoA increased while the values for ATP and HCO_3^- remained constant. By measuring the rate constant of the inactivation process in the presence of varying propionyl-CoA concentrations, it was
concluded that the inhibitor could not react with the enzymepropionyl-CoA complex. The inhibited amino acid was identified as cysteine by reaction with ^{14}C-N-ethyl maleimide and the subsequent isolation of the radio-active cysteine-inhibitor complex. From this evidence it was concluded that a cysteine residue was involved in binding propionyl-CoA to the active site.

The enzyme is also stimulated in the presence of certain univalent cations. In the presence of K^+ ions the V_{max} values for all substrates increased. In addition, the apparent K_m value for HCO_3^- was decreased although the affinity for the other substrates was unaffected. Kinetic evidence thus suggested that K^+ caused a conformational change on the enzyme, a result that was supported by the calculation of the entropy changes induced in the protein by this univalent cation.

This hypothesis was further substantiated by showing an increase in the rate of inhibition by N-ethyl maleimide in the presence of K^+ ions. This accumulated data provided strong evidence that a conformational change accompanied the reaction of alkali metals with propionyl-CoA carboxylase.

The allosteric activation of propionyl-CoA carboxylase by Mg$^{2+}$ and MgATP$^{2-}$ was also examined. The results suggest
that Mg$^{2+}$ has at least two roles in the reaction mechanism. Firstly, it forms a complex with ATP$^{3-}$ to form the true MgATP$^{2-}$ substrate and secondly, it forms a complex with the enzyme to activate the enzymic reaction. The MgATP$^{2-}$ complex deviates from Michaelis & Menten kinetics in such a way as to indicate a hysteric co-operative effect involving at least two molecules of ligand. Free Mg$^{2+}$ reduces the slope of the Hill plot for MgATP$^{2-}$ thus suggesting either a change in the order of the reaction with respect to MgATP$^{2-}$ or a reduction in the interaction between the MgATP$^{2-}$ sites. It is proposed that one site acts as an effector site and the other, a catalytic site.

Furthermore, ATP$^{4-}$ is a competitive inhibitor with respect to MgATP$^{2-}$ and since Mg$^{2+}$ has been shown to alter the kinetic properties, it could be suggested that this cation is binding at the effector site for MgATP$^{2-}$ and mimics the action of MgATP$^{2-}$ at this site. On the other hand, ATP$^{4-}$ could be binding at the catalytic site.

Two substrate kinetics were also carried out in an endeavour to substantiate previous reaction mechanism proposals. Although the evidence is only preliminary, the data obtained does not conform to the simple reaction scheme proposed by other investigators.