Building Climatology and Thermal Comfort
Thermal Environments and Occupant (Comfort) Responses in Philippine Office Buildings

Mary Myla Andamon

A thesis submitted to the University of Adelaide in fulfilment of the requirements for the degree of Doctor of Philosophy

School of Architecture, Landscape Architecture and Urban Design

October 2005
Table of Contents

CHAPTER 1: INTRODUCTION 1
1.1 Overview 1
1.2 The Science and Standards of Comfort 2
1.3 Comfort Practices and Consumption Patterns 3
1.4 A Thermal Comfort Study in the Philippines 4
1.5 Aims of the Thesis 4
1.5.1 Research Hypothesis 6
1.6 Methodology 6
1.7 Organization of the thesis 7

CHAPTER 2: THE SPECIFICATION OF THERMAL COMFORT 9
2.1 Introduction 9
2.2 Geographic and Indoor Environments 9
 2.2.1 Climatic Influences: Ancient and Mediaeval Theories 9
 2.2.2 Perspectives from Geography: Environmental Determinism 11
 2.2.3 Made-to-Order Environments: Coldward Progression 17
2.3 The Thermal Environment: Satisfactory Indoor Thermal Conditions and their Assessment 19
2.4 The Science of Comfort 20
 2.4.1 Definition of Thermal Comfort 22
 2.4.2 The Technical Constructs of Thermal Comfort Assessment: Modelling Approaches, Measurements and Analysis 23
2.5 The Production of Comfort 34
 2.5.1 Assessment of Thermal Comfort 34
 2.5.2 Assessment Techniques: Thermal Indices 37
 2.5.3 International Comfort Standards and the Ergonomics of the Thermal Environment 38
2.6 Discussion and Summary 44

CHAPTER 3: THE HUMAN THERMAL COMFORT RESPONSE 46
3.1 Introduction 46
3.2 Control of the Thermal Environment for Human Performance and Productivity 47
3.3 Perception and Expectations of (Air)Conditioned (Thermal) Environments 48
3.4. The Social Constructs of Thermal Comfort and Satisfaction

3.4.1 Influences: Climatic Variation
3.4.2 Influences: Technology and Social Convention
3.4.3 Influences: Socio-Cultural Behaviour and Societal Demand

3.5. Dynamics of the Demand for Comfort

3.5.1 People and Energy Consumption
3.5.2 Thermal Comfort and the Energy Debate

3.6 Discussion and Summary

CHAPTER 4: THERMAL COMFORT AND THE CONTEXT OF THE PHILIPPINES

4.1 Introduction
4.2 Thermal Comfort in the Tropical Southeast Asia Region

4.2.1 Thermal Comfort Research
4.3 Indoor Climate Research in the Philippines

4.4 Thermal Comfort Standards in the Philippines
4.5 The Context of the Philippines

4.5.1 Demography and Culture
4.5.2 Geography of the Philippines
4.5.3 Climatic Conditions of the Philippines

4.6 The Social Context of Comfort in the Philippines
4.7 Change in Comfort Expectations and Preferences

4.8 The Built Environment in the Philippines: Office Building Energy Use
4.9 Discussion and Summary

CHAPTER 5: THERMAL COMFORT STUDY IN MAKATI CITY (MANILA), PHILIPPINES

5.1 Introduction
5.2 Climatic Environment of Makati City (Manila), Philippines

5.3 Concurrent Outdoor Meteorological Measurements
5.4 Building Selection

5.4.1 Building Descriptions
5.5 Measurement of Indoor Climates

5.5.1 Preliminary Work
5.5.2 Mobile Measurement System
5.5.3 Data Acquisition
5.5.4 Stationary Measurement System

5.6 Questionnaires

5.6.1 Thermal Assessment Survey
5.6.2 Background Survey

5.6.3 Interview
5.7 Measurement Protocol

5.7.1 Workstation Selection

5.7.2 Conduct of the Survey

5.8 Calculations

5.8.1 Indoor Environmental and Comfort Indices
5.8.2 Clothing Insulation
5.8.3 Metabolic Rate
CHAPTER 6: OFFICE THERMAL ENVIRONMENTS AND COMFORT RESPONSES OF FILIPINO WORKERS

6.1 Introduction
6.2 Subjects of the Study
6.2.1 Size and Profile of the Sample
6.3 Indoor Climatic Conditions
6.3.1 Concurrent Outdoor Measurements
6.4 Metabolic (Activity) Levels and Clothing Insulation Values
6.5 Calculated Comfort Indices
6.6 Subjective Assessment of Thermal Environments
6.6.1 Thermal Sensation and Thermal Preference
6.6.2 Environmental Indices
6.6.3 Thermal Neutralities
6.6.4 Thermal Acceptability by Various Scales
6.6.5 Thermal Acceptability and Indoor Operative Temperature (T_0)
6.6.6 Thermal Preference
6.6.7 Assessment of Air Movement
6.7 Discussion
6.7.1 Comparisons between Thermal Neutrality, Preference and Acceptability
6.7.2 Comparisons between Indices, Models, and Observed Data (Measured versus Predicted)
6.7.3 Comparisons between Observed Comfort Calculations and Adaptive Mathematical Models (Measured versus Predicted)
6.7.4 Comparisons between Observed Comfort Data and the Standards
6.7.5 Comparison between the Seasons and the Effects of Gender
6.7.6 Comparison with other Thermal Comfort Field Experiments
6.8 Summary

CHAPTER 7: IMPACT OF PSYCHO-SOCIAL AND CONTEXTUAL FACTORS ON THE PERCEPTION OF COMFORT

7.1 Introduction
7.2 Overall Assessments of Office Comfort
7.3 Occupant Perception of Indoor Environments
7.4 Occupant Perception on Control over Workstation Thermal Environments
7.5 Other Factors Affecting Comfort Perception
7.6 Profile of Air Conditioning Preference and Use
7.7 Psycho-Social and Contextual Factors on Thermal Comfort Responses
7.8 Attitude Assessments
7.9 Discussion and Summary
CHAPTER 8: SUMMARY, DISCUSSION AND CONCLUSIONS 225
8.1 Thermal Comfort Study in the Philippines 225
8.2 Thermal Comfort in Philippine Office Environments 227
8.2.1 Indoor Office Conditions of Surveyed Philippine Office Buildings: 227
8.2.2 Comfort Responses and Requirements of Building Occupants 227
8.2.3 The Preference for Cool/Cold Conditions 227
8.3 Comfort and Energy Use 230
8.3.1 Indoor Comfort Temperature and Building Energy Consumption 237
8.3.2 Comfort Standards 243
8.4 Implications of the Social (Re)Organization of Normality 246
8.5 Thesis Conclusion 251

REFERENCES 254

APPENDICES 283
Appendix A Descriptions of the Five Surveyed Office Buildings A1-11
Appendix B Letter of Introduction and Brief of Thermal Comfort B1-13
Investigation
Appendix C Survey Questionnaires C1-29
Appendix D Database of Thermal Assessment and Background CD-rom
Survey Responses
Appendix E Statistical Analyses: Thermal Assessment and CD-rom
Background Survey Responses
Appendix F Interview Responses CD-rom
Appendix G Energy Performance of Ayala Tower One G1-27
Abstract

Studies of human responses to the indoor thermal environment in buildings have mostly been carried out in the temperate climates of developed countries. These studies have largely formed the basis of universally applied thermal comfort standards that inform the control of indoor environments. There is a need to examine thermal comfort in the context of tropical developing countries, first because of the concentration of world population and growth in these regions and secondly their effect on the consumption of scarce energy resources. To date, the Philippines is underrepresented in the thermal comfort literature.

This thesis investigates the indoor climate and occupant comfort responses in air-conditioned Philippine office buildings. The primary objective is to examine the applicability of the universal values for comfort temperatures recommended by international comfort standards in these office environments. While it is contended that satisfactory occupant thermal responses are integral to acceptable indoor thermal environments, thermal preferences and thermal expectations of building users are dependent on non-thermal factors such as demographics, context, environmental interactions, cognition, and conventions and practices of comfort. The research hypothesizes that the international standards (ASHRAE Standard 55: 1992 and ISO Standard 7726: 1993) are inadequate in taking these extended factors into account. An understanding of how comfort preferences in office environments evolved will impact on energy conservation issues that particularly relate to controlled indoor climates.

Data for this research was gathered through a field study which involved monitoring of indoor climatic conditions of a sample of office buildings and information solicited from office workers by way of survey questionnaires and interviews. It was found that the surveyed Philippine office buildings operated within a narrow temperature range and had bandwidths of temperatures that correspond to the lower spectrum of the comfort criteria set by the international standards. Occupant perception of the indoor thermal comfort in response to these conditions is one of acceptance, more so, of preference. An analysis of the impact of this preference on building energy consumption was examined using one office building as a case study.

The thesis concludes by discussing how responses to indoor conditions of buildings may only be tangentially related to comfort standards and have much more to do with expectations, conventions and practices of comfort. Implications of the understanding of the social and technical transformation of what people take to be normal and ordinary conditions of comfort provide insights on how the built environment and social institutions engender preferences. This recognition should stimulate debates on how future policies (in the form of building codes, engineering standards, etc.) developed in a holistic manner could reshape these preferences.