The combined cardiac effect of the anabolic steroid, nandrolone and cocaine in the rat.

Benjamin D. Phillis, B.Sc. (Hons) Pharmacology
Department of Clinical & Experimental Pharmacology
Fremont Rd, Medical School North
Adelaide University
ADELAIDE SA 5000
Table of Contents

DECLARATION
I

ACKNOWLEDGEMENTS
II

TABLE OF CONTENTS
III

ABBREVIATIONS
X

ABSTRACT
XII

CHAPTER 1
1-4

1.1 Background
1.2 What are anabolic steroids?
1.3 General pharmacology of Anabolic steroids
1.3.1 Genomic effects of anabolic steroids
1.3.2 Non-genomic effects of anabolic steroids
1.4 Clinical use of AS
1.5 Patterns of AS abuse
1.5.1 Steroid abuse by athletes
1.5.2 Steroid abuse by sedentary teenagers
1.5.3 Prevalence of abuse
1.5.4 Abuse prevalence in Australia
1.6 Cardio-toxicity of anabolic steroids
1.6.1 Reduced coronary flow
1.6.2 Direct myocardial effects
1.6.3 Hypertension
1.7 Difficulties associated with anabolic steroid research
1.8 The polydrug abuse phenomenon
1.9 The pharmacology of cocaine
1.10 Preparations
1.11 Metabolism
1.12 Addendum

iii
CHAPTER 2

General Methods

2.1 Animals

2.2 Radiotelemetry recording

2.3 General anesthesia

2.4 Surgical implantation of radiotelemetry devices

2.4.1 ECG implants

2.4.2 Blood Pressure implants

2.4.3 Post-operative Management

2.5 Analysis of radiotelemetry data

2.6 Surgical procedure for ischemia-reperfusion studies

2.7 Continuous recording of cardiac parameters during ischemia-reperfusion

2.8 Induction of ischemia and reperfusion

2.9 Analysis of ischemia-reperfusion data

2.10 Determination of the extra-neuronal uptake of noradrenaline in isolated perfused hearts

2.10.1 Pre-treatment

2.10.2 Protocol

2.10.3 Calculation of results

2.11 Drugs

2.12 References

CHAPTER 3

The effect of rat strain on the cardiovascular response to cocaine

3.1. Introduction

3.1.1 Is the cardiovascular response to intraperitoneal cocaine strain dependent?

3.2. Aim

iv
3.3. Hypothesis
3.4. Methods
3.4.1 Animals
3.4.2 Protocol
3.4.3 Data Analysis
3.5. Results
3.5.1 Time course of the cocaine response
3.5.2 Between strain changes in the HR, SLA, DP and SF response to cocaine
3.6. Discussion
3.7. Conclusion
3.8 References

CHAPTER 4
The acute effect of nandrolone and cocaine on heart rate
4.1 Introduction
4.2 Aim
4.3 Hypothesis
4.4 Methodology
4.4.1 Animals
4.4.2 Protocol
4.4.3 Drugs
4.4.4 Statistical Analysis
4.5 Results
4.5.1 Plasma levels of nandrolone
4.5.2 Pre-treatment response
4.5.3 Cocaine response
4.5.4 Effect of nandrolone pre-treatment on the response to cocaine
4.6 Discussion
4.7 Conclusion
4.8 References

CHAPTER 5
The effect of intravenous nandrolone in rats subjected to cardiac ischaemia and reperfusion
5.1 Introduction
5.2 Aim
CHAPTER 6

The effect of intravenous cocaine in rats subjected to cardiac ischaemia and reperfusion

6.1 Introduction 6-1
6.2 Aims 6-2
6.3 Hypotheses 6-2
6.4 Methodology 6-3
6.4.1 Animals 6-3
6.4.2 Protocol 6-3
6.4.3 Data analysis 6-3
6.5 Results 6-5
6.5.1 Area at risk of ischaemia 6-5
6.5.2 Cardiovascular response to pre-treatment 6-5
6.5.3 Cardiovascular responses to ischaemia and reperfusion 6-6
6.5.4 Survival 6-7
6.5.5 Arrhythmia 6-8
6.6 Discussion 6-18
CHAPTER 7

Effects of chronic nandrolone administration

7.1 Introduction
7.2 Aims
7.3 Hypothesis
7.4 Methodology
7.4.1 Animals
7.4.2 Protocol
7.4.3 Data Analysis
7.5 Results
7.5.1 Change in body weight
7.5.2 Change in organ weights
7.5.3 Histopathology
7.5.4 Cholesterol, triglycerides, LDL and HDL profiles
7.5.5 Serology
7.5.6 Plasma level of nandrolone
7.5.7 Cardiovascular response to chronic nandrolone treatment
7.5.8 Cardiovascular response to cocaine administration
7.5.9 Cardiovascular response to ischaemia and reperfusion
7.5.10 Zone at risk of infarction
7.5.11 Survival Time
7.5.12 Arrhythmia
7.6 Discussion
7.6.1 Body weight
7.6.2 Changes in organ weight
7.6.3 Changes in cholesterol
7.6.4 Serological Changes
7.6.5 Plasma nandrolone level
7.6.6 Effect of treatment on BP and HR
7.6.7 Cardiovascular effect of cocaine infusion
7.6.8 Affect of pre-treatment on the frequency and duration of arrhythmia
and on survival
7.7 Conclusion
7.8 References

CHAPTER 8

The effect of nandrolone on extraneuronal [3H]-noradrenaline reuptake in rat heart
8.1 Introduction
8.1.1 Summary
8.1.2 Extraneuronal uptake
8.2 Aim
8.3 Hypothesis
8.4 Method
8.5 Results
8.6 Discussion
8.7 Conclusion
8.8 References

CHAPTER 9

Discussion
9.1 Rat strain
9.2 Effects of nandrolone alone
9.2.1 Cardiovascular effects of nandrolone in non-ischemic rats
9.2.2 Cardiovascular effects of nandrolone in rats subjected to cardiac ischemia
and reperfusion
9.3 Effects of cocaine alone
9.4 Cocaine effects in combination with chronic nandrolone
9.5 Cocaine effects in combination with acute nandrolone
9.6 Experimental Limitations
9.6.1 Species
9.6.2 Strain
9.6.3 Gender
9.6.4 Exercise

viii
Recent pharmacologically research shows a significant increase in the use of anabolic-steroids (AS) amongst teenagers and young adults and especially amongst sedentary, young males administering AS for cosmetic reasons. AS are often used in conjunction with psychostimulants. Survey findings suggest significant co-abuse of AS and cocaine. Unfortunately, despite documented evidence that both drugs alone can induce significant cardiovascular effects only very limited basic science research has been conducted into the potential for cardiotoxicity with this drug combination.

Nandrolone has been shown to be the AS of choice amongst many recreational users. Previous work has found heart rate (HR) increased significantly following cocaine HCI (45mg/kg, i.p.) administration in albino Wistar rats (AW) chronically treated with nandrolone compared to the cocaine effect in vehicle treated controls (Phillis et al., 2000). Subsequent studies in this thesis established that this HR effect could not be attributed to an acute effect of the last nandrolone dose prior to cocaine administration. Dose-response relationships to cocaine (0.15-45mg/kg, i.p.) for cardiovascular variables using radionuclide were conducted in freely moving, conscious AW and Sprague-Dawley (SD) rats. These studies indicated that the cardiovascular response to cocaine was not strain dependent. This allowed direct comparisons to be made to literature values for cocaine effects in both strains.

In view of the rather moderate effects of nandrolone observed, the effect of AS pre-treatment on the response to cardiac ischaemia was assessed in order to simulate pre-existing cardiac disease. Nandrolone was administered i.v. at doses reflective of the plasma concentrations possibly achieved by chronic AS users (10-160μg/kg/min). SD rats were subsequently subjected to 15 minutes occlusion of the left anterior descending (LAD) coronary artery and 10 minutes reperfusion. A significant decrease in survival time during ischaemia was noted at the highest nandrolone dose (p<0.001) and significant decreases in the fraction of rats surviving ischaemia (40 & 160μg/kg/min, both p<0.05) compared to control. A significant increase in the Lumbeth arrhythmia score was seen at the 3 highest nandrolone doses (all, p<0.05). A significant increase in the duration of VF during ischaemia was noted for the highest nandrolone dose (160μg/kg/min) compared to the lowest dose (10μg/kg/min). This pro-arrhythmic nandrolone effect could not be attributed to increases in myocardial noradrenaline (NA) by the blockade of extraneuronal uptake, since nandrolone was shown to have too low an inhibiting potency on extraneuronal noradrenaline uptake in isolated perfused rat hearts. The severity of arrhythmia in rats receiving i.v. nandrolone was not increased by cocaine HCI administration (0.5mg/kg/min, i.v) but rather was found to protect against the fatal VF induced by nandrolone alone (40μg/kg/min). In contrast to the acute effect of nandrolone, chronic nandrolone treatment of SD rats for 3, 6 or 9 weeks had no effect on the response to cardiac ischaemia or reperfusion. The basis of the difference between the effects of chronic and acute effects of nandrolone on ischaemia-induced dysrhythmia was not identified. It may relate to the much lower plasma nandrolone concentration achieved with
chronic nandrolone treatment. Alternatively, chronic treatment may result in down-
regulation of the mechanism underlying enhanced arrhythmia after acute dosing.

This is the first study to show a significant and dose dependent increase in the
Lambeth arrhythmia score during cardiac ischaemia in rats administered i.v.
nandrolone. The mechanism of this effect remains unknown. Potential mechanisms
include a CNS effect of nandrolone, an uncoupling of the protective effect of adenosine
during early ischaemia by nandrolone or an increase in pro-arrhythmic endothelin-1
(ET-1). This study suggests that nandrolone abuse in patients with a pre-existing
cardiac condition may precipitate life threatening cardiac arrhythmia.