Isolation and Characterisation of the Immunosuppressive Peptides in the Rat Testis

Sulaiman Ngongu Depamede
B.Sc., Ir., (Universitas Mataram)
M.Biotech (Flinders University)

A thesis submitted to the University of Adelaide in fulfilment of the requirements for the degree of Doctor of Philosophy

Discipline of Animal Science
Faculty of Sciences
UNIVERSITY OF ADELAIDE

December 2004
Abstract

The rodent testis is recognised as an immune-privileged site in which allogeneic tissue grafts can survive for long periods of time, possibly indefinitely. Theories developed to date suggest that the testis contains specific immunosuppressive factors that inhibit lymphocyte activation in this site (for review see Maddocks and Satchell, 1990, Streilein, 1993, Filippini et al., 2001). However the nature of these factors has not been well characterised to date.

The present study was conducted in an attempt to isolate and characterise the immunosuppressive factors in the rat testis, and to determine the probable mechanism by which immunosuppression is achieved. A crude testicular extract was used as the source material for the investigations described.

Immunosuppressive activities were assessed using a Con A-induced splenic T cell proliferation bioassay. The splenic T cells were isolated using a percoll density gradient separation which resulted in T cells expressing mainly c/βT cell receptors as determined by FACS analysis. Crude testicular extract suppressed mitogen (Con A or PHA) induced splenic T-cell proliferation. Removal of significant amounts of steroid from testicular homogenate by dextran-charcoal extraction did not abolish the immunosuppressive activities. Separation of this crude testicular extract using a Sephadex G 25 PD-10 column resulted in three molecular weight fractions: Mr > 5, Mr 1-5 and Mr < 1 kDa. The immunosuppressive activity was observed in fractions of Mr > 1
kDa, with the strongest immunosuppressive activity present in the Mr 1-5 kDa fraction. Using a Superdex Peptide PC 3.2/30 column, the strongest immunosuppressive activity was found to have a molecular weight of around 3.5 kDa.

This result contrasts with previous reports of similar investigations on rodent testis immunosuppressive activities, and attempts to further purify these immunosuppressive factors were focused on the low molecular weight substances. The semi-purified (low molecular weight) immunosuppressive activities were found to be relatively heat and pH stable, but were sensitive to trypsin, suggesting they were most likely peptidic in nature.

Further analysis involved ion-exchange chromatography, high performance liquid chromatography (HPLC) and reversed phase high performance liquid chromatography (RP-HPLC) methods. The use of RP-HPLC employed a µRPC C2/C18 column with either trifluoroacetic acid (TFA, 0.1%, v/v) or heptfluorobutyric acid (HFBA, 1%, v/v) and acetonitrile (0-80% v/v) as the elution buffer. This resulted in reduced immunosuppressive activity. Similar results were also observed with the high molecular weight fractions and such effects have also been reported by others working in this area (Saxena et al., 1988). The results suggested that the immunosuppressive factors are relatively unstable under the purification conditions employed and may be oligomeric in nature.

Since the proliferation of activated T cells is related to the production of IL-2 and the expression of the IL-2-receptor, investigations were undertaken on the
production of IL-2 by activated T cells cultured in the presence of testicular immunosuppressive factors. The results show that both the crude and high molecular weight, but not low molecular weight immunosuppressive factors inhibited IL-2 production. In this context, at least two immunosuppressive mechanisms are present in the testis extracts. The high molecular weight factors suppress the proliferation of activated T cells via the inhibition of IL-2 secretion, which has also been reported previously by Pöllänen et al., (1990) and attributed to a TGF-β-like protein named 'protectin' (Pöllänen et al., 1988).

However inhibition of activated T cell proliferation by low molecular weight (LMW-TE) factors did not affect IL-2 production, and was shown in the present study to induce specific programmed cell death (apoptosis) which was not due to general cytotoxic effects.

Although the TE immunosuppressive peptides suppressed both CD4+ and CD8+ T cell subsets, the strongest suppression was found to be extended to the CD4+ T cell subset. It is possible that LMW-TE could possibly be involved in the down regulation of CD4+ T cell populations in the testis as it has been previously reported that in the rat testis CD8+ T cells are more frequently observed compared to CD4+ T cells (Hedger et al., 1998b, Tompkins et al., 1999).

From the present study it can be concluded that the mechanisms regulating the status of the testis as an immunologically privileged site involve complex, multiple and possibly redundant mechanisms to both inhibit an autoimmune
attack on the haploid germ line on the one hand and yet to also allow immunologic responses against pathological events to take place on the other. The presence of high and low molecular weight peptides in the rat testis as reported in the present study contribute to these events directly or indirectly. However, the specific nature of the various components of the regulatory pathways that maintain the unique environment of the testis are still to be elucidated.
Table of Content

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dedication</td>
<td>ii</td>
</tr>
<tr>
<td>Declaration</td>
<td>iii</td>
</tr>
<tr>
<td>Abstract</td>
<td>iv</td>
</tr>
<tr>
<td>Acknowledgement</td>
<td>viii</td>
</tr>
<tr>
<td>Preface</td>
<td>x</td>
</tr>
<tr>
<td>List of Abbreviations</td>
<td>xi</td>
</tr>
<tr>
<td>Table of Content</td>
<td>xii</td>
</tr>
<tr>
<td>List of Figures</td>
<td>xvii</td>
</tr>
<tr>
<td>List of Tables</td>
<td>xlii</td>
</tr>
<tr>
<td>1. Introduction and Review of Literature</td>
<td></td>
</tr>
<tr>
<td>1.1. Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.2. The Mammalian Testis</td>
<td>2</td>
</tr>
<tr>
<td>1.2.1. The seminiferous tubules</td>
<td>3</td>
</tr>
<tr>
<td>1.2.2. Germinal elements and Spermatogenesis</td>
<td>5</td>
</tr>
<tr>
<td>1.2.3. Somatic elements</td>
<td>6</td>
</tr>
<tr>
<td>1.2.4. The Blood-Testis Barrier</td>
<td>9</td>
</tr>
<tr>
<td>1.2.5. Interstitial Compartment</td>
<td>9</td>
</tr>
<tr>
<td>1.2.6. Leydig cells</td>
<td>11</td>
</tr>
<tr>
<td>1.2.7. Macrophages</td>
<td>12</td>
</tr>
<tr>
<td>1.2.8. Blood vessels and Lymph vessels</td>
<td>13</td>
</tr>
<tr>
<td>1.2.9. The capsule of Testis</td>
<td>15</td>
</tr>
<tr>
<td>1.3. Immunological Aspects of the Mammalian Testis</td>
<td>16</td>
</tr>
<tr>
<td>1.4. Concepts for the Testis as an Immunologically Privileged Site</td>
<td>18</td>
</tr>
<tr>
<td>1.4.1. Blood-testis Barrier Protection</td>
<td>20</td>
</tr>
<tr>
<td>1.4.2. The Lack of Lymphatic vessels</td>
<td>21</td>
</tr>
<tr>
<td>1.4.3. Concept of Specific Immunosuppressive Factors</td>
<td>22</td>
</tr>
<tr>
<td>1.4.4. Mechanisms of Immunosuppression</td>
<td>24</td>
</tr>
<tr>
<td>1.5. Apoptosis</td>
<td>29</td>
</tr>
</tbody>
</table>

xii
1.6. Possible Immunoregulatory Peptides in the Testis
1.7. Partial Characterisation of Immunosuppressive factors in the Testis
1.8. The purpose of this study

2. Materials and Methods
2.1. Animals
2.2. Reagents/Chemicals
2.3. Sample preparations
 2.3.1. Preparation of testicular extract
 2.3.2. Preparation of normal rat serum
 2.3.3. Preparation of brain, kidney and liver extracts
2.4. Isolation of splenic T cells
 2.4.1. Preparation of Lysing Solution
 2.4.2. Preparation of Percoll Concentrations
 2.4.3. Preparation of the rat spleen cells
 2.4.4. Generation of Discontinuous Gradients
 2.4.5. Cell viability
 2.4.6. Identification of the type of the splenic cells
 2.4.7. Lymphocyte culture
2.5. Measurement of protein concentration
 2.5.1. Preparation of stock protein reagent
 2.5.2. Preparation of protein standards
 2.5.3. Microprotein assay
2.6. Threshold toxicity assays for trypsin, proteinase K or 4-[2-aminoethyl] benzene sulfonyl fluoride
2.7. Cytotoxicity assay based on Colorimetric MTT assay
2.8. Statistical Analysis

3. Partial Characterisation of Immunosuppressive Activity in the Crude Extracts of the Rat Testis
3.1. Introduction
3.2. Experimental procedures
3.2.1. Suppressive activity of crude testicular extract compounds 64
 3.2.1.1. Testicular extract and splenic lymphocyte preparations 64
 3.2.1.2. Lymphocyte proliferation assays 64

3.2.2. Effects of timing of TE addition to Con A-induced lymphocyte proliferation 65
 3.2.3. Effects of preincubation of splenic T cells with TE 65
 3.2.4. Effects of Temperature and pH on the Crude TE

Immunosuppressive activity 66
 3.2.5. Charcoal treated TE 67
 3.2.6. Species dependence of TE immunosuppressive activities 69
 3.2.7. Proteolytic (Trypsin and proteinase K) treatment of TE 69
 3.2.8. Ammonium sulphate precipitation 71
 3.2.9. Suppressive activity in normal rat serum and tissues other than testis 73
 3.2.10. Assay for IL-2 activity 73
 3.2.11. Neutralisation of IL-2 activity using anti-recombinant rat IL-2 antibody 74

3.3. Results 75
 3.3.1. Suppressive activity of the crude testicular extract 75
 3.3.2. Effects of delayed addition of TE to Con A-induced
 lymphocyte proliferation 75
 3.3.3. Effect of Temperature and pH on Crude TE
 Immunosuppressive activity 80
 3.3.4. Effect of steroid removal 80
 3.3.5. Species dependence of TE immunosuppressive activities 84
 3.3.6. Effects of proteolytic treatment 84
 3.3.7. Ammonium sulphate precipitation 89
 3.3.8. Suppressive activity in rat serum and tissues other than testis 90
 1.3.9. Assay for IL-2 activity 95

3.4. Discussion 98

4. Separation of Rat Testicular Extracts: Potential
 Immunosuppression of Low Molecular Weight Compounds 105

xiv
4.1. Introduction 105

PART ONE 106

Separation of Crude TE using Sephadex G-25 106

4.2. Separation of Crude TE 106

4.2.1. Aims 106

4.2.2. Methods 106

4.2.3. Results and Outcomes 107

4.3. Size exclusion chromatography using a Sephadex G-25 112

4.3.1. Aims 112

4.3.2. Methods 112

4.3.3. Results and Outcomes 113

4.4. Effects of temperature, pH, and proteolytic on the 116

immunosuppressive activity of low molecular weight TE 116

4.4.1. Aims 116

4.4.2. Methods 116

4.4.3. Results and Outcomes 116

4.5. Effects of timing of addition the LMW-TE on Con A-induced 121

lymphocyte proliferation 121

4.5.1. Aims 121

4.5.2. Methods 121

4.5.3. Results and Outcomes 121

4.6. Effects of LMW-TE on the proliferation of Rat-2 cells 123

4.6.1. Aims 123

4.6.2. Methods 123

4.6.3. Results and Outcomes 124

4.7. Effects on IL-2 production 126

4.7.1. Aims 126

4.7.2. Methods 126

4.7.3. Results and Outcomes 128

4.8. Apoptosis 131

4.8.1. Aims 131

4.8.2. Methods 131
4.8.3. Results and Outcomes

4.9. Effects of immunosuppressive activity on CD4 and CD8 T cells

4.9.1. Aims

4.9.2. Methods

4.9.3. Results and Outcomes

PART TWO

Purification of the immunosuppressive factors

4.10. Estimation of molecular weight of the immunosuppressive activity of LMW-TE

4.10.1. Aims

4.10.2. Methods

4.10.3. Results and Outcomes

4.11. Exploration of potential matrices for the purification of the size fractionated LMW-TE

4.11.1. High performance ion exchange chromatography

4.11.1.1. Methods

4.11.1.2. Results and Outcomes

4.11.2. Reversed-phase HPLC

4.11.2.1. Methods

4.11.2.2. Results and Outcomes

5. General Discussion

References