Identification of genes affecting glucose catabolism in nitrogen-limited fermentation

By

Jennifer Margaret Gardner

A thesis submitted for the degree of Doctor of Philosophy, in the Faculty of Sciences
School of Agriculture and Wine
The University of Adelaide
Australia

December 2005

THE UNIVERSITY
OF ADELAIDE
AUSTRALIA
Thesis Summary

When assimilable nitrogen becomes limiting in fermentation processes such as winemaking, sugar transport systems of the inoculated yeast are inactivated and biomass formation is restricted. As a consequence such fermentations may fail to catabolise all available sugar leaving the product out of specification, at greater risk of spoilage and deterioration and needing greater input to rectify. In recognition of this critical importance of assimilable nitrogen in the successful completion of several fermentation processes, this study has sought to develop yeast strains that utilise this typically limited nutrient group more efficiently. Wine strains, usually of *Saccharomyces cerevisiae*, are known to differ in the efficiency with which they exploit nitrogen. As a consequence, so-called 'nitrogen efficient' strains may offer greater prospects for reliable completion of fermentation.

With the aid of transposon mutagenesis together with a high throughput method for analysis of multiple micro-fermentations, nitrogen efficient mutants were identified that were able to catabolise more sugar for a given amount of utilised nitrogen. Mutants displaying improved nitrogen efficiency were further characterised in shake-flask fermentations and the affected genes were identified with the assistance of Inverse-PCR.

As wine and laboratory yeast strains can be pheno-typically different, especially in terms of their ability to affect enological fermentations, a haploid derivative of the wine yeast strain L-2056 was developed, such that it could be easily genetically manipulated.

Of the identified genes, disruption of *NGRI* and *GID7*, lead to an enhanced catabolism of sugar in both a laboratory strain and a haploid derivative of a wine strain of *Saccharomyces cerevisiae*, during growth in a chemically defined grape juice medium with limiting nitrogen. Deletion of *NGRI* or *GID7* also resulted in minor changes to the amounts in which selected metabolites
were produced (determined by HPLC). Biomass yield (measured as dry weight) was also decreased in \textit{NGR1} mutants.

Previous studies have demonstrated a strong link between assimilable nitrogen and fermentation rate, when other nutrients are not limiting. The total nitrogen utilised and the timing of nitrogen uptake of \textit{ngs1Δ} and \textit{gid7Δ} strains was found to be very similar to the parent strain. Thus it was hypothesised that \textit{ngs1Δ} and \textit{gid7Δ} strains could be using the available nitrogen differently to enable enhanced glucose catabolism.

Deletion of either \textit{NGR1} or \textit{GID7} was found to affect the expression of genes involved in the core pathway for the utilisation of non-preferred nitrogen sources, known as Central Nitrogen Metabolism (CNM). The transcriptional abundance, measured by Real-Time PCR, of \textit{GDH1}, \textit{GDH2}, \textit{GLT1} and \textit{GLN1} was altered in these mutants. This distorted expression of CNM genes could translate to a re-modelling of enzyme quantities and thus re-distribution of the core nitrogen-containing compounds, and thereby the cellular response under nitrogen-limiting conditions.
Table of Contents

Thesis Summary
Declaration of Authorship
Acknowledgements
Abbreviations

Chapter 1 Literature Review

1.1 Introduction
1.2 Stuck fermentation
1.3 The effect of nitrogen on fermentation dynamics
1.4 The physiological effects of nitrogen starvation during fermentation
1.5 Nitrogen compounds in wine
1.6 The nitrogen demand of yeast
1.7 Yeast sense nitrogen sources in the extracellular environment
1.8 Yeast cells monitor their intracellular nitrogen pools
1.9 Nitrogen catabolite repression
1.10 Nitrogen import into the cell
1.11 Central Nitrogen Metabolism
1.12 Links between nitrogen and carbon metabolism
1.13 The effect of yeast strain and nitrogen utilisation on wine aroma
1.14 Concluding statement

Chapter 2 Materials and Methods

2.1 Yeast strains and maintenance
2.2 Bacterial strains and maintenance
2.3 Culture media
2.3.1 Media for yeast cultures
2.3.2 Chemically defined grape juice media
2.4 Growth and fermentation
2.4.1 Mini-fermentations
2.4.2 Laboratory scale anaerobic fermentations
2.4.3 Dry cell weight determination
2.4.4 Determination of glucose and ammonia by enzymatic analysis
2.4.5 Determination of other metabolites by HPLC
2.4.6 Viable cell counts
2.5 Yeast classical genetics
2.5.1 Yeast mating
2.5.2 Yeast rare mating
2.5.3 Yeast sporulation
2.5.4 Assess microdissection
2.5.5 High efficiency transformation of S. cerevisiae using lithium acetate
2.6 Nucleic acid isolation
2.6.1 Isolation of genomic DNA from S. cerevisiae
Table of Contents

1.6.2 RNA preparations from yeast
2.5.3 Determination of DNA or RNA concentration
2.6.4 Plasmid preparation from E. coli
2.6.5 Rapid determination of plasmid DNA size

2.7 Molecular cloning techniques

2.7.1 Restriction endonuclease digestion of DNA
2.7.2 Dephosphorylation of vector DNA
2.7.3 Ligation of DNA into plasmid
2.7.4 Preparation and use of competent E. coli cells for transformation

2.8 Nucleic acid amplification procedures
2.8.1 Polymerase Chain Reaction (PCR)
2.8.2 Vectorette PCR
2.8.3 Sequencing reactions
2.8.4 Direct genomic sequencing
2.8.5 Colony cracking PCR for rapid screening of transformants
2.8.6 PCR labelling of probes for Southern Blot analysis
2.8.7 Quantitative Real Time PCR

2.9 Southern Blot analysis of genomic DNA
2.10 Random chemical mutagenesis
2.11 Determination of flocculation status
2.12 Disruption and selection of mitochondrial mutants by ethidium bromide mutagenesis

Chapter 3 Construction of a wine yeast derivate suitable for research using classical and molecular genetic techniques

3.1 Introduction
3.2 Results
3.2.1 Analysis of industrial wine yeast strains suitable for genetic manipulation
3.2.2 Construction of haploid L-2056 strains
3.2.3 Production of non-flocculant L-2056 1B and L-2056 1D
3.2.4 Comparison of the fermentation properties of L-2056, L-2056 1B and L-2056 1Da
3.2.5 Generation of a uracil auxotrophy into L-2056 1B

3.3 Conclusions
3.4 Discussion

Chapter 4 Identification of genes affecting glucose catabolism in nitrogen-limited fermentation

4.1 Introduction
4.2 Results
4.2.1 Construction of JMC2 and JMG3
4.2.2 Preparation of the mTrx2xHA/GFP/URA3 library
4.2.3 Selection of mutants with a high nitrogen efficiency (HNE) phenotype
4.2.4 Identification of genes influencing nitrogen efficiency 57
4.2.5 Deletion of NGR1 or GID7 confers nitrogen efficiency upon KP2 59

4.3 Conclusions 60
4.4 Discussion 60

Chapter 5 Deletion of NGR1 or GID7 from a haploid wine yeast increases glucose catabolism and also affects other aspects of fermentation

5.1 Introduction 66
5.2 Results 67
5.2.1 Deletion of HNE genes from C9 67
5.2.2 Determination of the glucose utilisation profiles of ngr1Δ and gid7Δ strains 67
5.2.3 Determination of ammonia utilisation by ngr1Δ and gid7Δ strains 68
5.2.4 Analysis of the biomass yield of ngr1Δ and gid7Δ strains 68
5.2.5 Analysis of the cellular morphology of ngr1Δ and gid7Δ strains during fermentation 70
5.2.6 Analysis of the major fermentation metabolites of ngr1Δ and gid7Δ strains 70
5.2.7 Construction of KP2 ngr1 gid7 72
5.2.8 Determination of the glucose utilisation of KP2 ngr1 gid7 72

5.3 Conclusions 73
5.4 Discussion 73
5.4.1 Fermentation profiles of ngr1Δ and gid7Δ strains 73
5.4.2 Combination of ngr1Δ and gid7Δ mutations in a single strain 74
5.4.3 Mechanisms of nitrogen efficiency of ngr1Δ and gid7Δ strains 75
5.4.4 Cellular growth of ngr1Δ and gid7Δ strains 75
5.4.5 The production of cellular metabolites by ngr1Δ and gid7Δ strains 77

Chapter 6 The effect of deletion of NGR1 and GID7 on the transcription of genes involved in Central Nitrogen Metabolism.

6.1 Introduction 81
6.2 Results 83
6.2.1 Validation and controls used for Quantitative Real Time PCR 83
6.2.2 Quantification of the transcription from genes involved in Central Nitrogen Metabolism: The effect of deletion of NGR1 or GID7 from KP2 83
6.2.3 NGR1 and GID7 expression from KP2 84
6.3 Conclusions 84
6.4 Discussion 85
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 7</td>
<td>General Discussion and Future Directions</td>
<td>91</td>
</tr>
<tr>
<td>Appendix I</td>
<td>Solutions (additional to those in text)</td>
<td>95</td>
</tr>
<tr>
<td>Appendix II</td>
<td>Papers arising from this study</td>
<td>98</td>
</tr>
<tr>
<td>Bibliography</td>
<td></td>
<td>99</td>
</tr>
</tbody>
</table>