THE INFLUENCE OF DOMESTICATION AND ENVIRONMENT ON THE VALUE OF LUPINS (LUPINUS SPP.) AS A FEED FOR RUMINANTS

by

Zhihong Miao
B.Sc. (The Inner Mongolian College of Agriculture and Animal Husbandry, P.R. China)
M.Sc. (The Inner Mongolian College of Agriculture and Animal Husbandry, P.R. China)

A thesis presented in fulfilment of the requirements for the degree of
Doctor of Philosophy at

The University of Adelaide
South Australia
Australia

February 1998
<table>
<thead>
<tr>
<th>TABLE OF CONTENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title Page</td>
</tr>
<tr>
<td>Table of Content</td>
</tr>
<tr>
<td>Summary</td>
</tr>
<tr>
<td>Declaration</td>
</tr>
<tr>
<td>Acknowledgments</td>
</tr>
<tr>
<td>List of Tables</td>
</tr>
<tr>
<td>List of Figures</td>
</tr>
<tr>
<td>Abbreviations</td>
</tr>
<tr>
<td>CHAPTER 1 GENERAL INTRODUCTION</td>
</tr>
<tr>
<td>CHAPTER 2 LITERATURE REVIEW</td>
</tr>
<tr>
<td>2.1 Introduction</td>
</tr>
<tr>
<td>2.2 Lupins in Australia</td>
</tr>
<tr>
<td>2.2.1 Lupin breeding in Australia</td>
</tr>
<tr>
<td>2.2.2 Production</td>
</tr>
<tr>
<td>2.2.3 Problems</td>
</tr>
<tr>
<td>2.3 Nutritive value of lupins</td>
</tr>
<tr>
<td>2.3.1 Chemical components</td>
</tr>
<tr>
<td>2.3.2 Chemical composition related to animal production</td>
</tr>
<tr>
<td>2.4 Influence of genetic change and environmental factors on plant characteristics that may influence the nutritive value of plants</td>
</tr>
<tr>
<td>2.4.1 Domestication</td>
</tr>
<tr>
<td>2.4.2 Environmental factors</td>
</tr>
</tbody>
</table>
2.4.3 Interaction between genetic and environmental factors 24

2.5 Improvement of the nutritive value of lupins 25
 2.5.1 Breeding and selection 25
 2.5.2 General management for livestock using lupins 26

2.6 Objectives of this research 29

CHAPTER 3 ANATOMICAL STRUCTURE AND NUTRITIVE VALUE OF LUPIN SEED COATS 31

3.1 Introduction 31

3.2 Materials and methods 34
 3.2.1 Materials 34
 3.2.2 Methods 37
 3.2.3 Statistics 38

3.3 Results 39
 3.3.1 Seed coat structure of L. angustifolius genotypes released in different years 39
 3.3.2 The structure and thickness of the seed coat of hardseeded, softseeded, smoothseeded and roughseeded lupins 40
 3.3.3 The effects of sowing time on seed coat structure and thickness 44
 3.3.4 The effects of growing year on seed coat structure and thickness 44
 3.3.5 The structure and thickness of the seed coat for seeds of different sizes 46
 3.3.6 The chemical composition and degradability of the seed coat of lupins 50

3.4 Discussion 54

CHAPTER 4 EFFECTS OF SOWING TIME ON YIELD AND YIELD COMPONENTS OF LUPINS 58

4.1 Introduction 58

4.2 Materials and methods 59
 4.2.1 Materials 59
4.2.2 Methods of determining yield and yield components 60
4.2.3 Statistics 61

4.3 Results 51
4.3.1 Climate 61
4.3.2 Effects of sowing time on yield and yield components of lupins 62
4.3.3 Genetic variation 64

4.4 Discussion 67

CHAPTER 5 THE EFFECTS OF SOWING TIME ON THE NUTRIENT COMPOSITION OF LUPIN SEED 71

5.1 Introduction 71

5.2 Materials and methods 72
5.2.1 Materials 72
5.2.2 Methods 72
5.2.3 Statistics 72

5.3 Results 72
5.3.1 Sowing time effects on seed coat percentage and chemical composition of seed coats and kernels 72
5.3.2 Genetic variation 74
5.3.3 Effect of sowing time on the mineral content of lupin seeds 76
5.3.4 Genetic variation in mineral content 79

5.4 Discussion 82

CHAPTER 6 VARIATION IN CHEMICAL COMPOSITION OF LUPINS GROWN IN DIFFERENT YEARS AND SITES 86

6.1 Introduction 86

6.2 Materials and methods 87
6.2.1 Materials 87
6.2.2 Methods 87
6.2.3 Statistics 88

6.3 Results 88
6.3.1 The variation in seed structure and chemical composition at the two locations 88
6.3.2 The mineral content of lupins grown at two locations 90
6.3.3 Variation in the seed structure and chemical composition in different growing years at same location (MRC) 93
6.3.4 The mineral content of seeds grown in different years at MRC 95
6.3.5 Genetic variation in the seed structure and chemical composition of seeds grown in 1992 at Yeedanna 96
6.3.6 The mineral content of lines 97

6.4 Discussion 100

CHAPTER 7 THE NUTRITIVE VALUE OF LUPINS FOR SHEEP 103

7.1 Introduction 103

7.2 Materials and methods 104
7.2.1 Part 1: The seed structure and chemical composition of lupins 104
7.2.2 Part 2: The degradability of DM and N of lupins in the rumen of sheep 105
7.2.3 Part 3: Digestibility and N-balance of lupins fed to sheep 106
7.2.4 Statistical analysis 109

7.3 Results 109
7.3.1 The seed structure and seed chemical components of lupins (seeds from WA) 109
7.3.2 The mineral contents of lupin species 111
7.3.3 The degradability of DM of lupin species 113
7.3.4 Parameters to describe the degradation pattern of the DM of lupin seed incubated in the rumen of sheep 115
7.3.5 The N degradability of lupin species 115
7.3.6 Parameters for describing N degradation patterns of lupins 117
7.3.7 The in nutrient intake and digestibility for different lupin varieties fed
as supplements at two levels 118
7.3.8 Differences in DMD between lupin species fed at two levels 120
7.3.9 The effect of supplement level on nutrient intake and digestibility of diets 120

7.4 Discussion 125
7.4.1 The seed structure and chemical composition of lupins 126
7.4.2 DM and N degradability of lupins 127
7.4.3 Effect of lupin supplement on intake and the efficiency of nutrient utilisation 129
7.4.4 The differences between lupin species as supplements 136
7.4.5 The efficiency of lupins as protein supplements 132

CHAPTER 8 GENERAL DISCUSSION 133
8.1 Effects of domestication on seed structure, yield and chemical composition 133
8.2 Effects of environmental factors on seed structure, yield and chemical composition 136
8.2.1 Seed size, seed coat proportion and seed coat structure 136
8.2.2 Grain yield 137
8.2.3 Chemical composition 137
8.3 Potential of wild lupins as animal feed 139

REFERENCES 141
SUMMARY

Lupins have significant potential in Australian agriculture due to their high protein concentration and their adaptation to a range of soil types. Lupins also can fix nitrogen and provide a disease ‘break’ in cereal rotations, which contribute to their value in cropping systems. The lupin seed (L. angustifolius) is widely used as a supplementary feed for ruminants during the summer-autumn period and are a useful protein supplement for pigs and poultry in Australia. However, L. angustifolius does not perform well on fine-textured and/or alkaline soils, which occur on over 9 million hectares in the cereal zones of SA and WA. To solve this problem, plant breeders have commenced a selection program to domesticate L. pilosus and L. atlanticus which are more suited to these types of soils. At this early stage of domestication of L. pilosus and L. atlanticus, L. angustifolius was used as a benchmark to determine changes in seed structure and chemical composition which may result from breeding and selection of these two lupins. On the other hand, L. pilosus and L. atlanticus could be like L. cosentinii which is essentially a wild type adapted to southern Australian soil conditions and a valuable feed for sheep in this area.

Domestication had significant influences on both the seed size and seed coat structure of lupins and no significant impact on seed yield. Recently released cultivars (1987 and 1988) of L. angustifolius had smaller seeds with a thicker seed coat than those released in 1971 (Chapter 3), but the yield of these cultivars was not significantly higher than that of the cultivars released in early years. L. atlanticus, L. cosentinii and L. pilosus had similar seed yields to L. angustifolius under similar growing conditions with a May sowing in 1995 at Turrettfield, South Australia (Chapter 4), but they had much bigger seeds than the domesticated lupin (L. angustifolius) (Chapter 3 and 7). Selection for softseeded seeds resulted in a reduction of seed coat thickness in L. angustifolius, but thick seed coats were positively related to seed size of wild lupins (Chapter 3). The change in seed size and seed coat structure could result in poor adaptation to the environment and sensitivity to diseases, and hence yield loss.
With large amounts of *L. angustifolius* being fed to animals in Australia, nutrient content is a crucial factor for its utilisation efficiency by animals. Domestication of *L. angustifolius* from 197! (Uniharvest) to 1988 (Ganguru, Warrah and Yorrel) had no significant influence on N, ADF, NDF and mineral content except for seed S content (Chapter 5). A reduction of seed S content of cultivars released in 1988 compared to that of the cultivar released in 1976 could affect animal production when it is integrated over the 1.13 million tonnes (estimated by Edwards in 1994) being used by the intensive livestock industry. On the other hand, there was considerable variation in nutrient content (N, fibre and minerals) between lupin species (Chapter 5 and 7). *L. cosentinii* had a higher N, seed coat fibre, Mn, P and S content than *L. angustifolius* which could contribute to it being an excellent feed for ruminants, and its higher Mn and P content can be also benefit plant growth and development, resulting in high seed yields.

Growing conditions also play an important role in the yield, yield components and chemical composition of lupins. June sowing at Turretfield in 1995 significantly decreased the numbers of seeds and pods per plant and reduced yield by 29% when compared to a May sowing. June sowing also decreased the kernel N content of lupins, but had no significant effects on ADF and NDF content. Seeds grown in 1994 were much smaller than those grown in 1993 (26.7 vs 46.6 g/100 seed), had low nitrogen production of per 100 seed weight (1.6 vs 2.1 g N/100 seed) and low levels of Fe, Mn, Cu, Zn, K, P and S (Chapter 6). Location had no significant influence on seed N content. However high levels of seed ADF, NDF and lower levels of seed Mn occurred in seeds grown at Yeedanne compared to seeds grown at Minnipa Research Centre (Chapter 6). The significant changes both in seed yield and nutrient content (eg N and mineral) under different growing conditions could cause a fluctuation in animal production, particularly when over 200,000 tonnes of *L. angustifolius* seeds and 200,000 to 350,000 tonnes of *L. cosentinii* seeds are grazed annually by sheep in WA.

The potential of wild lupins (*L. atlanticus* and *L. pilosus*) as supplementary feed for sheep was determined by *in sacco* and *in vivo* methods. The parameters included
degradability in the rumen, DMD in vivo and feeding value. The similar degradability in sacco, DMD and feeding value of wild lupins and domesticated lupins at 150 g/head/day levels of supplementation to sheep may indicate that the higher levels of anti-nutritional factors of wild lupins are unlikely to affect their utilisation efficiency at the levels of supplement commonly provided for ruminants. Thus selection of very low levels of alkaloids in varieties will probably be of low priority for ruminant production.

Overall, the changes that have occurred with L. angustifolias over the past 40 years of breeding and selection would appear to offer a useful model for how the domestication of L. pilosus and L. atlanticus may progress. If there are no significantly different agronomic problems, these species seem to offer the opportunity of initially providing feed for ruminants via either direct grazing or as a seed supplement over large areas of farmland in southern Australia. As breeding progresses towards reduced alkaloid concentration, the seed also has the potential for increasing monogastric production.