POTENTIAL FOR PEANUT PRODUCTION IN SOUTHERN AUSTRALIA

By

Wade Porter

A thesis submitted for the degree of

DOCTOR OF PHILOSOPHY

at the University of Adelaide

May 2000
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Declaration</td>
<td>i</td>
</tr>
<tr>
<td>Acknowledgment</td>
<td>II</td>
</tr>
<tr>
<td>Peanut Company of Australis Complex (Industry Sponsor)</td>
<td>III</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>IV</td>
</tr>
<tr>
<td>List of Figures</td>
<td>1</td>
</tr>
<tr>
<td>List of Tables</td>
<td>7</td>
</tr>
<tr>
<td>Abstract</td>
<td>15</td>
</tr>
<tr>
<td>Chapter 1: General Introduction</td>
<td>20</td>
</tr>
<tr>
<td>Chapter 2: Literature Review</td>
<td>23</td>
</tr>
<tr>
<td>2.0 Introduction</td>
<td>26</td>
</tr>
<tr>
<td>2.1 Origin and Botanical Types of Peanut</td>
<td>31</td>
</tr>
<tr>
<td>2.2 Influence of Environmental Factors on Peanut Plant Growth and Development</td>
<td>32</td>
</tr>
<tr>
<td>2.2.1 Introduction</td>
<td>32</td>
</tr>
<tr>
<td>2.2.2 Germination and Emergence</td>
<td>34</td>
</tr>
<tr>
<td>2.2.2.1 Thermal Time Concept</td>
<td>35</td>
</tr>
<tr>
<td>2.2.3 Flowering</td>
<td>35</td>
</tr>
<tr>
<td>2.2.4 Pegging</td>
<td>37</td>
</tr>
<tr>
<td>2.2.5 Pod Development/Fill</td>
<td>39</td>
</tr>
<tr>
<td>2.2.6 Interim Discussion</td>
<td>41</td>
</tr>
<tr>
<td>2.3 Identifying Cultural Practices and Genetic Characteristics that may optimise Peanut Adaptation to the southern Australian Environment</td>
<td>41</td>
</tr>
<tr>
<td>2.3.1 Plant Density</td>
<td>41</td>
</tr>
<tr>
<td>2.3.11 Gardner and Gardner Model</td>
<td>44</td>
</tr>
</tbody>
</table>
Chapter 3: Cultivar Response to Time of Sowing

3.0 Introduction

3.1 Materials and Methods
 3.1.1 Experimental Site
 3.1.2 Experimental Design
 3.1.3 Site Preparation
 3.1.4 Site Management
 3.1.5 Data Collection, Sampling and Calculations
 3.1.5.1 Net Assimilation Rate (NAR)

3.2 Results
 3.2.1 Climate Data
 3.2.2 Crop Phenology
 3.2.2.1 Sowing to Emergence
 3.2.2.2 Emergence to Flowering
 3.2.2.3 Flowering to Maturity
 3.2.3 Reproductive Responses
 3.2.3.1 Pegs per plant
 3.2.3.2 Pods per plant
 3.2.3.3 Pod Yield
 3.2.3.4 Harvest Index (HI)
3.2.3.5 Net Assimilation Rate (NAR)

3.3 Discussion

3.3.1 Phenological Events

3.3.1.1 Sowing to Emergence

3.3.1.2 Emergence to Flowering

3.3.1.3 Peg Initiation and Production

3.3.1.4 Pod Number

3.3.2 Harvest Index

3.3.3 Net Assimilation Rate (NAR)

3.3.4 Maturity and Yield

3.3.5 Cultivar Selection

Chapter 4: Growth and Yield Response of Peanut to Varying Plant Densities

4.0 Introduction

4.1 Materials and Methods

4.1.1 Experimental Site

4.1.2 Experimental Design

4.1.3 Site Preparation and Management

4.1.4 Data Collection, Sampling and Calculations

4.1.4.1 Crop and Pod Growth Rate

4.1.5 Statistical Analysis

4.2 Results

4.2.1 Climate Data

4.2.2 Crop Phenology

4.2.3 Final Yield Responses

4.2.3.1 Pegs per plant

4.2.3.2 Pods per plant

4.2.3.3 Nodes per plant

4.2.3.4 Pod Dry Weight per plant

4.2.3.5 Leaf Area Index (LAI)

4.2.3.6 Harvest index (HI)

4.2.4 Total Dry Matter Production
4.2.5 Total and Economic Pod yield
4.2.5.1 Total pod yield
4.2.5.2 Economic pod yield
4.2.6 Crop and Pod Growth Rate
4.2.7 Possibility of Spatial Arrangement Influencing Yield

4.3 Discussion
4.3.1 Final Yield Responses
4.3.2 Crop and Pod Growth Rate
4.3.3 The influence of Spatial Arrangement on Pod and Economic Yield
4.3.4 identifying the Optimal plant Density

Chapter 5: Influence of Spatial Arrangement on Peanut Crop Micro-Environment

5.0 Introduction
5.1 Materials and Methods
5.1.1 Experimental Site
5.1.2 Experimental Design
5.1.3 Site Preparation
5.1.4 Site Management
5.1.5 Data Collection, Sampling and Calculations
5.1.5.1 Daily Incident Photosynthetic Active Radiation (PAR) and Radiation Use Efficiency (RUE)
5.1.5.2 Gardner and Gardner Model
5.1.6 Statistical Analysis
5.2 Results
5.2.1 Temperature
5.2.2 Crop Phenology
5.2.3 Final Yield Responses
5.2.3.1 Pegs per plant and per m²
5.2.3.2 Pods per plant and per m²
5.2.3.3 Nodes per plant
5.2.3.4 Fod Dry Weight per plant
5.2.3.5 Total Pod Yield 143
5.2.3.6 Harvest Index (HI) 144
5.2.4 Accumulated Total Dry Matter 145
5.2.5 Canopy Development and Intercepted Photosynthetic
 Active Radiation 147
5.2.5.1 Leaf Area Index (LAI) 147
5.2.5.2 Intercepted Photosynthetic Active Radiation 147
5.2.5.3 Cumulative Intercepted Photosynthetic
 Active Radiation (I) 148
5.2.5.4 Canopy Extinction Coefficient (K) 148
5.2.6 Radiation Use Efficiency (RUE) 150
5.2.7 Model Derived Coefficients 153
5.3 Discussion 154

5.3.1 Influence of Spatial Arrangement and Canopy
 Development on Irradiance Interception 154
5.3.2 Radiation Use Efficiency 155
5.3.3 Total Dry Matter Accumulation 156
5.3.4 Model Coefficients 158
5.3.5 Optimal Plant Arrangement for Southern Australia 160

Chapter 6: Crop Model Validation and Scenario Analysis for Peanut Grown Under
Southern Australian Conditions 162

6.0 Introduction 762
6.1 Model Validation 164
 6.1.1 Observed versus Simulated Yield Responses 164
 6.1.2 Scenario Analysis 168
6.2 Results 169
 6.2.1 Observed versus Simulated Yield Responses 169
 6.2.1.1 Final Biomass and Pod Yield Responses 169
 6.2.1.2 Accumulated Biomass and Pod Yield 171
 6.2.2 Scenario Analysis 173
6.3 Discussion 177
Chapter 7: General Discussion

7.1 Cultivar Response to Environmental Conditions 181
7.2 Agronomic Practices Influencing Yield and Micro Environmental Utilisation 183
7.3 Crop Modelling 185
7.4 Why Grow Peanuts in southern Australia? 187
7.5 Conclusion 188

Chapter 8: References 189

Appendix 1 - Chapter 3 203
Appendix 2 - Chapter 4 207
Peanut (*Arachis hypogaea* L.) is grown over a wide area in Australia under various environmental conditions. The market demand for peanuts often exceeds local production and so importation is required. Currently most peanut production occurs in northern Australia, but there is potential for the development of new production areas, particularly in areas with irrigation. Numerous studies have been conducted on peanut production in northern Australia, but there is very little experimental information from southern Australia. The object of this thesis was to obtain information relevant to the development of peanut production in southern Australia. Initially peanut cultivars were identified with short maturity adaptation, and tolerance to extreme (both high and low) ambient temperatures. The pod yield potential of selected cultivars was examined with various plant density and spatial arrangements. Finally, a crop simulation model developed for cultivars grown in northern Australia was used to predict yields within the climatic environment of southern Australia.

A cultivar by time of sowing trial (with irrigation) was used to assess the physiological response of 24 cultivars to environmental conditions, at Roseworthy, 50 km north of Adelaide. Response to 3 sowing times (4th October, 7th November and 11th December) for parameters such as pod number and pod yield per plant was large, and varied considerably amongst the cultivars. For example, the Virginia cultivar VB97 and its sub-line VA61102 produced a large number of pods per plant (average 53 and 54 respectively) and thus a large yield (107 and 132 g plant$^{-1}$ respectively) across all three sowing times. This was in contrast to another Virginia cultivar, Mani Pintar, which produced an average of 24 pods per plant and a pod yield of 37 g plant$^{-1}$. This experiment enabled the identification of cultivars with the potential to adapt to the shorter season and high-day temperature and low-night temperature encountered in southern Australia.

Plant density experiments with a single Virginia peanut cultivar, VB97, grown under optimal conditions, were conducted at the Loxton Research Station, 200km
NE of Adelaide. Here the lowest plant density treatments produced the highest pod yield, a result, which is in contrast to yield responses previously reported for a number of different crops. However, where plant density arrangements were converted into spatial ratio values, it was shown that the squarer arrangements had the highest pod yields, and as the degree of rectangularity increased, the yields became lower. Pod yields of about 5t ha$^{-1}$ obtained at the lower plant density (ie. 50,000 plants ha$^{-1}$) were comparable to yields reported in northern Australia.

More detailed information was therefore sought on the influence of spatial arrangement on yield (using the Virginia peanut cultivar, VB97). In field experiments conducted at Roseworthy, where four different plant densities and spatial arrangements were compared, showed the more rectangular the arrangement the lower the yields. In this situation, the highest pod yields being achieved at the higher plant densities. Pod yields of about 7t ha$^{-1}$ were obtained at the highest plant density (518,000 plants ha$^{-1}$) and a spatial ratio of 1:1. Spatial arrangement influenced the solar radiation intercepted and subsequent utilisation of this light to produce dry matter and yield. Based on the results of this study, it is likely that a plant density of between 250,000 to 300,000 plants ha$^{-1}$ at a spatial ratio of 1:1 would be the optimal density for an adapted cultivar grown in this region.

The growth and yield data from the spatial arrangement experiment was used to validate the peanut simulation model developed under the Agricultural Production Systems Simulator (APSIM) framework. In particular, the spatial arrangement data was used to refine the existing population response routine in the model, thereby enabling better prediction of yields with different spatial and plant density arrangements. Subsequent scenario analysis, using a probability of exceedance framework, showed the importance of sowing longer maturing crops early in the season, as well as the yield penalties involved when sowing occurred too late. Whilst the early maturing cultivar, Chico, had a lower yield potential than the longer maturing cultivar (NC7), it produced a very consistent yield when sown on all five sowing dates. But the pod yield data obtained for NC7 was inconsistent, with large variation occurring between the early and late sowing times. The APSIM model inputs are mainly based on information from experiments conducted in the northern
part of Australia. The data obtained in this thesis provided valuable validation for the APSIM peanut model that, in turn, allowed a valid assessment of the commercial potential for peanuts grown in southern Australia.

The results from the thesis showed the importance of spatial arrangement and plant density when trying to optimise yield potential in the southern Australian environment. In addition, it was shown that cultivar maturity is a crucial factor in the successful adaptation of peanut to this environment, due to the shorter growing season available. In southern Australia, there is a high yield potential with certain cultivars, when grown with irrigation, at relatively high plant density in more isometric planting arrangements. Thus the opportunity exists to produce high yielding peanut crops on a commercial scale in southern Australia.