FORMATION OF MOUSY OFF-FLAVOUR
IN WINE BY LACTIC ACID BACTERIA

by

PETER JAMES COSTELLO, Bsc, Msc

A thesis submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy

Department of Horticulture, Viticulture and Oenology
The University of Adelaide

The Australian Wine Research Institute

November 1998
THESIS SUMMARY

Formation of mousy off-flavour in wine by lactic acid bacteria.

Mousy off-flavour is an infrequent yet serious spoilage phenomenon in wine and other fermented beverages, which is commonly associated with the growth and metabolism of certain lactic acid bacteria (LAB) and the spoilage yeast Dekkera / Brettanomyces. Two compounds known to cause the characteristic and offensive mousy-like off-flavours are the N-heterocyclic volatile bases 2-acetyltetrahydropyridine (ACTPY) and 2-ethyltetrahydropyridine (ETPY). Since there is no satisfactory method for the removal of mousy off-flavour, this spoilage can invoke substantial economic loss to the wine producer. The aims of this thesis were to investigate the following aspects of the formation of mousy off-flavour by wine LAB:

1. Development of a sensitive and reliable procedure for the quantification of N-heterocyclic compounds causing mousy off-flavour in wine;
2. Survey the abilities of wine LAB and other wine bacteria to produce mousy off-flavour and the causative mousy compounds;
3. Investigate the substrates and metabolism of mousy compound formation by LAB.

Difficulties were encountered in the analysis of ACTPY due to its chemical and chromatographic instability, suggesting why previous research efforts have failed to quantify mousy compounds. Of several procedures assessed for the reliable extraction and quantification of low concentrations (µg/L level) of mousy compounds, a continuous liquid - liquid extraction (CLLE) method was developed and used in association with gas chromatography - mass spectrometry (GC-MS). The CLLE / GC-MS method was validated by demonstrating efficient and artefact-free recovery of mousy compounds from spiked Riesling wine. Using this procedure, three structurally related compounds, ACTPY, ETPY and a newly discovered and highly potent N-heterocycle, 2-acetyl-1-pyrroline (ACPY), were found to be unique components of mousy wines. Of the three mousy compounds, ACTPY was the most common and occurred at the highest concentration (106 µg/L), whereas ACPY and ETPY occurred less frequently and at maximum concentrations of 7.8 and 4.5 µg/L, respectively. The mousy aroma properties of ACPY were confirmed by GC-sniff analysis.

Thirty five LAB were screened for the ability to produce mousy off-flavour by a qualitative alkaline test strip procedure. In addition to Lactobacillus brevis and L. cellobiosus, which were known to be associated with mousy off-flavour, a diversity of LAB species, particularly heterofermentative Lactobacillus spp. and Oenococcus oeni, exhibited this ability in a range of ethanolic and wine-based media. The homofermentative Pedioococcus spp., however, were generally lacking in this ability.

iii
Selected wine bacteria were tested for the production of mousy compounds in nutritionally complex (Carr-MEI) and chemically defined (S1) media. In Carr-MEI medium, strains of Lactobacillus spp., O. oeni, Pediococcus spp. and Gluconobacter oxydans each produced one or more of ACTPY, ACY and ETPY generally in the concentration range of 0.1 to 30 µg/L. Exceptionally high concentrations of ACTPY (259 µg/L) were produced by the type strain L. hilgardii DSM 20176. In contrast, synthetic (S1) medium supported only limited production of mousy compounds, despite similar growth characteristics to these with Carr-MEI medium.

The metabolism of mousy compounds by LAB was studied utilising a high cell density incubation (HCDI) technique with a basal assay (BA) medium, the main components of which were D-fructose (50 g/L), ethanol (5% v/v), L-lysine (5 g/L), L-ornithine (5 g/L), metal salts and organic acids. Essential substrates of ACY and ACTPY formation by L. hilgardii DSM 20176 were the availability of a fermentable carbohydrate (e.g. D-fructose), ethanol and iron (ferrous sulfate). In addition, L-ornithine stimulated the formation of ACTPY, whereas L-lysine stimulated the formation of ACTPY and repressed ACY. The formation of ETPY, however, was little influenced by the availability of carbohydrate, L-ornithine or L-lysine. Other nutritional factors found to affect the formation of ACY and ACTPY by L. hilgardii DSM 20176 in BA medium included the presence of malic acid and acetaldehyde, and the source of carbohydrate and amino acid. Replacement of ethanol with α-propanol led to the formation of propionyl-tetrahydropryrazine, although this reaction did not occur with iso-propanol. The incorporation of deuterated ethanol (d6-ethanol) into the acetyl side chain of ACTPY and ACY, and of deuterated acetaldehyde (d4-acetaldehyde) into the acetyl side chain of ACTPY, confirmed that ethanol and acetaldehyde were precursors of these mousy compounds. These results also suggested that the attachment of the carbonyl side chain involved prior reduction of a primary alcohol to the corresponding aldehyde.

A pathway for the formation of ACY and ACTPY by heterofermentative LAB is proposed. In this scheme, the co-metabolism of exogenous carbohydrate and ethanol force the accumulation of C-2 intermediates of the heterolactic fermentation of sugars (e.g. acetyl-coenzyme A). These C-2 compounds may then concurrently acetylate N-heterocyclic intermediates of L-ornithine and L-lysine metabolism, thus leading to the production of ACY and ACTPY.
TABLE OF CONTENTS

Declaration ii
Thesis Summary iii
Acknowledgments v
Publications vi
Table of contents vii

1. INTRODUCTION AND AIMS

2. LITERATURE REVIEW

2.1 Wine spoilage caused by bacteria 4
2.1.1 Wine spoilage by acetic acid bacteria 5
2.1.2 Wine spoilage by lactic acid bacteria 9
(i) Acidification 10
(ii) Mannitol tart 12
(iii) Ropiness and slime 13
(iv) Diacetyl production 13
(v) Acrolein formation and bitterness 14
(vi) Decomposition of tartaric acid 14
(vii) The geranium off-odour 15
2.2 Mousy off-flavour wine spoilage 16
(i) Early studies 17
(ii) Recent studies on the nature and origin of mousy off-flavour 22
2.3 Occurrence of 2-acetylthetrahydropyridine and related compounds in other foods 29

3. SURVEY OF WINE LACTIC ACID BACTERIA FOR PRODUCTION OF MOUSY OFF-FLAVOUR

3.1 INTRODUCTION 34
3.2 MATERIALS AND METHODS 34
3.2.1 Bacteria strains and method of preculture 34
3.2.2 Test media used for screening lactic acid bacteria for the production of mousy off-flavour 36
(i) Grape juice medium 36
(ii) Modified de Man, Rogosa and Sharpe (MRS-FME) medium 37
(iii) Modified Carr (Carr-ME) medium 38
(iv) Wine media 39
3.2.3 Media sterilisation 43
3.2.4 Incubation and incubation of off-flavour- assessment media
3.2.5 Qualitative assessment of musty off-flavour by alkaline test strip
3.2.6 Chemical and microbiological analyses

3.3 RESULTS
3.3.1 Production of musty off-flavour by lactic acid bacteria in grape juice medium
3.3.2 Production of musty off-flavour by lactic acid bacteria in MRS-FMEt and Carr-MEEt media
3.3.3 Production of musty off-flavour by lactic acid bacteria in wine media

3.4 DISCUSSION
3.5 SUMMARY

4. ANALYSIS AND QUANTIFICATION OF MUSTY OFF-FLAVOUR COMPOUNDS
4.1 INTRODUCTION
4.2 MATERIALS AND METHODS
4.2.1 Synthesis of musty off-flavour compounds
4.2.1.1 2-Acetylthiabutyropyridine
 Synthesis and initial purification
 Further purification of 2-acetylthiabutyropyridine
 (i) Column fractionation
 (ii) Ether extraction
 (iii) Preparation of a bisulfite salt of 2-acetylthiabutyropyridine
 (iv) Second vacuum distillation
4.2.1.2 2-Ethylthiabutyropyridine
4.2.1.3 2-Acetylpyrroline
4.2.2 Development of a quantitative procedure for the extraction of musty compounds
4.2.2.1 Assessment of extraction methods
 (i) Simultaneous steam distillation / extraction
 (ii) Ion exchange chromatography
4.2.2.2 Continuous liquid - liquid extraction procedures
 (i) Continuous liquid-liquid extraction with subsequent simultaneous steam distillation / extraction
 (ii) Optimized continuous liquid-liquid extraction technique
4.2.3 Instrumentation

4.2.3.1 Gas chromatography with flame ionization detection (GC-FID)

4.2.3.2 Gas chromatography-mass spectrometry (GC-MS)

4.2.4 Analysis of mousy off-flavour compounds

4.2.4.1 Quantification by gas chromatography

4.2.4.2 Identification by gas chromatography-mass spectrometry

4.2.4.3 Quantification by gas chromatography-mass spectrometry

4.2.4.4 Fast atom bombardment mass spectrometry

4.2.4.5 Gas chromatography and coupled sniff assessment

4.3 RESULTS

4.3.1 Analysis and properties of mousy off-flavour compounds

4.3.1.1 Analysis, purification and stability of 2-acetylthiophene

(i) Analysis by gas chromatography

(ii) Purification and stability

4.3.1.2 Analysis of mousy compounds by gas chromatography - mass spectrometry

(i) Identification

(ii) Quantification

4.3.1.3 Fast atom bombardment mass spectrometry of the bisulfite adduct of 2-acetylthiophene

4.3.1.4 Gas chromatography - sniff assessment of 2-acylpyrrolide

4.3.2 Development of a procedure for the quantitative extraction of mousy compounds

4.3.2.1 Ion exchange chromatography and simultaneous steam distillation / extraction

4.3.2.2 Continuous liquid-liquid extraction with subsequent simultaneous steam distillation and extraction

4.3.2.3 Optimized continuous liquid-liquid extraction method

4.3.3 Quantitative analysis of mousy off-flavour compounds in mousy wines

4.4 DISCUSSION

4.5 SUMMARY

5. PRODUCTION OF MOUSY OFF-FLAVOUR COMPOUNDS

BY WINE BACTERIA

5.1 INTRODUCTION

5.2 MATERIALS AND METHODS

5.2.1 Species and strains of wine bacteria

5.2.2 Media for testing the production of mousy compounds
5.2.3 Preculture of bacteria 108
5.2.4 Inoculation and incubation of test media 109
5.2.5 Microbiological analyses and sensory assessment of mousy off-flavour 109
5.2.6 Quantitative analysis of mousy compounds 109

5.3 RESULTS 110
5.3.1 Production of mousy off-flavour by wine bacteria in chemically undefined (Carr-ME) and defined (S1) media 110
5.3.1.1 Chemically undefined (Carr-ME) medium 110
5.3.1.2 Chemically defined (S1) medium 110
5.3.2 Production of mousy compounds by wine bacteria in chemically undefined (Carr-ME) and chemically defined (S1) media 118
5.3.2.1 Chemically undefined (Carr-ME) medium 118
5.3.2.2 Chemically defined (S1) medium 120

5.4 DISCUSSION 123
5.5 SUMMARY 126

6. HIGH CELL DENSITY INCUBATION STUDIES ON THE FORMATION OF MOUSY N-HETEROCYCLES 127
6.1 INTRODUCTION 127
6.2 MATERIALS AND METHODS 128
6.2.1 Bacteria strains 128
6.2.2 Media for lactic acid bacteria preculture 129
6.2.3 Preculture of lactic acid bacteria 129
6.2.4 Assay media for high cell density incubation studies 130
6.2.5 High cell density incubation of lactic acid bacteria for rapid determination of mousy off-flavour induction 133
6.2.6 Screening of lactic acid bacteria for the formation of mousy off-flavour N-heterocycles 135
6.2.7 Substrates, precursors and other factors of mousy compound formation 135
6.2.8 Determination of cell growth and cell density 135
6.2.9 Analysis of mousy off-flavour and mousy N-heterocycles 136
6.2.10 Other chemical analyses - D-fructose and acetic acid 136

6.3 RESULTS 138
6.3.1 Development of an assay medium for mousy off-flavour formation using high cell density incubation 138
6.3.2 Survey of lactic acid bacteria for the production of mousy compounds using high cell density incubation 140
6.3.3 Factors affecting the production of mousy compounds by high cell density incubation of Lactobacillus hilgardii DSM 20176 142
6.3.3.1 Reproducibility of N-heterocycle production by high cell density incubation 142
6.3.3.2 Concentration of D-fructose 142
6.3.3.3 Concentrations of L-ornithine and L-lysine 144
6.3.3.4 Other factors 144
 (i) Ethanol and acetaldehyde 144
 (ii) Metal ions 147
 (iii) Citric and L-malic acids 147
 (iv) Other nitrogen sources 150
 (v) Other carbohydrate sources 150
 (vi) Incubation time and anaerobiosis 150
 (vi) Production of mousy compounds in phosphate-KCl buffer 154
6.3.4 Substrates and precursors of mousy N-heterocycles produced by Lactobacillus hilgardii DSM 210176 154
6.3.4.1 Non-labelled substrates 154
 (i) Alcohols 154
 (ii) Aldehydes 161
6.3.4.2 Labelled substrates 161
 (i) d-glucose 161
 (ii) d-glucose 168
 (iii) 2,4-D-Glucose 168

6. DISCUSSION
 Screening of lactic acid bacteria for the production of mousy N-heterocycles 170
 Origin of the side chain in acylated mousy N-heterocycles 171
 (i) Alcohol and acetaldehyde 171
 (ii) Carbohydrate source and the heterolactic fermentation 173
 (iii) Nitrogen source; L-ornithine and L-lysine 176
 (iv) Proposed pathway for the formation of acetylated mousy N-heterocycles by lactic acid bacteria 177
 (v) Other factors of mousy compound formation 180

6.5 Summary 182

7. CONCLUSIONS 184

8. APPENDIXES 186

9. REFERENCES 200