GENETIC TRANSFORMATION OF WHEAT

(Triticum aestivum L.)

ZAINUDDIN

A thesis submitted in fulfillment of the requirement
for the degree of Doctor of Philosophy

Department of Plant Science
Faculty of Agricultural and Natural Resource Sciences
The University of Adelaide, Waite Campus
Glen Osmond 5064
South Australia
December 2000
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>vii</td>
</tr>
<tr>
<td>Statement of Authorship</td>
<td>x</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>xi</td>
</tr>
<tr>
<td>Abbreviations</td>
<td>xiii</td>
</tr>
<tr>
<td>CHAPTER ONE: GENERAL INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Background</td>
<td>2</td>
</tr>
<tr>
<td>1.2 Steps in genetic engineering</td>
<td>3</td>
</tr>
<tr>
<td>1.3 Tissue culture of wheat</td>
<td>5</td>
</tr>
<tr>
<td>1.3.1 Explant sources</td>
<td>6</td>
</tr>
<tr>
<td>1.3.2 Plant growth regulators</td>
<td>7</td>
</tr>
<tr>
<td>1.3.3 Plant genotypes</td>
<td>8</td>
</tr>
<tr>
<td>1.4 Genetic transformation of wheat</td>
<td>9</td>
</tr>
<tr>
<td>1.4.1 Methods of wheat transformation</td>
<td>10</td>
</tr>
<tr>
<td>1.4.1.1 Agrobacterium tumefaciens</td>
<td>10</td>
</tr>
<tr>
<td>1.4.1.2 Direct gene transfer into protoplasts</td>
<td>12</td>
</tr>
<tr>
<td>1.4.1.3 Microprojectile bombardment</td>
<td>13</td>
</tr>
<tr>
<td>Bombardment device</td>
<td>14</td>
</tr>
<tr>
<td>Bombardment parameters</td>
<td>16</td>
</tr>
<tr>
<td>DNA coating methods</td>
<td>17</td>
</tr>
<tr>
<td>1.4.2 Promoters and markers used in wheat transformation</td>
<td>18</td>
</tr>
<tr>
<td>1.4.2.1 Promoters</td>
<td>18</td>
</tr>
</tbody>
</table>
1.4.2.2 Markers
1.5 Transgene inheritance in transgenic wheat
1.6 Somaclonal variation
1.7 Aims of the project

CHAPTER TWO: TISSUE CULTURE OF WHEAT
2.1 Introduction
2.2 Materials and Methods
 2.2.1 Plant material and growth conditions
 2.2.2 Tissue culture media
 2.2.3 Isolation and culture of explant tissue
 2.2.4 Induction of somatic embryos and plant regeneration
2.3 Results
 2.3.1 Production of somatic embryos
 2.3.2 Factors affecting tissue culture response
 2.3.3 Organogenesis and plant regeneration
 2.3.4 Appearance of regenerated plants
2.4 Discussion

CHAPTER THREE: TRANSFORMATION OF WHEAT
3.1 Introduction
3.2 Materials and Methods
 3.2.1 Plant material
 3.2.2 Isolation and culture of explant tissue
 3.2.3 Gene constructs
3.2.4 Preparation of gold particles
3.2.5 DNA coating methods
3.2.6 Bombardment conditions
3.2.7 Somatic embryo induction and selection of transformants
3.2.8 Histochemical GUS staining
3.2.9 Phosphinothricin acetyl transferase (PAT) assay
3.2.10 Herbicide leaf-dip test
3.2.11 Genomic DNA isolation
 3.2.11.1 Small scale isolation of genomic DNA
 3.2.11.2 Digestion of genomic DNA
 3.2.11.3 Electrophoresis of DNA
3.2.12 Southern blot hybridization
 3.2.12.1 Membrane preparation
 3.2.12.2 Preparation of radiolabelled DNA probes
 Probe DNA fragment preparation
 Radiolabelling of DNA probes
 3.2.12.3 Hybridization procedures
 3.2.12.4 Reprobing the membrane
3.2.13 Statistical analysis

3.3 Results
3.3.1 Optimisation of bombardment conditions
3.3.2 Production of somatic embryos
3.3.3 Plant regeneration and selection of transformants
3.3.4 PAT assay
3.3.5 GUS staining
3.3.6 Response to the herbicide leaf-dip test 67
3.3.7 Southern blot analysis 68
3.3.8 Appearance of the primary transformants 71

3.4 Discussion 73

CHAPTER FOUR: TRANSGENE INHERITANCE AND EXPRESSION IN PROGENY OF TRANSFORMED WHEAT 82

4.1 Introduction 83

4.2 Materials and Methods 84
 4.2.1 Plant growth conditions and maintenance 84
 4.2.2 Histochemical GUS staining 84
 4.2.3 PAT assay and herbicide leaf-dip test 84
 4.2.4 Southern blot hybridization 85
 4.2.5 Statistical analysis 86

4.3 Results 87
 4.3.1 Transgene inheritance in T1 plants 87
 4.3.1.1 PAT assay 87
 4.3.1.2 Response to the herbicide leaf-dip test 87
 4.3.1.3 GUS staining 88
 4.3.1.4 Southern blot analysis 88
 4.3.1.5 Appearance of T1 plants 90
 4.3.2 Transgene inheritance in T2 plants 91
 4.3.2.1 PAT assay 91
 4.3.2.2 Response to the herbicide leaf-dip test 92
 4.3.2.3 GUS staining 92
4.3.2.4 Southern blot analysis 93
4.3.2.5 Appearance of T2 plants 95
4.3.3 Transgene inheritance in T3 plants 95
 4.3.3.1 PAT assay 96
 4.3.3.2 Response to the herbicide leaf-dip test 96
 4.3.3.3 GUS staining 96
 4.3.3.4 Southern blot analysis 97
 4.3.3.5 Appearance of T3 plants 98
4.4 Discussion 99

CHAPTER FIVE: SUMMARY AND FUTURE DIRECTIONS 110
5.1 Summary of experiments described here 111
5.2 Future directions 113
 5.2.1 Donor material health and transformation efficiency 114
 5.2.2 Transgene silencing 114
 5.2.3 Tissue culture effects 116
 5.2.4 Analysis of transgene integration patterns 116
 5.2.5 Field trials and evaluation of transgenic plant products 118
 5.2.6 Production of marker-free transgenic plants 119
 5.2.7 Insertion of useful genes 121

APPENDICES 122
REFERENCES 127
Abstract

Wheat (*Triticum aestivum* L.) was one of the earliest crops to be domesticated and is now becoming the world's most important food crop. The demand for this commodity has increased in parallel with the growth of world population. Thus, it is becoming increasingly important to secure the supply of wheat, and it is therefore crucial to continuously enhance worldwide wheat production. So far, the main strategy for improving wheat production has been through conventional breeding methods. However, it is becoming apparent that to maintain production targets it will be necessary to complement conventional breeding methods with genetic engineering technology.

The successful application of genetic engineering in wheat is dependent on the availability of suitable tissue culture and transformation methods, and the development of these technologies using elite Australian wheat varieties was the primary objective of experiments described here. The specific goals of this project were:

- to screen Australian wheat genotypes for *in vitro* culture responsiveness
- to transform the responsive wheat genotypes with selectable marker and reporter genes, and
- to study the inheritance and expression of transgenes in successive wheat generations.

In testing the responsiveness of wheat genotypes in culture, four Australian wheat genotypes (*cvs.* Hartog, Frame, Krichauff and Janz) were used. Immature scutella were cultured onto Murashige and Skoog (MS) basal medium containing different combinations and concentrations of 2,4-dichlorophenoxyacetic acid and
benzylaminopurine. Three genotypes (cvs. Hartog, Frame and Krichauft) grew well in culture and one genotype (cv. Janz) did not. Two genotypes, namely cvs. Hartog and Krichauft, responded well in a medium containing 2 mg/l 2,4-dichlorophenoxyacetic acid, while another genotype (cv. Frame) needed the same concentration of 2,4-dichlorophenoxyacetic acid with the addition of 0.1 mg/l benzylaminopurine. With these media, almost all immature scutella produced embryogenic callus, which was subsequently regenerated into mature, fertile plants.

Regeneration systems developed for the three responsive genotypes were coupled with a microprojectile bombardment-mediated transformation method. By bombarding immature scutella of cvs. Hartog, Frame and Krichauft, or freshly isolated immature embryos of cv. Frame with a construct carrying the bar gene, with or without another construct carrying the GUS gene, four transgenic plants (cv. Frame) were produced. Three of the four transgenic plants were shown to carry two or more copies of the bar gene, and another plant carried one copy of the bar gene and three or four copies of the GUS gene. The introduced transgenes were expressed in the transgenic plants; bar gene expression was indicated by the presence of PAT activity and herbicide tolerance, whilst the expression of the GUS gene was followed by the presence of GUS activity in histochemical assays that led to blue staining in both vegetative and reproductive organs.

The bar and GUS transgenes integrated into the genome of transgenic wheat were transmitted to successive generations. The transmission of the transgenes showed a Mendelian pattern of inheritance, and a homozygous genotype was achieved at T2 progeny. This suggests that the transgenic wheat
analysed here had a heterozygous genotype of integrated bar and GUS transgenes. It was observed that the expression of the GUS gene was stable over several generations, but that the expression of the bar gene was inactivated in some progeny, as indicated by the loss of PAT activity and herbicide tolerance.

The phenotypic characteristics of the primary transformants were, in most cases, slightly inferior to non-transformed, control plants, but showed some improvement in subsequent generations.

As a result of the work, transformation of elite Australian wheat varieties should be achievable on a routine basis, albeit at relatively low transformation frequency. This opens the way for the insertion of potentially useful genes into wheat, with the longer term aim of enhancing productivity and/or quality characteristics.