THE SENSITIVITY OF YEASTS TO KILLER YEAST TOXINS:
WITH FOCUS ON THE
KILLER YEAST PICHIA MEMBRANIFACIENS

by

NICHOLAS ANDREW YAP

Thesis submitted for the degree
of
DOCTOR OF PHILOSOPHY

July 2006

The Department of Plant Science
Faculty of Agricultural and Natural Resource Sciences
THE UNIVERSITY OF ADELAIDE
ABSTRACT

The yeast killer phenotype is defined by a yeast's ability to secrete a toxin that is lethal to other yeast strains, but to which they are themselves immune. An investigation was undertaken to identify a yeast with broad spectrum killer activity towards indigenous non-\textit{Saccharomyces} yeasts of the wine ferment. The growth of these indigenous yeasts during wine fermentation may result in inappropriate sensory properties to the wine.

The sensitivity of tester strains characteristic of the wine ferment microflora to 14 killer yeasts were assayed at pH 4.5, revealing a total of 147 killer-sensitive reactions. At a pH comparable to a wine ferment (pH 3.5), only 28\% of these 147 killer-sensitive reactions were observed. Intraspecific differences in killer susceptibility were identified for strains of \textit{Pichia anomala}, \textit{Kluyveromyces lactis} (two strains) and \textit{Pichia membranifaciens}.

To gain further insight into the killer phenotype of \textit{Pichia membranifaciens}, the killer activity of ten \textit{Pichia membranifaciens} strains was assayed towards 15 tester strains. Intron primer PCR confirmed the ten \textit{Pichia membranifaciens} strains to be related, but different to, the type strain of \textit{Pichia membranifaciens}. Based on their killer activity each \textit{Pichia membranifaciens} strain was allocated one of four possible killer types.

The killer phenotype of the two strains of the Class C killer type, \textit{Pichia membranifaciens} CBS 638 and the type strain CBS 107, was found to be encoded by nuclear genes. In contrast, the killer strains of the Class B and D killer types harboured an extrachromosomal element of the same molecular weight. For \textit{Pichia membranifaciens} CBS 7374 of Class D this extrachromosomal element (pPM01) was determined to be a dsRNA in nature, however, its not known whether pPM01 is associated with the killer phenotype.

Of the ten \textit{Pichia membranifaciens} strains investigated, strain CBS 7374 displayed the broadest killing range. The \textit{Pichia membranifaciens} CBS 7374 killer toxin was found to be a heat liable protein with an acidic pI. Using a purification protocol developed in this study, a protein of 20.5 kDa was identified as a candidate for the \textit{Pichia membranifaciens} CBS 7374 killer toxin.

Investigating the sensitivity of tester yeasts to killer yeasts further revealed a petite of \textit{Saccharomyces cerevisiae} AWRI 1360 (p*K5), strain AWRI 1361 (p*K8), to be resistant to ten killer yeasts to which the parent was sensitive. This included resistance to the killer yeasts \textit{Saccharomyces cerevisiae} K2, \textit{Kluyveromyces lactis} var. \textit{lactis} and \textit{Willemiopsis ustus} var. \textit{murukii}, where the primary receptor and mode of action differs for each killer.
protein. This is the first known report of a mutant displaying resistance to more than one killer type. Characterisation of this petie revealed that its resistance to these killer toxins is attributed to a partially dominant, nuclear mutation. This mutation was found to be independent of oxidative-phosphorylation and yet, conferred resistance only in the presence of non-functional mitochondria. This study also revealed that for some strains, petites of sensitive parents showed a reduction in sensitivity to killer yeasts, and that this reduction in sensitivity was independent of oxidative-phosphorylation.
TABLE OF CONTENTS

Abstract .. i
Declaration .. ii
Acknowledgments .. iv
Publications .. v

CHAPTER 1
INTRODUCTION AND PROJECT AIMS .. 1

CHAPTER 2
LITERATURE REVIEW ... 3
 2.1 INTRODUCTION .. 3
 2.2 YEASTS AND FUNGI WITH dsRNA ENCODED KILLER TOXINS 3
 2.2.1 The killer yeast Saccharomyces cerevisiae .. 3
 2.2.1.1 The L-A and M dsRNAs ... 3
 2.2.1.2 The killer toxins of Saccharomyces cerevisiae 4
 2.2.1.3 The self-immunity factor of the K1 killer toxin 5
 2.2.2 The killer fungus Ustilago maydis ... 6
 2.2.3 The killer yeasts Zygosaccharomyces bailii and
 Hanseniaspora uvarum ... 6
 2.3 LINEAR DNA PLASMID ENCODED KILLER YEASTS 7
 2.3.1 The killer yeast Kluyveromyces lactis ... 7
 2.3.1.1 The linear DNA plasmids of Kluyveromyces lactis 7
 2.3.1.2 The killer toxin of Kluyveromyces lactis 8
 2.3.2 The killer yeast Pichia acaciae .. 9
 2.4 KILLER YEASTS WITH NUCLEAR ENCODED TOXINS 9
 2.4.1 The killer yeast Williopsis saturnus HM-1 .. 9
 2.4.2 The killer yeast Pichia farinosa .. 10
 2.5 THE ECOLOGY OF KILLER YEASTS .. 10
 2.6 CHARACTERISATION OF MUTANTS RESISTANT TO KILLER TOXINS 11
 2.6.1 Resistant mutants with cell wall defects .. 12
 2.6.2 Resistant mutants and functional mitochondria 12
 2.6.3 Cell walls defects of petite mutants ... 13
 2.6.4 Mitochondrial driven apoptosis ... 13
 2.7 APPLICATIONS FOR KILLER YEASTS ... 14
 2.8 INDIGENOUS YEASTS OF THE GRAPE MUST FERMENT 16
 2.9 THE FILM FORMING YEAST PICHIA MEMBRANIFACIENS 17
 2.10 KILLER STRAINS OF PICHIA MEMBRANIFACIENS IN FOODS 17
CHAPTER 3
THE INCIDENCE OF KILLER ACTIVITY OF NON-SACCHAROMYCES
YEASTS TOWARDS INDIGENOUS YEAST AND BACTERIA SPECIES OF
THE GRAPE MUST ...19
3.1 INTRODUCTION ..19
3.2 EXPERIMENTAL ..19
 3.2.1 Yeast and bacterial strains ..19
 3.2.2 Agar killer assay for testing yeast strains20
 3.2.3 Agar killer assay for testing bacteria strains20
3.3 RESULTS ...21
 3.3.1 Killer yeast activity ...21
 3.3.2 Yeast strain susceptibility22
 3.3.3 Intraspecific differences in killer activity22
 3.3.4 Intraspecific differences in killer susceptibility23
 3.3.5 Reduction of killer yeast activity in an acidic environment ..24
 3.3.6 Assaying bacteria susceptibility to killer yeasts24
3.4 DISCUSSION ...25

CHAPTER 4
MOLECULAR TYPING OF PICHIA MEMBRANIFACIENS
STRAINS AND THEIR KILLER ACTIVITIES31
4.1 INTRODUCTION ..31
4.2 EXPERIMENTAL ..31
 4.2.1 Yeast strains and media ..31
 4.2.2 Total nucleic acid preparations32
 4.2.3 Mini-preparations of nucleic acids32
 4.2.4 Nucleic acids gel electrophoresis33
 4.2.5 Treatment of total nucleic acids with DNase I or
 Ribonuclease A ...33
 4.2.6 Cycloheximide treatment of Pichia membranifaciens CBS
 7374 ...33
 4.2.7 Ultra-violet light treatment of Pichia membranifaciens CBS
 7374 ...34
 4.2.8 PCR-intron fingerprint technique34
4.3 RESULTS ...34
 4.3.1 Differentiating strains of the Pichia membranifaciens species..34
 4.3.2 Partial characterisation of killer activities35
4.3.3 Detection of extrachromosomal elements in \textit{Pichia membranifaciens} .. 36
4.3.4 Characterisation of the extrachromosomal element of \textit{Pichia membranifaciens} CBS 7374 .. 36
4.3.5 Curing \textit{Pichia membranifaciens} CBS 7374 of pPM01 37
4.4 DISCUSSION ... 37

CHAPTER 5
CHARACTERISATION OF THE \textit{PICHIA MEMBRANIFACIENS} CBS 7374
KILLER TOXIN .. 43
5.1 INTRODUCTION ... 43
5.2 EXPERIMENTAL .. 43
 5.2.1 Yeast strains and media ... 43
 5.2.2 The agar plate well diffusion killer assay 43
 5.2.3 Killer activity from different media ... 44
 5.2.4 Optimum pH for killer toxin production and activity 44
 5.2.5 Assaying killer activity at different stages of cell growth 44
 5.2.6 Pronase E digestion .. 45
 5.2.7 Temperature sensitivity ... 45
 5.2.8 Optimal storage conditions ... 45
 5.2.9 HPLC reverse phase chromatography 45
 5.2.10 Ultrafiltration of the toxin supernatant 46
 5.2.11 HPLC anion exchange chromatography 46
 5.2.12 SDS polyacrylamide gel electrophoresis 47
5.3 RESULTS ... 48
 5.3.1 Optimising toxin production in liquid media culture of \textit{Pichia membranifaciens} CBS 7374 .. 48
 5.3.2 Determining the optimum pH ... 49
 5.3.3 Effect of stage of cell growth on killer activity 49
 5.3.4 Protease digestion and temperature sensitivity 49
 5.3.5 Optimal storage conditions ... 50
 5.3.6 HPLC reverse phase chromatography 50
 5.3.7 HPLC anion exchange chromatography 51
 5.3.8 SDS-PAGE of the active fractions from AEC 52
5.4 DISCUSSION .. 52

CHAPTER 6
THE KILLER YEAST SENSITIVITY OF PETITE MUTANTS 57
6.1 INTRODUCTION .. 57
6.2 EXPERIMENTAL .. 57
 6.2.1 Yeast strains and media .. 57
6.2.2 Inducing petites via treatment with ethidium bromide 57
6.2.3 Selection of spontaneous petites .. 58
6.2.4 Killer assays .. 58
6.2.5 Forming diploids .. 58
5.2.6 Concentration of the Pichia membranaefaciens CBS 7374 killer
toxin supermutant .. 58
6.2.7 mtDNA isolation and restriction analysis 59

6.3 RESULTS ... 59

6.3.1 Saccharomyces cerevisiae AWRI 1361, derived from
Saccharomyces cerevisiae AWRI 1360, harbours deletions in its
mitochondrial genome ... 59
6.3.2 The petite Saccharomyces cerevisiae AWRI 1361 displays
killer toxin resistance ... 60
6.3.3 Reduction in yeast killer toxin sensitivity displayed by petite
Saccharomyces cerevisiae strains .. 61
6.3.4 The killer resistant phenotype of Saccharomyces cerevisiae
AWRI 1361 is partially attributable to a nuclear mutation 62
6.3.5 Estimating the level of resistance of Saccharomyces
cerevisiae AWRI 1361 ... 63

6.4 DISCUSSION .. 63

CHAPTER 7
GENERAL DISCUSSION AND CONCLUSIONS 70

BIBLIOGRAPHY ... 74