Chemistry of Arsenic in Soils of North-East

New South Wales

Thesis submitted for the degree of
Doctor of Philosophy
at
The University of Adelaide
Faculty of Agricultural and Natural Resource Sciences

by
Euan Smith

Department of Soil Science
Waite Agricultural Research Institute
Glen Osmond, SA
Australia

1998
TABLE OF CONTENTS

ABSTRACT ... v

STATEMENT ... ix

ACKNOWLEDGMENTS ... x

LIST OF FIGURES ... xi

LIST OF TABLES ... xiii

CHAPTER 1 ... 1

GENERAL INTRODUCTION .. 1

CHAPTER 2 ... 5

LITERATURE REVIEW .. 5

2.1 Introduction ... 5

2.1.1 Position in the periodic table .. 6

2.1.2 Background sources ... 6

2.1.3 Anthropogenic sources .. 9

2.1.3.1 Commercial industry ... 10

2.1.3.2 Mining operations ... 11

2.1.3.2.1 Mine tailings .. 11

2.1.3.2.2 Smelting ... 12

2.1.3.2.3 Coal ... 12

2.1.3.3 Agriculture .. 13

2.1.3.3.1 Pesticides ... 14

2.1.3.3.2 Herbicides .. 16

2.1.3.3.3 Fertilisers ... 17

2.1.3.3.4 Forestry .. 18

2.2 Physico-chemical behaviour of As in soil .. 19

2.2.1 Inorganic compounds .. 19

2.2.2 Organic compounds ... 20

2.2.3 The soil solution ... 22

2.2.4 Sorption processes .. 24

2.2.4.1 Soil properties .. 27

2.2.4.2 Effect of pH .. 30

2.2.4.3 Effect of competing ions ... 31
CHAPTER 3
GENERAL MATERIALS AND METHODS
3.1 Soils ... 43
3.2 Analytical procedures ... 44
 3.2.1 Soil analyses ... 44
 3.2.2 Apparatus ... 44
 3.2.3 Reagents ... 47

CHAPTER 4
SORPTION OF ARSENATE AND ARSENITE BY SOME AUSTRALIAN SOILS ... 49
4.1 Introduction ... 49
4.2 Materials and methods ... 51
 4.2.1 Soils ... 51
 4.2.2 Soil analyses ... 51
 4.2.3 Arsenate sorption ... 52
 4.2.4 Arsenite sorption ... 53
 4.2.5 Effect of pH and ionic strength on sorption of AsV and AsIII ... 53
4.3 Results and discussion ... 54
 4.3.1 Soil properties ... 54
 4.3.2 As sorption ... 54
 4.3.2.1 Effect of time and concentration ... 54
 4.3.2.2 Sorption of AsV ... 55
 4.3.2.3 Sorption of AsIII ... 57
 4.3.2.4 Effect of pH on AsV and AsIII sorption ... 60
 4.3.2.5 Effect of ionic strength on AsV and AsIII sorption ... 63
4.4 Conclusions ... 67

CHAPTER 5
EFFECT OF PHOSPHATE AND DIFFERENT INDEX CATIONS ON ARSENATE AND ARSENITE SORPTION ... 69
5.1 Introduction ... 69
5.2 Materials and methods ... 70
 5.2.1 Soils ... 70
 5.2.2 Competitive sorption isotherms .. 70
 5.2.2.1 Effect of phosphate (P) on AsV sorption 70
 5.2.2.2 Effect of P on AsIII sorption 71
 5.2.2.3 Effect of index cations .. 71
 5.2.3 Surface charge characteristics ... 72
 5.2.4 Surface area ... 73
5.3 Results and discussion .. 73
 5.3.1 AsV sorption in the presence of P 73
 5.3.2 AsIII sorption in the presence of P 80
 5.3.3 Effect of index cation on the sorption of AsV and AsIII in the presence of P 82
5.4 Conclusions ... 84

CHAPTER 6 .. 85

EFFECT OF SULPHATE AND DISSOLVED ORGANIC CARBON ON ARSENATE AND ARSENITE SORPTION ... 85
6.1 Introduction ... 85
6.2 Materials and methods .. 87
 6.2.1 Soils ... 87
 6.2.2 Competitive sorption isotherms .. 87
 6.2.2.1 Effect of S on AsV sorption 87
 6.2.2.2 Effect of S on AsIII sorption 88
 6.2.2.3 Effect of DOC ... 88
6.3 Results and discussion .. 89
 6.3.1 AsV sorption in the presence of S 89
 6.3.2 AsIII sorption in the presence of S 91
 6.3.3 AsV and AsIII sorption in the presence of DOC ... 95
6.4 Conclusions ... 99

CHAPTER 7 .. 100

KINETICS OF ARSENATE SORPTION IN SOIL: FLOW CELL DESIGN AND PRELIMINARY STUDIES ... 100
7.1 Introduction ... 100
7.2 Materials and methods .. 102
 7.2.1 Soils ... 102
 7.2.2 Preliminary kinetic studies .. 102
Abstract

Ten soils from northern New South Wales, Australia, were sampled and assessed for their capacity to sorb arsenate (AsV) in relation to soil properties.

Multiple and simple linear regression analysis of the partition distribution coefficient (K\textsubscript{d}) of the soils and the soil properties revealed that AsV sorption in these soils is essentially controlled by the crystalline iron (Fe) oxide content of the soils (R2=0.80***).

Following the preliminary investigation, four contrasting soils (C, H, I and J) were chosen to study the sorption of arsenite (AsIII). The amount of AsIII sorbed by three of the soils was less than that of AsV. This was attributed to differences in the surface charge density of the soils and the nature of the interactions between the charged surface and the nature of the AsV and AsIII species present in solution.

Given that surface chemical properties of soils may influence the differences in the sorption characteristics of AsV and AsIII, the effect of pH and ionic strength (I) on the sorption of AsV and AsIII were studied. Contrasting effects of pH were observed for AsV and AsIII sorption. For AsV, an increase in the pH of the soil resulted in a decline in sorption by the four soils studied. This was attributed to two interacting factors occurring in the soil solution. Firstly, there is the pH-pK\textsubscript{a} dependence of AsV species. Increasing the pH increases deprotonation of the neutral H\textsubscript{3}AsO\textsubscript{4} species up to pH 5 and each unit increase in pH leads to a 10 fold increase in the ratio of H\textsubscript{2}AsO\textsubscript{4}- to H\textsubscript{3}AsO\textsubscript{4}. Higher pH also increases the negative potential in the plane of sorption and as a consequence of these two interacting factors, there is a decrease in AsV sorption as pH increases. In contrast to AsV, increasing pH increased the proportion of AsIII sorbed at a pH > 6.0. Increasing I however, had little effect on the proportion of AsIII sorbed. This may be
indicative of the importance of different sorption mechanisms of As$^{\text{III}}$ compared with AsV, but further research is needed to clarify the sorption mechanism of As$^{\text{III}}$.

The effects of selected anions [phosphate (P), sulphate (S) and dissolved organic carbon (DOC)] and selected cations [calcium (Ca) and sodium (Na)] were studied to determine their roles on the sorption of AsV and As$^{\text{III}}$. There were large differences between the effects of the different ions on the behaviour of both AsV and As$^{\text{III}}$. The addition of P (0 to 0.16 mmol L$^{-1}$) to the background solution decreased AsV sorption in all soils although the extent of suppression varied with the soil physico-chemical properties. At low initial concentrations (< 0.33 mmol L$^{-1}$) of AsV in solution, there was little effect of P on AsV sorption with high sorbing soils. Under these experimental conditions, both ions were strongly retained by the soil colloidal particles. In contrast, the presence of P decreased the amount of AsV sorbed in soils with low sorption capacity. In these soils, the effect of P appears to be pronounced even at low AsV concentration (< 0.01 mmol L$^{-1}$). For As$^{\text{III}}$, the presence of P in solution decreased the sorption of As$^{\text{III}}$ in all soils, although the extent of the decrease varied between the soils studied. The difference in As$^{\text{III}}$ sorption in the presence of P was attributed to the widely different mineralogy of the soils and the mechanism of As$^{\text{III}}$ sorption. Arsenite has been shown to sorb predominantly on oxide surfaces which are also the active sorption sites for P. Enhanced sorption of P appears to saturate the sorption sites and decrease As$^{\text{III}}$ sorption and this competitive effect between P and As$^{\text{III}}$ may be more pronounced in low sorbing soils.

The effect of index cation on the sorption of AsV also varied with soil type. Irrespective of the nature of the solution composition, Ca$^{2+}$ enhanced the sorption of AsV by the soils studied. In contrast to AsV, the presence of Ca$^{2+}$ had little effect on the
amount of As$^{\text{III}}$ sorbed in the presence of P, supporting the earlier hypothesis that the sorption mechanism of As$^{\text{III}}$ may be different from that of As$^{\text{V}}$.

The presence of S had little effect on the sorption of As$^{\text{V}}$ and only decreased As$^{\text{III}}$ sorption in the low As sorbing soil. The hypothesis that competition between As$^{\text{III}}$ and S was effective only in the low sorbing soils, was examined by conducting a series of studies with increasing goethite content in Soil H. These studies confirmed that the extent of competition between As$^{\text{III}}$ and S was determined by the number of sorption sites available. In contrast to S, the presence of DOC in solution decreased the sorption of both As$^{\text{V}}$ and As$^{\text{III}}$. Increasing the concentration of DOC in solution had no further effect on the amount of As$^{\text{V}}$ and As$^{\text{III}}$ sorbed indicating that competitive interactions between As and DOC for sorption may be only one of the mechanisms by which DOC affects As sorption.

Kinetic studies, using a modified stirred-flow reaction chamber, were conducted to investigate the effects of varying the solution composition on the dynamics of As$^{\text{V}}$ sorption processes. The original chamber was modified by repositioning of and fitting of a filter to the inlet port, to prevent changes to the soil:solution ratio in the chamber caused by soil transferring to the inlet port during mixing.

As with the batch studies, the flow through reactor studies focused on the effects of I and different cations and anions on the kinetics of As$^{\text{V}}$ sorption by soil. A comparison of the different treatments demonstrates that the presence of different index cations and increasing I had little effect on the sorption capacity of As$^{\text{V}}$ by the soil. With all three treatments (0.03 mol L$^{-1}$ NaNO$_3$, 0.3 mol L$^{-1}$ NaNO$_3$ and 0.01 mol L$^{-1}$ Ca(NO$_3$)$_2$), the maximum sorption capacity of the soil ranged from 162 to 176 μg g$^{-1}$. In contrast, the presence of P decreased the amounts of As$^{\text{V}}$ sorbed by approximately 47% of the amounts sorbed. Increasing I from 0.03 to 0.3 mol L$^{-1}$ NaNO$_3$ appeared to increase the apparent
forward rate (k_a) of AsV sorbed from 0.0001425 to 0.0002713 L mg$^{-1}$ min$^{-1}$. A similar increase in k_a was observed when the index cation was changed from Na to Ca. The introduction of P decreased the sorption capacity of the soil by between 35 to 48% depending on the index cation in the background solution.

Desorption studies were conducted following AsV sorption with 0.03 mol L$^{-1}$ NaNO$_3$ as the background electrolyte. Desorption of AsV was characterised by a distinct irreversibility of some of the sorbed AsV, with no more than 17% of the sorbed AsV being desorbed under the study conditions. The amount of AsV desorbed followed the following pattern; 0.03 mol L$^{-1}$ NaNO$_3$ + P $>>$ 0.03 mol L$^{-1}$ NaNO$_3$ > 0.3 mol L$^{-1}$ NaNO$_3$.