INVESTIGATION OF VITAMIN B_{12}
DEFICIENCY IN RUMINANTS

A Thesis

submitted in fulfilment of the requirements
for admission to the degree of

DOCTOR OF PHILOSOPHY

of the University of Adelaide

by

Wendy Babidge

Department of Animal Sciences
Waite Agricultural Research Institute
The University of Adelaide
South Australia

June, 1993

Awarded 1994
TABLE OF CONTENTS

TABLE OF CONTENTS ... i
LIST OF FIGURES .. ix
LIST OF TABLES ... xii
DECLARATION ... xvii
ACKNOWLEDGMENTS ... xviii
PUBLICATIONS ... xx
NOMENCLATURE AND ABBREVIATIONS xxi
SUMMARY ... xxii

CHAPTER 1. LITERATURE REVIEW ... 1
1.1 Occurrence of vitamin B_{12} deficiency 1
1.2 Cobalt requirements of ruminants ... 3
1.3 Vitamin B_{12} synthesis in the rumen 5
1.4 Production of propionic acid .. 7
1.5 Forms of vitamin B_{12} and delivery to tissues 7
1.6 Binders of vitamin B_{12} .. 9
1.7 Biochemical pathways requiring vitamin B_{12} 10
1.8 Diagnosis of vitamin B_{12} deficiency 13
1.9 Nitrous oxide and vitamin B_{12} ... 16
1.9.1 In vivo N_2O exposure .. 17
1.9.2 In vitro exposure ... 19
1.10 Prevention and treatment of cobalt deficiency 20
1.11 Research objectives ... 23
<table>
<thead>
<tr>
<th>Chapter 2.</th>
<th>GENERAL MATERIALS AND METHODS</th>
<th>25</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Sample Collections</td>
<td>25</td>
</tr>
<tr>
<td>2.1.1</td>
<td>Blood</td>
<td>25</td>
</tr>
<tr>
<td>2.1.2</td>
<td>Liver Biopsy</td>
<td>25</td>
</tr>
<tr>
<td>2.2</td>
<td>Cobalt Analyses</td>
<td>25</td>
</tr>
<tr>
<td>2.3</td>
<td>Complete Blood Picture</td>
<td>26</td>
</tr>
<tr>
<td>2.4</td>
<td>Creatinine</td>
<td>26</td>
</tr>
<tr>
<td>2.5</td>
<td>FIGLU</td>
<td>27</td>
</tr>
<tr>
<td>2.6</td>
<td>Holo-Transcobalamin II (TC II)</td>
<td>27</td>
</tr>
<tr>
<td>2.7</td>
<td>Homocysteine</td>
<td>28</td>
</tr>
<tr>
<td>2.8</td>
<td>Plasma α-Leucine</td>
<td>28</td>
</tr>
<tr>
<td>2.9</td>
<td>Methionine</td>
<td>29</td>
</tr>
<tr>
<td>2.10</td>
<td>Methionine Synthetase</td>
<td>29</td>
</tr>
<tr>
<td>2.11</td>
<td>Methylmalonyl CoA Mutase</td>
<td>30</td>
</tr>
<tr>
<td>2.12</td>
<td>Multiple Biochemical Analysis</td>
<td>30</td>
</tr>
<tr>
<td>2.13</td>
<td>Total Protein</td>
<td>30</td>
</tr>
<tr>
<td>2.14</td>
<td>Vitamin B_{12}</td>
<td>30</td>
</tr>
<tr>
<td>2.15</td>
<td>Volatile Fatty Acids</td>
<td>31</td>
</tr>
<tr>
<td>2.16</td>
<td>Wool Growth</td>
<td>31</td>
</tr>
<tr>
<td>2.17</td>
<td>Statistical Analysis</td>
<td>31</td>
</tr>
<tr>
<td>2.18</td>
<td>Other</td>
<td>32</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 3.</th>
<th>HIGH PERFORMANCE LIQUID CHROMATOGRAPHY ASSAY FOR METHYLMALONIC ACID AND SUCCINIC ACID - DEVELOPMENT AND APPLICATIONS.</th>
<th>33</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>INTRODUCTION</td>
<td>33</td>
</tr>
<tr>
<td>3.2</td>
<td>EXPERIMENTAL PROCEDURES</td>
<td>34</td>
</tr>
</tbody>
</table>
3.3 RESULTS ... 36
3.4 DISCUSSION .. 42

CHAPTER 4. INDICES OF COBALT DEFICIENCY IN CATTLE. 45

4.1 INTRODUCTION .. 45
4.2 EXPERIMENTAL PROCEDURES 48

4.2.1 Experiment 1. .. 48
4.2.1.1. Animals .. 48
4.2.1.2. Sampling Protocol 49
4.2.1.3. Assays .. 49

4.2.2 Experiment 2. .. 50
4.2.2.1. Animals .. 50
4.2.2.2. Sampling protocol 50

4.3 RESULTS .. 51

4.3.1 Experiment 1. .. 51
4.3.1.1. Feed Analysis .. 51
4.3.1.2. Feed Intakes .. 51
4.3.1.3. Animal Liveweight 52
4.3.1.4. Cobalt .. 53
4.3.1.5. Vitamin B12 .. 53
4.3.1.6. Metabolites of the Methionine Synthetase Pathway. 56
4.3.1.7. Metabolites of the Methylmalonyl CoA Mutase Pathway. ... 58
4.3.1.8. Complete Blood Picture 59
4.3.1.9. Multiple Biochemical Analysis (MBA) 60

4.3.2 Experiment 2. .. 61
4.3.2.1 Feed Analysis .. 61
4.3.2.2 Feed Intakes .. 62
4.3.2.3 Animal Liveweight 63
4.3.2.4 Cobalt .. 64
4.3.2.5 Vitamin B₁₂ ... 65
4.3.2.6 Enzyme activity and Metabolites of the
 Methionine Synthetase Pathway. 67
4.3.2.7 Enzyme activity and Metabolites of the
 Methylmalonyl CoA Mutase Pathway. 70
4.3.2.8 α-Leucine .. 75
4.3.2.9 Volatile Fatty Acids 75

4.4 DISCUSSION ... 76

CHAPTER 5. TREATMENT OF HEIFERS WITH DIFFERENT FORMS
OF VITAMIN B₁₂ .. 81

5.1 INTRODUCTION .. 81
5.2 EXPERIMENTAL PROCEDURES 82
5.3 RESULTS .. 82
 5.3.1 Plasma vitamin B₁₂ 82
 5.3.2 Liver vitamin B₁₂ 83
 5.3.3 Liver Holo Methylmalonyl CoA Mutase 84
 5.3.4 Liver Holo Methionine Synthetase 85
 5.3.5 Holo Transcobalamin II (TC II) 86

5.4 DISCUSSION ... 87

CHAPTER 6. INDICES OF COBALT DEFICIENCY IN SHEEP. 89

6.1 INTRODUCTION .. 89
6.2 EXPERIMENTAL PROCEDURES ... 91
 6.2.1 Animals .. 91
 6.2.2 Sampling Protocol .. 92
 6.2.3 Assays ... 92

6.3 RESULTS .. 92
 6.3.1 Feed Intakes ... 92
 6.3.2 Animal Liveweight ... 93
 6.3.3 Wool Growth .. 94
 6.3.4 Cobalt ... 95
 6.3.5 Vitamin B\textsubscript{12} ... 96
 6.3.6 Enzyme Activity and Metabolites of the Methionine Synthetase Pathway. .. 98
 6.3.7 Enzyme Activities and Metabolites of the Methylmalonyl CoA Mutase Pathway. ... 103
 6.3.8 Complete Blood Picture ... 108
 6.3.9 Multiple Biochemical Analysis (MBA) 109
 6.3.10 \(\alpha\)-Leucine ... 112
 6.3.11 Holo Transcobalamin II .. 113
 6.3.12 Volatile Fatty Acids ... 114

6.4 DISCUSSION .. 116

CHAPTER 7. ... 124

INDUCTION OF VITAMIN B\textsubscript{12} DEFICIENCY WITH NITROUS OXIDE .. 124

7.1 INTRODUCTION .. 124

7.2 EXPERIMENTAL PROCEDURES 126
 7.2.1 Experiment 1 (Short term nitrous oxide - sheep) 126
 7.2.1.1 Animals .. 126
7.2.1.2 Sampling Procedures 127

7.2.2 Experiment 2 (Short term N_2O - cattle) 127
 7.2.2.1 Animals ... 127
 7.2.2.2 Sampling Procedures 127

7.2.3 Experiment 3 (Long term N_2O - cattle) 128
 7.2.3.1 Animals ... 128
 7.2.3.2 Sampling Procedure 128
 7.2.3.3 Assays ... 129

7.2.4 Experiment 4 (Long term N_2O - rat) 129
 7.2.4.1 Animals ... 129
 7.2.4.2 Sampling Procedure 129

7.3 RESULTS .. 130

7.3.1 Experiment 1 (Short term N_2O - sheep) 130
 7.3.1.1 Control Sheep 130
 7.3.1.2 Vitamin B$_{12}$ 131
 7.3.1.3 Enzyme Activities and Metabolites of
 the Methionine Synthetase Pathway 132
 7.3.1.4 Enzyme Activities and Metabolites of
 the Methylmalonyl CoA Mutase Pathway 137
 7.3.1.5 Plasma α-Leucine 139

7.3.2 Experiment 2 (Short term N_2O - cattle) 140
 7.3.2.1 Control Heifer 140
 7.3.2.2 Vitamin B$_{12}$ 141
 7.3.2.3 Enzyme Activities and Metabolites of the
 Methionine Synthetase Pathway 142
 7.3.2.4 Enzyme Activities and Metabolites of the
 Methylmalonyl CoA Mutase Pathway 148
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.3.2.5</td>
<td>Plasma α-Leucine</td>
<td>150</td>
</tr>
<tr>
<td>7.3.2.6</td>
<td>Holo Transcobalamin II (TC II)</td>
<td>151</td>
</tr>
<tr>
<td>7.3.3</td>
<td>Experiment 3 (Long term N₂O - cattle)</td>
<td>152</td>
</tr>
<tr>
<td>7.3.3.1</td>
<td>Pretrial - Determination of % N₂O for use in</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Long Term Trial with cows</td>
<td>152</td>
</tr>
<tr>
<td>7.3.3.2</td>
<td>N₂O and O₂ percentages in hood</td>
<td>153</td>
</tr>
<tr>
<td>7.3.3.3</td>
<td>Vitamin B₁₂</td>
<td>153</td>
</tr>
<tr>
<td>7.3.3.4</td>
<td>Enzyme Activities and Metabolites of the</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methionine Synthetase Pathway</td>
<td>155</td>
</tr>
<tr>
<td>7.3.3.5</td>
<td>Enzyme Activity and Metabolites of the</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methylmalonyl CoA Mutase Pathway</td>
<td>161</td>
</tr>
<tr>
<td>7.3.3.6</td>
<td>Complete Blood Picture</td>
<td>165</td>
</tr>
<tr>
<td>7.3.3.7</td>
<td>Rumen Fluid Volatile Fatty Acids</td>
<td>167</td>
</tr>
<tr>
<td>7.3.3.8</td>
<td>Plasma α-Leucine</td>
<td>169</td>
</tr>
<tr>
<td>7.3.3.9</td>
<td>Animal Liveweight</td>
<td>169</td>
</tr>
<tr>
<td>7.3.3.10</td>
<td>Arterial Blood Gases</td>
<td>170</td>
</tr>
<tr>
<td>7.3.4</td>
<td>Experiment 4 (Long term - rat)</td>
<td>170</td>
</tr>
<tr>
<td>7.3.4.1</td>
<td>Vitamin B₁₂</td>
<td>170</td>
</tr>
<tr>
<td>7.3.4.2</td>
<td>Methionine Synthetase</td>
<td>171</td>
</tr>
<tr>
<td>7.3.4.3</td>
<td>Enzyme activity and Metabolites of the</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methylmalonyl CoA Mutase Pathway</td>
<td>172</td>
</tr>
<tr>
<td>7.4</td>
<td>DISCUSSION</td>
<td>175</td>
</tr>
</tbody>
</table>

CHAPTER 8.

HIGH PERFORMANCE LIQUID CHROMATOGRAPHY ASSAY

FOR α- AND β-LEUCINE - ASSESSMENT OF TISSUE LEUCINE 2, 3 - AMINOMUTASE ACTIVITY. 180

8.1 INTRODUCTION 180
8.2 EXPERIMENTAL PROCEDURES ... 181
8.3 RESULTS ... 182
8.4 DISCUSSION .. 184

CHAPTER 9. INVESTIGATION OF VITAMIN B₁₂ RADIO-ISOTOPE DILUTION ASSAY WITH PLASMA OF VARIOUS SPECIES. 186

9.1 INTRODUCTION ... 186
9.2 EXPERIMENTAL PROCEDURES .. 187
9.3 RESULTS ... 188
9.4 DISCUSSION .. 193

CHAPTER 10. GENERAL DISCUSSION .. 195

BIBLIOGRAPHY .. 202

APPENDIX ... 219

Chapter 2. General Materials and Methods 219

Chapter 3. High Performance Liquid Chromatography Assay for Methylmalonic Acid and Succinic Acid - Development and Applications. ... 220

Chapter 4. Indices of Cobalt Deficiency in Cattle

Heifer Experiment 1. .. 221

Chapter 4. Indices of Cobalt Deficiency in Cattle

Heifer experiment 2. .. 253

Chapter 5. Treatment of Heifers with Different Forms of Vitamin B₁₂ .. 289

Chapter 6. Indices of Cobalt Deficiency in sheep. 294

Chapter 7. Induction of Vitamin B₁₂ Deficiency with Nitrous Oxide. .. 361
SUMMARY

Early detection of vitamin B₁₂ deficiency in livestock is of economic importance especially in cases where no overt signs are readily apparent. Metabolic indicators of vitamin B₁₂ deficiency were examined in animals in which the deficiency was induced with either nitrous oxide (N₂O) or by feeding diets of low cobalt content.

Short term N₂O experiments involved exposing sheep and cattle to N₂O over 5 hour periods. This short term exposure readily inhibited the activity of the vitamin B₁₂ dependent enzyme methionine synthetase, while there was only slight inhibition of methylmalonyl CoA mutase activity in liver. Metabolites of the methionine synthetase pathway were affected by N₂O exposure as indicated by increases in plasma homocysteine and urinary formiminoglutamic acid (FIGLU), and decreases in plasma free methionine concentrations. Plasma and urine methylmalonic acid (MMA) concentrations were unaffected by N₂O exposure suggesting little disturbance of the methylmalonyl CoA mutase pathway.

A longer term N₂O experiment (6 weeks) was undertaken with cattle and rats. Cattle and rats were exposed to N₂O for one hour per day for four weeks and then twice per day (twelve hours apart) for a further two weeks. In cattle, total and holo methionine synthetase activities in liver were almost completely suppressed at week 6, whereas in rat liver total and holo methionine synthetase activities were partially suppressed. There was no inhibition of methylmalonyl CoA mutase activity in liver of cattle but in rat liver the holo enzyme activity was halved. Metabolites of the methionine synthetase pathway, plasma homocysteine and urine FIGLU concentrations were significantly increased in cattle. In rats
a significant decrease in liver vitamin B$_{12}$ concentration was found. No change in plasma MMA or succinic acid concentrations was detected in either species.

Vitamin B$_{12}$ deficiency induced with N$_2$O appears to affect only the methionine synthetase pathway in cattle and sheep resulting in increases in plasma homocysteine and urine FIGLU concentrations. In the rat, both the liver total and holo methionine synthetase and holo methylmalonyl CoA mutase activities were inactivated to a similar degree and liver vitamin B$_{12}$ concentrations reduced, no metabolites of the methionine synthetase pathway were measured, and there was no change observed in plasma MMA concentrations despite inactivation of this pathway.

With regard to feeding diets of low cobalt content, two experiments with young cattle and one with young sheep were conducted over 6 to 9 months. The rations offered were of low cobalt content and for each experiment the animals were allocated to one of three treatment groups, viz: untreated, paired with untreated group and supplemented with cobalt, and ad-lib fed and supplemented with cobalt.

The untreated cattle in both experiments were of low vitamin B$_{12}$ status (liver vitamin B$_{12}$ < 400 nmol/kg) however appetite and liveweights were unaffected. The activity of the vitamin B$_{12}$ dependent enzymes in liver were not suppressed by the low cobalt diet but there were significant decreases in vitamin B$_{12}$ and increases in succinic acid concentrations in rumen fluid. Significant reductions in plasma α-leucine concentrations mirrored those of liver vitamin B$_{12}$.
In sheep of marginal vitamin B\textsubscript{12} status (liver vitamin B\textsubscript{12} < 200 nmol/kg), vitamin B\textsubscript{12} dependent enzymes in liver were not altered by cobalt treatment. The earliest changes associated with onset of vitamin B\textsubscript{12} depletion were plasma \(\alpha\)-leucine and MMA, and rumen fluid succinic acid and vitamin B\textsubscript{12} concentrations. Other metabolites which changed prior to liver vitamin B\textsubscript{12} concentration were urinary MMA and FIGLU, and plasma free methionine and serum holo transcobalamin II concentrations.

Vitamin B\textsubscript{12} dependent enzymes in liver of ruminants appear to be affected only at a late stage in nutritional vitamin B\textsubscript{12} deficiency. Despite this, changes in concentrations of metabolites of these pathways occurred earlier. Plasma MMA and plasma \(\alpha\)-leucine concentrations were affected early in nutritional vitamin B\textsubscript{12} deficiency and are therefore considered to be indicators of marginal vitamin B\textsubscript{12} inadequacy in sheep. Plasma \(\alpha\)-leucine was also decreased in marginal cobalt deficiency in cattle and this is the first report of changes in this metabolite in cobalt deficiency in ruminants. Plasma holo transcobalamin II also was decreased in nutritional cobalt deficiency in sheep and in N\textsubscript{2}O treated cattle. This is a new indicator of vitamin B\textsubscript{12} deficiency in ruminants which is worthwhile pursuing as a diagnostic aid. The use of a radio-isotope dilution assay (Diagnostic Products Corporation (DPC) no-boil, extracted at 100°C) for measurement of vitamin B\textsubscript{12} in bovine and ovine blood plasma has been validated, being shown to totally denature the endogenous vitamin B\textsubscript{12} binders in plasma.