CLIMATIC SUITABILITY, INDOOR COMFORT AND HOUSEHOLD
ENERGY CONSUMPTION: A STUDY OF SUBURBAN HOUSES
IN ADELAIDE, SOUTH AUSTRALIA

by

Jill Kerby, B.A. (Hons.), Dip. Ed.
Department of Geography, The University of Adelaide.

Thesis submitted for the degree of Doctor of Philosophy
at the University of Adelaide.

September, 1979.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF TABLES</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF PLATES</td>
<td>xvi</td>
</tr>
<tr>
<td>SUMMARY</td>
<td>xviii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xxi</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>xxii</td>
</tr>
<tr>
<td>CHAPTER 1 - INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>CHAPTER 2 - PREVIOUS RESEARCH ON CLIMATIC SUITABILITY,</td>
<td>7</td>
</tr>
<tr>
<td>INDOOR COMFORT AND ENERGY CONSUMPTION</td>
<td></td>
</tr>
<tr>
<td>Thermal Comfort and Climate</td>
<td>9</td>
</tr>
<tr>
<td>Studies in Preferred Temperature</td>
<td>9</td>
</tr>
<tr>
<td>Human Comfort Indices and Maps</td>
<td>14</td>
</tr>
<tr>
<td>Presentation of Climatic Data for Use in Building Design</td>
<td>17</td>
</tr>
<tr>
<td>Comfort in the Home</td>
<td>19</td>
</tr>
<tr>
<td>Housing and Comfort in Adelaide</td>
<td>20</td>
</tr>
<tr>
<td>Conclusion</td>
<td>26</td>
</tr>
<tr>
<td>Climatic Performance, Thermal Properties and Energy</td>
<td>28</td>
</tr>
<tr>
<td>Consumption of Buildings</td>
<td>29</td>
</tr>
<tr>
<td>General Research</td>
<td>28</td>
</tr>
<tr>
<td>Thermal Behaviour of Buildings</td>
<td>29</td>
</tr>
<tr>
<td>Energy Costs and Energy Conservation in Buildings</td>
<td>30</td>
</tr>
<tr>
<td>Practical Application of Climatic Design and Low-Energy Principles</td>
<td>40</td>
</tr>
<tr>
<td>Emergence of Concepts of Climatic Design</td>
<td>40</td>
</tr>
<tr>
<td>An Historical Perspective of "Design-for-Climate" in Australia</td>
<td>42</td>
</tr>
<tr>
<td>Climatic Design and Low-Energy Principles in South Australia</td>
<td>46</td>
</tr>
<tr>
<td>Empirical Studies of Climate, Comfort, Energy Consumption and Housing</td>
<td>50</td>
</tr>
<tr>
<td>Specific Studies</td>
<td>50</td>
</tr>
<tr>
<td>Non-specific Studies</td>
<td>56</td>
</tr>
<tr>
<td>The Present Study</td>
<td>59</td>
</tr>
</tbody>
</table>
CHAPTER 3 - SAMPLING PROCEDURES AND THE COLLECTION AND ANALYSIS OF THE DATA

The Households
Sampling Procedure
The Householder's Sample
Information from Households and Householders

The Non-Household Component
Sampling Procedure

The Analysis, Presentation and Interpretation of the Data

CHAPTER 4 - THE IMPORTANCE OF CLIMATIC SUITABILITY AND COMFORT IN THE DESIGN AND CONSTRUCTION OF HOUSES IN ADELAIDE

The House Styles of Adelaide
House Design and House Construction in Adelaide Today
The Process of House Design
House Construction

The Significance of Climatic Design Principles During House Design and Construction
Designers
Building Firms

CHAPTER 5 - CLIMATIC SUITABILITY AND INDOOR COMFORT AS FACTORS IN HOUSE SALES OR PURCHASES

The Ordination of Priorities in the House Purchase Decision
Significance of Climate-related Features in House Sales

CHAPTER 6 - THE CLIMATIC SUITABILITY OF THE SAMPLED HOUSES

Attributes of House Design, Construction and Modification Contributing to Thermal Performance
Orientation and Siting
Material and Colour of Outer Walls
Roof Material, Pitch, Colour
Floor Material
Height and Insulation of Ceiling
Window Size, Placement, Protection
Self-Shading and Verandahs
Vegetation
Ventilation, Infiltration

The Climatic Suitability of the Sampled Houses

Other Factors Related to and Affecting the "Measured"
Climatic Suitability of the Sampled Houses

Factors Related to the Physical Structure
of the House
Factors Related to the Structure and
Characteristics of Households

Conclusion

CHAPTER 7 - THE INDOOR COMFORT OF THE SAMPLED HOUSES

Temperature Survey

Heating and Cooling Equipment in the Sampled Houses

Heating
Cooling and Air Conditioning

Comfort-related Attitudes, Assessments and Behaviour
of Householders

Stated Attitudes to Adelaide's Climate

Householders' Assessments of Comfort of Our Homes

Level of Satisfaction with Comfort Features
Weather-induced Discomfort in Rooms or Parts
of the House
House-modification by the Present Householders

Factors Related to and Affecting the Indoor Comfort
of the Sampled Houses

Factors Related to the Physical Structure of
the House
Factors Related to the Structure and Characteristics of Households

Conclusion

CHAPTER 8 - ENERGY CONSUMPTION IN THE SAMPLED HOUSEHOLDS

Average Annual Consumption of Energy by the Households

Primary Energy Equivalent
Electricity
Gas
Heating Oil

Page
186
192
195
198
204
208
210
219
221
223
230
230
238
248
248
249
251
256
264
272
273
280
286
290
292
292
295
297
300
Gas and Electricity in the Same Household
Percentage of Annual Energy Consumed for Various Purposes by the Household

Seasonal Pattern of Energy Use

An Operational Model of Household Energy Consumption in Adelaide
- The Dependent (or Criterion) Variable - Household Energy Consumption
- Predetermined Influences on Household Energy Use
- The Independent Variables
- Regression Procedure
- Regression Equations for Household Energy Consumption in Adelaide
- The "Unexplained" Variation in Household Energy Use

CHAPTER 9 - IDENTIFYING THE BEST HOUSE FOR ADELAIDE'S CLIMATE

The Householders' Views

The Professional View - Opinions of Architects/Designers and Building Firms

Measures of Climatic Suitability and House Comfort Used in This Study
- Climatic Suitability Scores
- The Householders' Expenditures on Comfort-related Equipment
- The Householders' Evaluations of House Comfort
- Household Energy Consumption
- Discussion

The Need for Improvement in the Levels of Climatic Suitability, Comfort and Energy-Efficiency of Adelaide's Housing

CHAPTER 10 - TOWARDS IMPROVED CLIMATIC DESIGN IN HOUSING

The Nature of the Change
- Existing Houses
- New Houses
- Consumer Advice and Education
- Technical Options
- Cost of Energy and Tariff-related Proposals
- Government Action

Conclusions
APPENDIX I - INFORMATION FROM SAMPLED HOUSES AND HOUSEHOLDS

Letters to sampled householders
Householder's Questionnaire
House Details Form
Temperature Observation Instructions and Chart

APPENDIX II - BUILDING FIRM QUESTIONNAIRE

APPENDIX III - REAL ESTATE INSTITUTE QUESTIONNAIRE

APPENDIX IV - DISCUSSION OF METHODOLOGICAL CONSIDERATIONS

Discussion of the Representative Nature of the Household Samples
Discussion of Possible Methodological Bias
Method of Classification of Adelaide's House-Styles

APPENDIX V - STATISTICAL INFORMATION

Suburbs of Adelaide in Ranked Order of Socio-Economic Status
Importance of Various Features in House Purchase (Household Samples) and House Sales (Real Estate Institute Sample)
Mean Monthly Values of Seven Meteorological Variables During 1974 and 1975 at Adelaide

BIBLIOGRAPHY
SUMMARY

This study of suburban houses in Adelaide endeavours to analyse their climatic suitability and provision of indoor comfort, relative to the energy consumption of the household. It was prompted by an apparent neglect of climatic considerations in domestic design, planning and construction and the consequent need to achieve indoor comfort only by considerable use of energy for heating and cooling and/or alterations and modifications to the house. Although Adelaide enjoys a "Mediterranean" type climate, it is subject to greater extremes in some respects, than any other capital city in Australia. While most urban development has taken place during an era of cheap, readily available fuel there was no need for house-designers, builders and occupants to consider or concentrate on "energy efficiency". The onset of the "energy-crisis" of the (late) 1970's, with its rising fuel prices and possible fuel shortages is, however, likely to change attitudes. This study attempts to provide data on which such behavioural and attitudinal changes could be based.

House facade photographs, an interview/questionnaire schedule of 452 houses and a small temperature survey were used to collect data on the nature of the house and its occupants, priorities in its purchase, existing methods of achieving comfort, past and anticipated house modification, the householder's evaluation of its comfort and general attitude to, and knowledge of, climatic design principles. Data on the seasonal and annual consumption of electricity, gas and heating oil for the sampled householders were obtained from the South Australian energy supply authorities.

In addition, interviews and discussions with architects, building-designer and house-construction firms, real estate agents and business firms dealing
in such products as domestic air conditioning and ceiling insulation were completed. Information from such sources was integrated in order to evaluate the relative importance of the "climate factor" in the design, construction, sale, occupation and modification of Adelaide's houses. Other methods of evaluation included the development of an index of climatic suitability (the combined effect of several attributes of design and structure contributing to thermal performance), the analysis of householders' three-fold evaluations of the comfort of their homes, and the use of stepwise regression procedures to develop operational models of household energy consumption.

It was thus shown that, both for houses of the past and in houses being built in the mid 1970's, low priority had been given to climatic suitability and indoor comfort in the processes of design and construction and in house sales or purchases. Consequently there was a relatively high level of weather induced discomfort, householder dissatisfaction and house modification to ameliorate conditions. This was particularly evident in the recently-constructed houses of the sample (in which, for example, 50 per cent of householders were dissatisfied with room temperatures in summer, and, within five years of moving into the house, ceiling insulation, outside awnings and air conditioning had been added to 50, 31 and 28 per cent of houses, respectively. The degree to which annual energy consumption was shown to be related to the size of the house, the number and nature of occupants, the major appliances and amenities of the houses and the household income is also shown. Rather than consider climatic suitability and potential comfort during design, construction and purchase of a house, most householders preferred to rely on relatively costly rectification procedures and/or energy consuming appliances in order to achieve the desired level of indoor comfort. Among builders and salesmen, the importance of such factors as costs, tradition, sales appeal, room layout and appearance were stressed.
Given the desirability of improved thermal comfort and the necessity of conserving finite energy resources, methods of effecting change in Adelaide's housing and some of the practical difficulties and implications are discussed. It is concluded that energy-conservation measures in existing houses may be best achieved by the individual householder, but the acceptability of climatically-suited, comfortable and energy-efficient new dwellings depends on the efforts of the designers, planners and builders on the one hand and the real estate agents, lending authorities and house-buying public on the other.