COMMONWEALTH OF AUSTRALIA
Copyright Regulations 1969

WARNING

This material has been reproduced and communicated to you by or on behalf of
The University of Adelaide pursuant to Part VB of the Copyright Act 1968 (the Act).

The material in this communication may be subject to copyright under the Act.
Any further reproduction or communication of this material by you may be the
subject of copyright protection under the Act.

Do not remove this notice.

External Copyright permission (if applicable) - permission received 2006.

For personal use only.

Further information about the conditions of use of this item is available from Special Collections at
the Barr Smith Library.
C.A.N.E.
INAUGURAL GENERAL MEETING

open to all interested in fighting
THE FEDERAL GOVERNMENT'S
URANIUM
POLICIES

Willard Hall
8.00pm
Thurs 1st May

[Image: Sign reading "Atomic Waste Storage"
With a message: "SAFETY: A PROGRESSIVE NUCLEAR TO SOLUTION CALLED ATOMIC WASTE"]

Campaign Against Nuclear Energy, 1/187 Prospect Road, PROSPECT, 5082; 42 2870 51 8422, After hours 278 2411
NUCLEAR POWER - BOON OR BANE

At present in the U.S., NPS Nuclear Power Stations supply about one percent of the national energy requirements. Forty reactors are now operating, generating 24,000MW. An MW is one million watts, i.e., enough electrical power to run 1000 single bar refrigerators. The U.S.A.E.C. now predicts 3,600 breeder reactors in the U.S. by the year 2000. This would imply about 5000 NP's in the world. The fast breeder reactor is to be built for the Tennessee Valley Authority as a 375 MW station. It has taken 1350 acres and $700 M to construct.

What has caused this flurry of construction? Is it the realization that our fossil fuel reserves are finite. These will come to an end when they are gone.... in Australia, the most optimistic estimates give us enough fossil fuels to last us about half way through the next century. The current energy crisis has many prominent people thinking that the end will be much closer. Just what is a nuclear power station? A "conventional" NP is a place where U fuel containing very little fissionable material decays into a waste product which also contains little fissionable material. This process releases tremendous heat which is transferred to steam which in turn is used to generate electricity.

What of the breeder reactor? A device about which we are hearing more and more. The attraction of the breeder reactor is its ability to generate more fuel than it consumes. Compared with the conventional reactor, a breeder has two vital features. First, more Pu is formed from U than fission into lighter elements plus heat; second, one can make an atomic weapon from Pu239 in much the same way as from U235 and to extract enough Pu239 for a bomb from a breeder's fuel is relatively simple and relatively cheap.

ON DT SPECIAL

With such a large commitment to maintaining a supply of power generation devices, one would expect to find a vast sum of money being poured into research and development on all types of power generation devices. Various are indeed involved, but most of it is channelled towards atomic devices. The reason for this is that there is a strong lobby maintained in Washington by the nuclear power firms.

And what of Pu, the substance used in breeder reactors? Pu is arguably the most dangerous substance on earth. It is extremely toxic chemically as well as being highly radio-active. It is hard to think of any wide-spread reason for ever assembling a tone of Pu in one place. Pu is the most conspicuous substance on earth. One millionth of a gram injected intravenously in mice has caused local cancer. A breeder reactor uses about three tons of Pu....

PROBABILITY OF ACCIDENTAL RELEASE

What is the probability of accidental release of radio-active material? Commenting on the release, in October 1973, of radioactive material from Britain's Windscale fuel production and reprocessing establishments, S.H. John Hill, Chairman of the U.K. Atomic Energy Authority suggested that society overreacts to nuclear events. Had the Windscale reaction led then been just one more industrial accident, he believed there would have been little public interest. As he said "With more and more radio-active material being processed, such leaks become inevitable..." If one of these leaks should be tolerated, another question, related to the public we are willing to pay to eliminate such events. In operating NPS there is always the problem of heat disposal. One of the worst things that can happen to a reactor is for the heat removal system to break down... This is especially true for breeder reactors. The power density of a breeder is too high, thus that of an ordinary nuclear reactor, around 400,000 watts of energy per litre is being generated in its heart. To receive this heat, molten sodium is pumped through the core, and this INTENSELY RADIATIVE coolant omegates around 360 degrees Celsius. The core is about two cubic meters in volume and the sodium flow rate is 5 cubic meters per second.

As most of the core volume is taken up by thousand of fuel and control rods, the sodium reaches high channel velocities and is subject to consider- able turbulence. Should its flow be immediately impeded, 400 KW/L of energy would fail to be removed, a situation which (if uncorrected) would quickly lead to a melt down of the reactor core. A breeder is hotter and faster than an ordinary reactor. Controlling it often means the same problems as developing from ignition to supercritical high. You can't turn Windscale by looking out of the window. It is essential to be able to shift down the reactor in the event of an emergency. Throughout nuclear power design, independent back-up systems are used, to the point where a melt down is incredible.

If the incredible does happen then designers have even allowed for the molten radioactive core to be divided into separate pools, each with its own cooling system. People are at risk from a variety of causes, ranging from our accident to being stuck with lightening. Risk levels associated with such accidents lie between one in a thousand to one in a million per person per year, or higher.

These levels can help fix the limits of both frequency and size for small reactor accidents. Differential calculations arise for large accidents where the total impact on society is important. By the year 2000 there could be 1000 reactors in operation.
It has been suggested that the odds against a large accidental release anywhere in the world should be at least 100 to 1 or even 1000 to 1. For an assembly system this could lead to a criterion that it should be designed, built, tested, operated and maintained so that no fault leading to a major release occurs in a million reactor years. If the number of demands on the system is ten per year, then the criterion would become "not more than one failure in two million demands".

AN UNACHIEVABLE HIGH RELIABILITY NECESSITIES

Experience has shown that no single system can achieve such a high reliability, both because of common mode failures and the impossibly high requirements on component reliability. What all this means is that amongst 1000 reactors operating for a century, a failure rate of one in ten million would mean a 1 in 10 chance of a major accident. At this point I wish to quote Professor Herace Alvey, a 1970 Nobel Laureate for physics: "The reactor construction claim that they have devoted more effort to safety than other technology have. This is true. Even from the beginning they have paid much attention to safety and they have been remarkably capable in achieving safety provisions. This is perhaps practical, but it is not reliable. If a problem is too difficult or to solve, one cannot claim that it is solved by pointing to all of the efforts made to solve it."

A small reactor upset accident would involve ten, or at hundreds, of casualties. Edward Teller once sincerely stated that we foolish people have to avoid against an excessively great food. And feed do exist, even in the nuclear power industry. In J.B.C. records show one plant where a radioactive effluent tank was accidently piped up to an employee drinking fountain. Of course, as the nuclear power programme in the U.S. speeds up, standards are going to decline... An added danger is what conventional leaks would be made by hostile forces, in civil or international war, to destroy any NPS and thus cause the release of radiation.

DISPOSAL OF ATOMIC WASTES

The disposal of atomic waste is a very important problem. When considering radioactive waste, the half-life of a substance is of prime importance. A half-life is the time taken for the radioactivity of a substance to decay to half of its current level. At a result of the fission process, the fuel rods in any reactor become contaminated with a variety of radioactive elements. Every year or so, the rods must be removed and taken to a nuclear fuel processing plant, where the impurities are removed and the fuel rods re-assembled. The recovery plants therefore accumulate large quantities of radioactively hot wastes, which must be concentrated and stored until the natural processes of atomic decay have reduced them harmless.

How are we to guarantee that the unavoidable human civilizations of even the 21st century, respect, or even estimate, the exact location of the nuclear graveyards which we are now bequeathing them? How can we create systems, against digging in old site, which will be powerful enough to last for 500 years?

Breeders waste contains significant quantities of Pu239, whose half-life is 24,400 years and which therefore needs to be contained for perhaps half a million years. The problem of storage is so great that it was even suggested that atomic waste could be buried just the run. Apart from the fears of a faulty launch and subsequent disasters, it has been estimated that by the year 2020 there would be as much waste being created that it would require a Saturn 5 launch every 6 hours.

Stored waste still generates heat. The British build their in above ground stainless steel tanks. The Americans bury some of their underground, watertight, out of sight out of mind. One such storage place in the U.S.A. is a former reservoir in the South East corner of Washington State.

The wastes at Hanford, in the form of liquids, are divided into three categories, those termed low level in terms of their radioactivity are piped directly into concrete pens on the site. Intermediate level wastes are stored more cautiously, being emptied into concrete covered trenches known as casks. The casks are open to the sky while the water in the wastes gradually seeps downwind taking the radioactive isotopes with it. The hottest wastes, known as high level, are buried in steel-lined concrete tanks in the ground. Because these wastes contain a significant proportion of short-lived radionuclides, they tend to boil in the tanks for a matter of three to five years after they have settled down.

These liquids are evaporated from the most toxic isotopes, Sr90 and Cs137 by ion exchange processes and carefully evaporated. The effluent or evisceration is to leave in the bottom of the tank solid "cake" of radioactive material. The Sr and Cs are then mixed separately above ground in stainless steel containers. The problem which brought atomic waste to light once a was in the case of the stainless steel tanks on about 20th April, 1973. At the time there was no way for technologists to know that there was a leak because they were in the process of pumping the liquid wastes into the 30 year old, $57,000 million ON SIT SPECIAL.
gallons of liquid. Even after pumping stopped on 26th April, the leak remained undetected — although the level of liquid dropped by nearly three feet and moisture burled into the ground near the ducts. By that time 115,000 gallons of the high-level waste had penetrated into the ground.

WASTE COULD EXPLODE.
A succession of leaks, explosions, evacuations, accidents and contamination incidents at Hanford have long drawn concern from members of the environmental protection agency and the national academy of sciences as well as the national press. The most important changes centre around the dumping of 300 kilogrammes (about 660 lbs.) of plutonium directly into 14 deep trenches. About 150 kilogrammes (enough to make 13 Nagasaki size bombs) have ended up in a trench numbered 29.

A recent A.E.C. study concludes that “due to the quantity of plutonium contained in the soil of 29, it is possible to conceive conditions which could result in a nuclear chain reaction”. According to Environmental Protection Agency experts who have studied the data, such a chain could cause the trench to explode, sending lethal plutonium into the Hanford area.

If I may quote Sir McFarlane Rumney “To a biologist, nuclear war is the final insult of power seeking men. The fact that all nuclear fission reactors are potential sources of fuel for bombs in, in my view, treason enough to oppose the whole concept of nuclear power. There are alternative sources of clean energy that could be used to replace the fossil fuels — solar radiation, geothermal heat, and the tides”.

So we have seen the problem involved in the design and operation of NPS. I have raised the question of a major incident or deliberate destruction of an NPS. You have heard of the massive problems of disposing of atomic wastes, and finally, the very likely possibility that small groups of terrorists could easily convert sufficient Pu to enable them to make an atomic bomb.

Up to this time, no NPS has been built in Australia, I hope that you will make sure it stays that way.

This article was prepared by Bertrand Russell Peace Federation.

RIDE AGAINST URANIUM

Uranium exports mean:
- destruction of aboriginal society for electricity and air-conditioning in New York and Tokyo;
- atomic bomb proliferation;
- increasing inequality in energy use;
- risks the ultimate pollution for all time from radioactive substances such as plutonium, which cause cancers and mutations;
- bureaucratic and centralised energy production controlled by a technocratic elite;
- maintenance of the autorical society (uranium exports for the Shah of Iran's oil);
- etc., all the way to oblivion.

In conjunction with Melbourne and Sydney, C.A.N.E. is cycling to Canberra to protect outside Parliament House, Canberra, against uranium mining. It is a relay legging proposition, but for the purpose of bringing attention to the issue, it will be extremely effective. Hopefully the publicity will also illustrate the effectiveness of the bicycle as a low energy means of transport.

To finance the expedition we hope to get bicycle manufacturers interested and individuals who could sponsor riders for so many cents a mile. At this stage at least one or two support vehicles going, which will be able to carry camping gear. It will also be able to warn motorists of the cyclists ahead and pick up riders.

Please, at the moment, see to leave Adelabyte on Thursday 9th May and reach Canberra on Tuesday 20th May at the same time as the contingent from Melbourne and Sydney.

In Canberra we will camp outside Parliament House and visit Causus and Wild-Tun.

At the moment, while Melbourne is expecting 300 plague, we are hoping for modest 10 or 20 for the 330 mile trip. We already have 6 definitions, and many others interested.

The distance is long but since we are following the bus route it will be possible for cyclists to join in our bike ride on the way.

This way we can show to the Australian people that mining and export of uranium must stop, and that the workers must exercise their final right by banning the stuff.

ON CUT SPECIAL