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A Generalized Approach to Modal Filtering for
Active Noise Control—Part I: Vibration Sensing

Nicholas C. Burgan, Scott D. Snyder, Nobuo Tanaka, and Anthony C. Zander

Abstract—Many techniques for controlling the noise radiated
by large structures require a large number of inputs to the con-
troller to produce global attenuation. Unfortunately, processing
the large number of inputs required is often beyond the capabilities
of current controllers. In attempting to overcome this problem,
many researchers have adopted various modal-filtering-type
techniques. Such techniques involve resolving a small number
of important global quantities (traditionally structural modes)
from a large number of sensor measurements. However, current
approaches require detailed structural information at the design
stage. Determining this for complex, real-world structures may be
very difficult, preventing many techniques from going beyond the
laboratory. The technique presented here outlines a new sensing
system strategy, where the radiated sound field is decomposed
using multipole radiation patterns, thereby alleviating the need
for detailed structural information. Simulation and experimental
results are presented.

I. INTRODUCTION

V IBRATION of and sound radiation from “large” struc-
tures is a problem that affects many organizations in

many ways: aerospace firms, submarine and ship builders,
electrical power utilities, and heavy vehicle manufacturers
are a few prominent examples. Noise and vibration problems
affect employees, prospective customers, and the surrounding
community.

Active noise and vibration control has been pursued in situ-
ations where passive techniques have proved ineffective. Ap-
plying active control techniques to large structures has com-
monly involved scaling up smaller laboratory systems, systems
that aim to minimize sound pressure amplitude or vibration at
a number of error sensor locations [1]–[3]. In attempting to
achieve more global control, large numbers of error sensors have
been used, resulting in large numbers of inputs to, and outputs
from, the control law and associated tuning algorithm. The re-
sulting systems are costly and difficult to tune. More impor-
tantly, they are often not successful in attenuating noise and vi-
bration problems, as current controllers have trouble processing
and attenuating large numbers of inputs [4].

When approaching the development of an active control
system, two design ideals are: 1) to be able to measure, and so
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attenuate, an error criterion that is directly related to acoustic
power or energy and 2) to minimize the number of input signals
that must be handled by the controller. Scaling-up smaller
active control systems in an attempt to tackle larger problems
may achieve 1), but at the detriment of 2). Sophisticated
sensing system design is critical if the two design ideals are to
be balanced.

In an attempt to do this, some researchers have adopted
variants of modal filtering for sensing system design [5]–[8].
Modal filtering is a process whereby a small number of
important global quantities, normally modal amplitudes, are
resolved from a large number of sensor signals. In this way, the
controller has to work with only a small number of important
global quantities, balancing the design ideals, simplifying
control law design, and maximizing convergence speed of the
tuning algorithm. Modal filtering was originally developed for
vibration control [5], with the amplitude of structural modes
chosen as the set of global system states. The amplitudes of the
structural modes were a convenient choice, being orthogonal
contributors to the total energy in a vibrating structure. Thus,
reducing these quantities was guaranteed to give a reduction in
the vibration levels of the structure.

The choice of global quantities to sense is not as straightfor-
ward in noise control, as structural modes are often not orthog-
onal contributors to the sound radiated by a structure [9], [10]
(assuming that the source of the noise is a vibrating structure).
Past work has based the sensing system design on combinations
of structural modes that are orthogonal in terms of the radiated
sound power. These combinations have been referred to as ra-
diation modes [11], and reducing their amplitude resulted in a
reduction of the radiated sound power. It is possible to design a
sensing system for measurement of these quantities using point
vibration sensors [10], [11] or distributed, shaped piezoelectric
polymer sensors [12], [13]. Fig. 1 shows how a typical modal
filtering system may work.

The drawback of the radiation mode approach is that the
technique assumes detailed knowledge of the structure, such
as shape and mode information. Obtaining this for a simple
structure in a laboratory setting, such as a simply supported
rectangular panel, is a simple exercise. Translating this to a
practical noise problem, such as radiation from a large electrical
substation transformer, is often not practical. The impracticality
is compounded by the fact that the vibration characteristics of
every one of these structures will be somewhat different. For
example, a “custom” sensing system would have to be designed
for every transformer.

The aim of the work to be presented here is to overcome
this need for structural mode information, to base the sensing
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Fig. 1. Typical arrangement of a modal filtering system.

system design on quantities that are easily envisaged and gener-
ally transferable from structure to structure. The radiation pat-
terns produced by acoustic multipoles will be used as a basis to
describe the radiated acoustic power from the target structure,
the multipoles being made up of (notional) arrays of acoustic
monopoles. The idea of using acoustic multipoles is not new.
It has been used previously in developing secondary acoustic
sources for active noise control [14]–[19]. However, the aim
here is different in that the radiation patterns produced by mul-
tipoles are used in the development of a sensing system.

In an associated paper [20] and in a previous paper [21],
an approach for development of acoustic sensing systems was
presented. In this paper, the same fundamental approach will
be adapted for the design of vibration-based sensing systems,
where the aim is attenuation of free field structural-acoustic ra-
diation. An example of such a problem is noise radiation from
an electrical transformer. Using structure-based (vibration) sen-
sors in an active structural acoustic control system can offer a
number of advantages over acoustic sensors located some dis-
tance away from the structure. For example, vibration sensors
facilitate the development of a more physically compact control
system. If the sensors and actuators are built into the structure,
a “smart structure” can be produced [22]–[24]. Second, there is
no acoustic propagation time delay in the system, often advanta-
geous in control law design. Finally, the signals from structural
sensors will not be as easily contaminated by contributions from
extraneous noise sources such as wind.

The approach being taken here to sensing system design is
fundamentally different to others presented previously in that
the characteristics of a set of acoustic basis functions are being
used to design a structural sensing system. Previous work has
used structural basis functions to predict acoustic radiation. By
reversing this world view, the need for detailed knowledge about
the structure will be eliminated.

What will be presented here is an abbreviated derivation of
the fundamental modal filtering problem. Much of the detailed
rationale [21] and development for the acoustic sensing problem
[20] has been presented elsewhere and so will not be repeated.

The focus here will be to use the approach to develop a design
methodology for vibration sensing systems. Simulation and ex-
perimental results for a simple problem will then be presented.

II. THEORETICAL DEVELOPMENT

A. Development of a Quadratic Performance Measure

To develop a sensing system as described in the introduction,
where a small number of global quantities are extracted from a
large number of point measurements, it will prove to be benefi-
cial to express the global performance measureas a quadratic
function

(1)

In (1), is a vector of (global) quantities to be measured,is a
positive definite, Hermitian weighting matrix, which in general
will be frequency-dependent, andindicates the Hermitian op-
eration. Starting with a quadratic performance matrix also has
intrinsic appeal for subsequent control law design.

The frequency-dependent weighting factors incan be used
as a guide in truncation of the problem, as these factors quan-
tify how efficiently a particular state in contributes to the
global performance measure. Control law design will be sim-
plified when the states are independent contributors to the error
criterion, because if the controller works to reduce the amplitude
of one state, the overall criterion will reduce. If is diagonal,
the system states in are then independent contributors to the
global performance measure.

In free space noise control, acoustic power is a common
global performance measure. The aim of the exercise in this
section is to express acoustic power as a quadratic error crite-
rion without knowledge of the vibrational characteristics of the
structure. Measurement of the states used in the resulting error
criterion statement is then the target of the sensing system.

In this development, it will be assumed that the sound source
is planar and radiating into a half space, as shown in Fig. 2.
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Fig. 2. Geometry for planar structure acoustic radiation.

However, the same development could be carried out for radia-
tion into another type of space, for example, an enclosure. The
important point to note is that there is no reliance on the struc-
tural information.

Consider then a planar sound source, situated in an infinite
baffle, subject to harmonic excitation and radiating into free
space, as shown in Fig. 2. The acoustic powerradiated by the
structure can be evaluated by integrating the far-field acoustic
intensity over a hemisphere enclosing the structure. Using the
geometry of Fig. 2, this can be expressed as

(2)

where is the acoustic pressure at locationin space, where
the location is defined by . The terms and
are the density of air and the speed of sound in air, respectively.

For the development here, let the pressure be decomposed
using the radiation patterns produced by acoustic multipoles as
a basis, in the same way that structural velocity can be decom-
posed using structural mode shape functions as a basis. As such,
we can write

(3)

where is the amplitude of theth multipole and is the
radiation transfer function for theth multipole, between the
origin and the location (i.e., the value of the radiation pattern
generated by the multipole at locationin space). The multipole
radiation patterns used in this exercise will be derived from an
array of in-phase and out-of-phase monopoles on the structure
surface. Such an arrangement is shown in Fig. 3. The radiation
patterns produced by arrays of monopoles were chosen, rather
than more conventional monopole, dipole, or quadrupole ar-
rangements, as it allows for more flexibility in adapting the tech-
nique to different situations. Using just monopoles, the array
can be easily expanded to cover a surface of any shape and area,
allowing the technique to be used in a sensing system for con-
trolling the sound radiated from any type of structure. The exact
geometry and extent of the array used will be problem-specific,
with its selection dependent on such factors as size and geom-
etry of the structure under consideration and the frequency range

Fig. 3. An array of monopole sources used to derive multipole patterns.

of interest. A specific example will be presented later in this
paper.

The pressure field radiated by a baffled monopole at any point
in space is given by

(4)

where is the volume velocity of the monopole,is the acoustic
wavenumber , is the angular frequency of oscillation,
and harmonic time dependence is assumed. For the development
here, all of the monopoles within a multipole will be defined
to have the same volume velocity amplitude, with phase of 0
or 180 . The amplitude of the th multipole will be defined
as the volume velocity of the monopoles which make up that
multipole.

If the infinite sum in (3) is truncated atacoustic multipoles,
acoustic pressure can be expressed in matrix form as

(5)

where is a row vector whose elements are the values of the
radiation transfer functions of themultipoles included in the
calculation, from the origin to the point, and is given by

(6)

and is a column vector whose elements are the complex am-
plitudes of the multipoles

...
(7)

As an example of how the radiation transfer functions for the
individual multipoles are calculated, consider one of the

multipoles consisting of monopoles which are all in phase.
Using (4), the pressure produced by the multipole at pointin
space would be

(8)

(9)
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where is the amplitude of the multipole

(10)

and , , and are the distances from the monopoles
which make up the multipole to the pointin space, as shown
in Fig. 3.

If (5) is substituted into (2), the pressure term can be expanded
to give

(11)

which can be written as

(12)

where is a square weighting matrix, whose th term is
given by

(13)

where the and terms are calculated using the same method
as was used to derive (10). Note that they are dependent on the
geometry of the multipoles and frequency but require no struc-
tural knowledge.

Equation (12) has the desired form which was presented
in (1). As expected, the weighting matrix will be frequency-
dependent.

As discussed, ideally would be diagonal, meaning that the
multipoles were independent contributors to the performance
measure. For a particular choice of multipoles this may not be
the case. However, will be symmetric and can be diagonal-
ized using an orthonormal transformation, as described shortly.

As a specific example, consider the radiation patterns from
an array of eight monopole sources, as shown in Fig. 4. To pro-
duce each multipole pattern, the amplitude of the monopoles
were chosen to be equal, while the phase relationship of the
monopoles is described by (14), shown at the bottom of the page,
where – are the transfer functions from multipoles
1–8 to the position, and – are the distances from the eight

Fig. 4. Specific multipole arrangement to be considered.

monopoles to the position. As can be seen, the first multipole
pattern is generated by having all of the sources in phase, the
second by having sources 1–4 in phase and 5–8 out of phase,
the third by having sources 1, 2, 7, and 8 in phase and 3–6 out
of phase, etc. The “phasing” matrix in (14) contains a set of or-
thogonal rows (and columns) composed of1, and is referred
to as a Hadamard matrix . Hadamard matrices can be gener-
ated of any size by for any integer [25]. They have been
used previously in the study of vibration transmission [26].

B. Evaluation of Multipole Amplitudes Using Vibration
Sensors

Consider now the estimation of the multipole amplitudes used
to model the acoustic space by measurement of vibration on the
structure surface. If the structural velocity was measured at one
of the notional monopole positions, then its value would effec-
tively be the superposition of the volume velocities of the eight
monopoles at that point (one from each multipole). Consider
measurement of the structural velocity at the position of the third
monopole (see Fig. 4). Recall that the phase relationship within
the multipoles is defined by therowsof a Hadamard matrix,
in (14). As such, thecolumnsof give the phase relationship
between the monopoles at a particular position. Thus, we can
write

vel

(15)

(16)

wherevel is the structural velocity at position 3, – are
the amplitudes of the multipoles (the amplitude of a multipole is

(14)
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defined as being the amplitude of the monopole sources which
comprise it), and

...
(17)

The 1 terms correspond to those in the third column of the
Hadamard matrix .

This process is similar to the way in which the vibration at
a point can be derived from structural modal amplitudes. The
vibration at a point is equal to the sum of the product of the
value of the mode shape functions at the point and the modal
amplitudes, that is,

vibration at a point

values of mode shape functions

modal
amplitudes

(18)

In the technique proposed here, the elements of the Hadamard
matrix perform the same operation as the mode shape functions
in a traditional analysis. Equations similar to (16) can be written
at all other monopole positions, and the equations can be com-
bined into a single matrix equation

(19)

where

vel

vel

...
vel

and vel –vel represent the structural velocity measure-
ments at the positions of the eight monopoles.

From (19), it is possible to resolve the multipole amplitudes,
from vibration measurements, using a matrix inversion

(20)

Equation (20) has the form of a standard modal filtering problem
[7]. Note that a Hadamard matrix satisfies the property
that [27]. Thus, the inverse of the transpose of the
Hadamard matrix is equal to the Hadamard matrix itself scaled
by the inverse of the size of the Hadamard matrix (the number
of multipoles)

(21)

III. SENSING SYSTEM DEVELOPMENT

The aim here is to develop a sensing system in which a
large number of sensor measurements are resolved into a small
number of global signals, from which the global performance
measure can be determined, as is shown in Fig. 1. If we
substitute (20) into (12), acoustic power can be described as

(22)

In (22), the vibration measurements are resolved into multi-
pole amplitudes by the terms (which act like modal
filters). The multipole amplitudes are then weighted by the
matrix to give the total radiated acoustic power.

At this stage, it is important to consider how such a system
could be implemented in practice. Referring to Fig. 1, if, for ex-
ample, an adaptive feedforward control system was to be used,
the large number of vibration signals would be decomposed
by into the multipole amplitudes, as with a standard
modal filtering problem. The multipoles with the highest radia-
tion efficiencies could be selected through consideration of the
terms in and the reduced number of signals corresponding to
these multipoles could then be passed through filters having fre-
quency characteristics defined by the terms in, which would
take into account their relative importance before being fed to
the control algorithm [28]. If feedback control were to be used,
the resolved multipole amplitudes would be used as the error
criteria for the controller and the weighting terms could be in-
corporated into the control system through a number of ways.
See, for example, [29]–[31].

For practical implementation of such a system, there are two
points which must be addressed.

• Are the multipoles independent contributors to radi-
ated acoustic power?The multipoles will only be inde-
pendent contributors to power if is diagonal. If the in-
puts to the controller are not independent, then a reduction
in one of them will not necessarily result in a reduction of
the global performance measure.

• How many multipoles are required to adequately
model an arbitrary sound field? The sizes of the
terms in determine the relative contributions that the
multipoles make to the global performance measure. The
largest contributors can be taken as sufficient to model a
sound field.

Consider the first of the questions posed above: is the weighting
matrix diagonal? In fact, while the rows of the Hadamard
matrix defining the phase relationship of the monopoles within
each multipole are orthogonal, the radiation patterns produced
by the eight multipoles are not. For example, for the multipole
geometry of Fig. 4, at 100 Hz the terms in the matrix are shown
in (23), at the bottom of the next page, with the order of the
multipoles (1–8) being the order of the rows in the defining ma-
trix in (14). The off-diagonal elements in (23) quantify the cross
coupling between the various multipole radiation patterns. The
pattern of cross coupling is similar to that seen when calculating
the acoustic power radiated from a simply supported rectangular
panel in terms of vibration modes [28]. For example, the first
multipole is similar to a (1, 1) panel structural mode, the eighth
multipole is similar to a (3, 1) panel mode, and the cross cou-
pling between the multipoles [quantified by the (8, 1) or (1, 8)
elements in the matrix in (23)] is similar to the cross coupling
between the panel modes.

As is symmetric, it can be diagonalized using an or-
thonormal transformation [32]

(24)
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where is a unitary matrix whose columns are the eigenvec-
tors of , and is a diagonal matrix whose elements are the
associated eigenvalues. Substituting this into (22) yields

(25)

The eigenvalues of plotted as a function of frequency in the
range 25–250 Hz are shown in Fig. 5. The associated eigen-
vector matrix at 100 Hz is given in (26), shown at the bottom
of the page, where the eigenvectors (columns) are arranged in
order of decreasing (corresponding) eigenvalue.

Consider now the second question posed, that of how many
multipoles are required to adequately model a given sound field.
With subject to an orthonormal transformation, it is now the
magnitude of the eigenvalues in for a given frequency that
provides the answer, as these eigenvalues are effectively the ra-
diation efficiencies of orthogonal combinations of multipoles.
Observe from Fig. 5 that, over most of the frequency range of
interest, the radiation efficiencies of three of the multipole com-
binations (from the eigenvector matrix in (26), essentially mul-
tipoles 6, 7, and 8) are significantly below the others. This sug-
gests that reasonable modeling of the sound field will be ob-
tained by considering only the first five multipole combinations,
as defined by the first five columns of the eigenvector matrix in
(26). It follows that reasonable sound field attenuation may be
achieved by implementing a sensing system that resolves and
attenuates only the first five multipole combinations. Hence, a
five-input control system would be required.

Equation (25) is of the desired form as described in (1). The
multipole amplitudes are resolved from a number of sensor mea-
surements using , and orthogonal groupings of the mul-
tipoles are then formed using. So together and
form the modal filter weights. The former is frequency-inde-
pendent and the latter has a weak frequency dependence which

Fig. 5. Eigenvalues of the first eight eigenvectorsA , plotted as a function of
frequency.

can be ignored (i.e., the values from a particular frequency can
be used).Thus, the modal filter weights can be approximated as
fixed valueswhen implementing the sensing system. The terms
of the diagonal matrix weight the transformed multipoles ac-
cording to their relative contributions to the radiated acoustic
power. As seen in Fig. 5, the terms vary strongly with frequency,
and their frequency dependence cannot be ignored. To imple-
ment this practically, in an adaptive feedforward arrangement,
digital filters can be built with characteristics defined by the
terms in . If required, a further simplification can be made.
Observe in Fig. 5 that, although the terms invary with fre-
quency, the ratios between them do not vary greatly. When adap-
tive feedforward control is used, it is the relative importance of
the quantities, rather than their absolute values, which is impor-
tant. Thus, the weights can also be approximated as fixed values.

Hz (23)

Hz (26)
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Fig. 6. Schematic diagram of the panel.

The resulting sensing system can be implemented very easily.

1) Measure the structural velocity at the measurement loca-
tions.

2) Multiply the vector of structural velocity measurements
by the fixed terms in and (resulting in a
greatly reduced number of outputs).

3) Pass the small number of resulting signals through a set
of filters with characteristics defined by or, as a fur-
ther simplification, multiply them by another fixed set of
weights to account for the relative sizes of the terms in.

4) Finally, the resulting signals are input to the controller.

IV. SIMULATION

To evaluate the effectiveness of the proposed technique, nu-
merical simulations were performed. The problem of control-
ling the sound radiated by a simply supported, rectangular, baf-
fled, steel panel was considered. Referring to Fig. 6, the panel
had dimensions 1.212 m ( ) by 0.612 m ( ) with a thickness
of 0.004 m. The panel was excited by a disturbance point force
located at , , and a single control point
force was considered, located at , . In cal-
culating the response of the panel, the first 51 structural modes
of the panel were considered. The frequency range of interest
was up to 250 Hz, a range which includes the first ten natural
frequencies of the panel, which are listed in Table I.

The sensing system used in the simulation consisted of an
array of eight structural velocity sensors attached to the panel.
The positions of the sensors were chosen to correspond to the
positions of the monopole elements that make up the multipoles.
This resulted in sensors with locations given in Table II.

The aim of the simulation here is to investigate how much
power reduction is achievable by minimizing different numbers
of multipoles and comparing these values to the maximum pos-
sible power reduction using the given control force location (see
[33] for a description of how to calculate this). An open-loop
feedforward approach is used here. It must be emphasized that
the aim of the exercise is to examine the quality of the sensing
system design approach: how close to the theoretical optimum
result will this sensing system take the controller.

TABLE I
FIRST TEN NATURAL FREQUENCIES OF THEPANEL

TABLE II
STRUCTURAL VELOCITY SENSORLOCATIONS

The expression for radiated sound power on which this tech-
nique is based is shown in (25). The approximation for radi-
ated acoustic power is effectively a weighted sum of the struc-
tural velocity signals. The Hadamard matrix resolves
the multipole amplitudes from the structural velocity signals.
The eigenvectors of the matrix resolves orthogonal com-
binations of the multipoles, and, which contains the eigen-
values of the matrix, weights the orthogonal combinations
of multipoles according to their relative contributions to radi-
ated acoustic power.

To simulate a technique that can be practically implemented,
fixed values of the weakly frequency-dependent terms were
used. In (25), , and are frequency-dependent. In the
simulation, the values at 100 Hz were used for all frequencies.
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Fig. 7. Comparison of minimizing 1–8 multipoles.

It is important to keep in mind that the sensing system has
been designed withouta priori knowledge of the mode shapes
of the structure. Equation (25) is an approximation to the ra-
diated acoustic power as it has been truncated. In theory, if an
infinite number of multipoles were used, the expression would
be equivalent to the true power. The number of multipoles to
be included is chosen by examining the associated eigenvalues,
which represent the relative contribution of a multipole to ra-
diated acoustic power. Only multipoles with eigenvalues above
0.1% of the maximum eigenvalue are included.

The amount of power attenuation achievable by including a
certain number of multipoles in the analysis can be calculated
by using quadratic optimization [33], [34] on (25). In (25), the
structural velocity signals can be expressed in terms of the
primary and control forces on the panel. It is then possible to find
the value of the control force that will minimize the value of the
expression, i.e., the minimum power. The attenuation achievable
is given by the difference between the radiated acoustic power
from the panel when the primary force is operating in isolation
and when the primary and control forces are operating together.

Quadratic optimization was performed using various num-
bers of multipoles. The attenuation achievable using the given
control force location, and including one to eight multipoles, is
shown in Fig. 7. Also shown in the figure is the maximum at-
tenuation possible using the given control force configuration.
To calculate the maximum possible attenuation, the following
expression for power is used:

(27)

where is the vector of modal velocity amplitudes, andis the
“power transfer matrix.” The derivation of (27) is given in [35].
Quadratic optimization can be used on (27) in the same way as

described above, by expressing the modal velocity amplitudes
in terms of the control force.

Several features are important to observe in Fig. 7. First, there
is a considerable increase in the attenuation achievable by min-
imizing two multipoles instead of one. There is a smaller ben-
efit obtained in minimizing three multipoles over two, but, for
this configuration, very little further improvement is seen in
increasing the number of multipoles considered from three to
eight.

Since the maximum amount of attenuation possible is nearly
achieved using just three multipoles, it is sensible to resolve just
three multipoles. In doing this, eight sensor signals are resolved
into three error signals to be input to the controller. By reducing
the number of inputs to a controller, its design is simplified and
convergence speed is maximized [36].

Second, when minimizing eight multipoles, the attenuation
achievable at low frequencies is approximately equivalent to the
maximum attenuation possible with the given control force lo-
cation. The attenuation achievable at higher frequencies when
minimizing eight multipoles is less than the maximum possible
attenuation. This is due to inaccuracies in resolving the multi-
poles with only eight sensors, as it has been shown elsewhere
[21] that eight accurately described multipoles will give the
maximum achievable result in this range.

V. EXPERIMENTAL VERIFICATION

Experiments were conducted to verify the theory and sim-
ulations presented in the previous sections. The aim was to
closely mimic the optimal open loop control law to minimize
the sensing system output, and then assess the resultant level
of acoustic power attenuation.
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Fig. 8. Schematic representation of the experimental arrangement.

Fig. 9. Experimental arrangement, showing the panel and accelerometers.

A. Experimental Setup

Referring to Fig. 8, a rectangular steel panel the same
dimensions as in the simulation, 1.212 m by 0.612 m and a
thickness 0.004 m, was fixed in a steel base designed to provide
simply supported boundary conditions. Two electrodynamic
shakers were attached to the panel, one used as the disturbance
and the other as the control input. The shakers were located in
the same positions as in the simulations described previously.

Structural velocity was measured by integrating the signals
from eight accelerometers attached to the plate, at the same
locations as those used in the simulations described previously
(Table II). The disturbance input was random noise, low-pass
filtered at 325 Hz.

Adaptive feedforward control was implemented to mimic the
open-loop control law, using a Causal Systems EZ-ANC II. The
control filters were FIR with 150 taps (for more information on
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Fig. 10. Power attenuation achieved minimizing three multipoles.

adaptive feedforward control, see [33]). The inbuilt modal fil-
tering capabilities of the EZ-ANC II enabled weighted combina-
tions of the accelerometer signals to be used as error criteria. All
of the input (accelerometer) signals were multiplied by a numer-
ical weight and summed together to form an error criteria. The
weights were calculated to incorporate the, , and terms
from (25). Note that, as in the simulations, the weightings used
were only correct at 100 Hz, but, by using these weights, no fil-
tering was required to deal with the frequency dependence of the
multipole combinations and their radiation efficiencies. Conse-
quently, each error signal fed to the adaptive algorithm corre-
sponded to a multipole combination. The number of multipoles
to be minimized was chosen by selecting the active number of
error signals being fed to the algorithm.

The sound power radiated by the panel was estimated by mea-
suring the sound intensity on a 100 mm (direction) by 100 mm
( direction) grid of points on a plane 200 mm above the surface
of the panel. This resulted in the sound intensity being measured
at 15 points in the direction and nine points in the direc-
tion and a 1.4 m 0.8 m measurement plane (slightly larger
than the panel). The sound intensity measurements were made in
12th octave bands and the measurement process was automated
using a computer-controlled traverse integrated with a Bruel and
Kjaer PULSE system. Note that this method only approximately
measures the sound power radiated by the panel as some of the
sound radiated by the panel would have not have been radiated

perpendicular to the panel surface and so would have not been
recorded on the measurement plane.

A photograph of the experimental panel is provided in Fig. 9.
The panel is shown in its steel base with the eight accelerome-
ters attached to it. The grid, drawn in black, on the panel surface
represents the grid of points above the panel at which the inten-
sity was measured.

With the primary force operating in isolation, the acoustic in-
tensity was measured at all points above the panel. The intensity
measurements were integrated to give the approximate radiated
acoustic power from the panel. Control was then implemented
and the intensity at all points above the panel were remeasured
and the power radiated by the plate recalculated. The amount of
attenuation achieved using a particular method of control was
calculated by comparing the controlled power level to the pri-
mary power level.

B. Results

Fig. 10 shows the attenuation that was achieved when the
amplitude of three multipole combinations were resolved by the
modal filtering arrangement and attenuated by the controller.
Shown in Fig. 11 is a similar result, where only one multipole
combination is resolved. Simulated results are also shown for
comparison.
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Fig. 11. Power attenuation achieved minimizing one multipole.

Observe that there was good correlation between the experi-
mental results and those obtained from simulation. As would be
expected when using a global error criterion, a large reduction
in the power associated with the resonance peaks was obtained
of approximately 20 dB for the first peak. When one multipole
is minimized, the attenuation of the first peak in the power spec-
trum is greater than when three multipoles are minimized. This
is because in the former case all of the control effort is focused
on the first peak in the power spectrum (which corresponds to
the first multipole), whereas in the latter case the control effort
is distributed across the first three peaks (corresponding to the
first three multipoles).At higher frequencies, the maximum pos-
sible attenuation using only one control shaker is very low (see
Fig. 7), and this is evident in the experimental results.

It can be seen in Figs. 10 and 11 that the experimental at-
tenuation at very low frequencies (i.e., less than approximately
30 Hz) was less than predicted in the simulation. The amount
of attenuation at these frequencies was not expected to be very
large for a number of practical reasons. First, the accuracy of
the cancellation path transfer function estimate used in the adap-
tive algorithm [33] would be questionable at such frequencies.
Second, with a sample rate of 5208 Hz, it would be expected that
performance at frequencies below a few tens of Hertz would be
poor [4]. Additionally, noise from the sensing system will
impede the adaptive algorithm at very low frequencies. The gen-
eral roll-off of results at low frequencies is not uncommon.

Shown in Fig. 12 are the results obtained when three multi-
poles were minimized, neglecting the eigenvalue weighting
of the groupings of multipoles. As can be seen, the results were
not greatly affected in this instance. Modal filtering alone pro-
duces a satisfactory result.

Finally, it must be emphasized again that, when considering
the results shown here, the objective was to develop a new
sensing strategy and show that a good representation of acoustic
power can be obtained with a very limited number of outputs
from the sensing system. No effort was made to optimize the
type of control law used, and in fact this sensing strategy could
be adapted to be used with a range of control laws.

VI. CONCLUSION

A new sensing system design strategy has been presented
that enables a modal filtering-type exercise to be performed on
the acoustic field radiated by a structure, without knowledge of
the structural mode shape functions. The radiation patterns pro-
duced by acoustic multipoles were used as a basis to describe
the sound field, and a method was presented for calculating the
appropriate weights to be applied to an array of structural sensor
signals to resolve the multipole amplitudes.

To demonstrate the effectiveness of such a sensing system,
simulated and experimental results were presented for sensing
and then controlling (using adaptive feedforward control) the
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Fig. 12. Power attenuation achieved minimizing three multipoles, neglecting eigenvalue weighting.

sound power radiated by a rectangular panel. There was ex-
cellent correlation between the simulated and experimental re-
sults. The results indicate that the output from such a sensing
system gives an accurate representation of a global error crite-
rion and can be used by a control system to produce a global
result with a minimum number of inputs to the control law and
tuning algorithm.
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