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Abstract— This paper presents a highly energy effi-

cient alternative algorithm to the conventional workload

averaging technique for voltage quantized dynamic volt-

age scaling. This algorithm incorporates the strengths of

the conventional workload averaging technique and our

previously proposed Rate Selection Algorithm, resulting

in higher energy savings while minimizing the buffer size

requirement and improving the overall system stability

by minimizing the number of voltage transitions. Our ex-

perimental work using the Forward Mapped Inverse Dis-

crete Cosine Transform computation (FMIDCT) as the

variable workload computation, nine 300-frame MPEG-

2 video sequences as the test data, and a 4-level voltage

quantization shows that our algorithm produces better

energy savings in all test cases when compared to the

workload averaging technique, and the maximum energy

saving for the test cases was 23%.

1. INTRODUCTION
In CMOS circuits energy dissipation for processing a data

sample is given by [2]:

E = nCV 2
dd (1)

where, n is the number of clock cycles per sample period,
C is the averaged switched capacitance per clock period, and
Vdd is the supply voltage. Due to this quadratic dependence
of energy on voltage, supply voltage reduction is the most
effective method of energy minimization. However, a reduc-
tion in supply voltage increases the circuit delays as shown
by Equation 2[6]:

Td =
CLVdd

µCox(W/L)(Vdd − Vt)2
(2)

where, Td is the delay, Vdd is the supply voltage, CL is the
total node capacitance, µ is the mobility, Cox is the oxide
capacitance, Vt is the threshold voltage, and W/L is the
width to length ratio of transistors.
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In highly sequential data-dependent computations, such
as iterative variable workload computations, an increase in
delay is acceptable provided the worst-case time constraint
is not violated [6]. For such computations, the data sam-
ples with sub-optimal workload values can be processed at
dynamically scaled down voltages without incurring a per-
formance loss. As a result, the overall energy dissipation for
the computation can be significantly reduced.

Even though the minimum energy dissipation in dynamic
voltage scaling (DVS) is achieved with continuous voltage
levels, it is impossible to prepare a stable supply voltage in
such systems [3]; as an alternative, a small number of voltage
quantizations has been proposed [2]. If the voltage can be
dithered during a sample period, a 4-level voltage quantiza-
tion produces a very good approximation to the continuous
voltage level DVS. However, voltage dithering technique in-
troduces additional voltage transitions, approximately dou-
bling the total number of voltage transitions in the system.

The use of buffers and workload averaging has been shown
to significantly improve energy savings in DVS [2]. The Rate
Selection Algorithm (RSA) [1] demonstrates an alternative
technique to the conventional workload averaging technique.
This algorithm is specifically developed to minimize energy
dissipation in voltage quantized DVS. This algorithm uses a
single buffer, and where possible selects rates that are equal
to quantized rate values. At quantized rate values the en-
ergy dissipation of voltage quantized DVS equals the energy
dissipation of continuous voltage level DVS. However, the
experimental results of [1] indicate that RSA only produces
better energy savings than the conventional workload aver-
aging technique if voltage is not dithered.

In this paper we present an improved rate selection algo-
rithm named Average-based Quantized Rate Selection (AQRS)
that produces better energy savings than the conventional
workload averaging technique [2]. This algorithm uses the
strengths of both the workload averaging technique and RSA
in determining the rate. Moreover, this algorithm takes ad-
vantage of the convex nature of the energy versus rate rela-
tionship to improve energy savings by giving a higher prior-
ity to smaller quantized rates in its rate selection process. As
a result the algorithm produces better energy savings, uses
half the buffer size requirement of the conventional workload
averaging technique, and improves overall system stability
by eliminating the need for voltage dithering. To illustrate
the performance of our algorithm we used nine 300-frame
MPEG-2 video sequences as test data, the Forward Mapped
Inverse Discrete Cosine Transform [4] as the variable work-
load computation, and a 4-level voltage quantization.
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The rest of the paper is organized as follows. Section
2 presents the energy model, and section 3 describes the
proposed AQRS algorithm. The experimental setup is given
in section 4, and section 5 presents the results. Finally,
section 6 presents the concluding remarks.

2. ENERGY MODEL
Combining Equations 1 and 2, energy per data sample is

given by equation 3 [2]:

E(r) = E0r

[
Vt

V0
+

r

2
+

√
r

Vt

V0
+ (

r

2
)2

]2

(3)

where, E0 is a scaling factor with units of energy, r =
f/fref is the normalized processing rate (0 ≤ r ≤ 1), V0 =
(Vref − Vt)

2/Vref , Vt is the threshold voltage, and fref is
the frequency at maximum voltage Vref .

Using Equation 3, the normalized energy and rate rela-
tionship for the continuous voltage levels model and voltage
quantized model using a 4-level voltage quantization corre-
sponding to normalized rates of 0.25, 0.5, 0.75, and 1.0 is
shown in Figure 1.

The ideal continuous voltage levels model requires the
availability of unique supply voltages for all rate values.
However, in voltage quantized DVS only a fixed number
of quantized rates (voltage levels) are available. Therefore
processing samples with rate values that do not equal to
quantized rates can be handled by two different techniques:

The first technique is to process the sample at the next
highest quantized rate. For example, if a sample has a nor-
malized rate value of r = 0.6, the sample will be processed
at r = 0.75 using the quantization shown in Figure 1. This
technique is known as DVS without voltage dithering, and
the energy dissipation for this model is represented by the
stair-step curve in Figure 1.

The second technique processes part of the sample at one
quantization and the remainder at another quantization.
For example, the same sample above with the normalized
rate value of r = 0.6 using this model would have 40% of
the sample period processed at r = 0.75 and the remainder
(60%) at r = 0.5. This technique is known as DVS with
voltage dithering, and the energy dissipation for this model
is represented by the straight-line curve in Figure 1.

As Figure 1 shows, the voltage dithering technique signif-
icantly improves the energy savings. However, these energy
savings are achieved at the cost of increased voltage tran-
sitions in the system (approximately one additional transi-
tion per sample period), degrading the overall stability of
the DVS system.

Finally, Figure 2 shows the energy difference between the
voltage quantized DVS with voltage dithering and without
voltage dithering, and the continuous voltage levels DVS.

3. AVERAGE-BASED QUANTIZED RATE
SELECTION

3.1 AQRS Algorithm
The RSA algorithm in [1] uses buffered workload to where

possible select rates that are equal to quantized rates. As
Figure 2 demonstrates, the energy difference between the
voltage quantized model and the continuous voltage lev-
els model approaches zero at quantized rates. Although
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Figure 1: Energy vs. Rate
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Figure 2: Energy Difference in Voltage Quantized
Dynamic Voltage Scaling

the RSA algorithm effectively selects the smallest quantized
rate that always clears at least one buffer location, the ex-
perimental results demonstrate that the algorithm always
produces a small percentage of rates corresponding to the
highest quantized rate (r = 1.0 normalized). Because of
the convex nature of the energy versus rate curve, even a
small percentage of rates at the highest quantization can be
detrimental to the overall energy savings. For example, the
number of samples that can be processed at each quantiza-
tion of Figure 1 for the same energy dissipation is given by
Equation 4:

1 · Er=1 =




16.87 · Er=0.25

4.49 · Er=0.5

1.91 · Er=0.75

(4)

where, n · Er=i represents the number of samples n and
the normalized energy at normalized rate value of r = i.
As this equation demonstrates, the comparative energy of
a single sample processed at the highest quantized rate is
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approximately equivalent to 17 samples processed at r =
0.25, 5 samples at r = 0.5, and 2 samples at r = 0.75.

The AQRS algorithm uses the average buffered workload
to estimate the required rate, and then selects the smallest
quantized rate value that is sufficient to process the aver-
age buffered workload and at the same time empty one or
more buffer locations. Because of this policy, the algorithm
minimizes the rate values at the highest voltage quantiza-
tion. Similar to the RSA algorithm, the AQRS algorithm
prevents any buffer over-flow or under-flow conditions be-
cause the rate values are always selected from the actual
total buffered workload.

The AQRS algorithm calculates the rate values in two
steps: the first step calculates the average buffered workload
(Equations 5 and 6), and the second step selects the smallest
quantized rate value (Equation 7). The rate selection policy
identifies the quantized rate r that is realistic (≤ wt), clears
the first buffer location (≥ w[n]), and satisfies the estimated
average rate (≥ ra). Equation 7 shows the details of the
rate selection policy.

wt =

B−1∑
k=0

w[n − k] (5)

ra =
wt

B
(6)

r =




r0 if wt ≥ r0 & w[n] ≤ r0 & ra ≤ r0

r1 if wt ≥ r1 & w[n] ≤ r1 & ra ≤ r1

.....
rp−2 if wt ≥ rp−2 & w[n] ≤ rp−2 & ra ≤ rp−2

rp−1 if wt ≥ rp−1

wt otherwise
(7)

where, wt is the total buffered workload, ra is the integer
portion of the average buffered workload, r is the selected
rate value, B is the buffer size, p(≥ 2) is the number of
quantized rates (voltage levels), and r0, .., rp−1 are quantized
rate values (0 < r0 < r1 < .. < rp−2 < rp−1). If the rate
values are normalized rp−1 = 1.

3.2 Sample Calculations
Figure 3 demonstrates how the AQRS algorithm calcu-

lates the rate r for a hypothetical data sequence. For this
example a buffer size of 3 and a 4-level voltage quantization
is used. The four normalized quantized rates are 0.25, 0.5,
0.75, and 1.0, corresponding to 16, 32, 48, and 64 non-zero
coefficients, respectively, for the FMIDCT computation [4].
The Equations 5, 6, and 7 modified to suit this example are
given by Equations 8, 9, and 10, respectively.

In the zeroth sample period, the first workload (15) is
buffered into buffer location w[n − 2] and Equation 8 pro-
duces 15 as the total buffered workload wt for this period.
Next, the evaluation of Equation 9 produces 5 as the av-
erage rate ra for this sample period. Since wt is less than
the smallest quantized rate (16), all the if conditions in the
Equation 10 are evaluated to FALSE and the OTHERWISE
part of the if condition sets the rate r to wt (r = 15). In
the first sample period, the wt is 16, ra is 5, and w[n] is
0, so Equation 10 evaluates to TRUE for the first if con-
dition and hence produces 16 as the rate. Similarly in the
second, third, fourth and fifth sample periods, the algorithm
produces rates of 32, 32, 48, and 48, respectively.

Workloads: 15, 16, 63, 62, 62, 64, .....

0

w[n-2]w[n-1]w[n]

 15

Buffer Contents: Unprocessed Work

Wt

15

ra

5

1  16 16 5 0

 0   0

Data Shifting Direction:

2  63 63 21 0

 0

 0

3  62 93 31 31 0

4  62 123 41 61 0

5  64 139 46 62 13

Period w[n] r

0 15

0 16

0 32

0 32

0 48

13 48

Figure 3: AQRS Algorithm Sample Calculations

wt =
2∑

k=0

w[n − k] (8)

ra =
wt

3
(9)

r =




16 if wt ≥ 16 & w[n] ≤ 16 & ra ≤ 16
32 if wt ≥ 32 & w[n] ≤ 32 & ra ≤ 32
48 if wt ≥ 48 & w[n] ≤ 48 & ra ≤ 48
64 if wt ≥ 64
wt otherwise

(10)

3.3 Complexity
The AQRS algorithm can be implemented by a constant

number (B−1) of add operations, a single divide operation,
and a data-dependent number of compare (nc) and and (na)
operations. The constant B is the buffer size, and nc and
na are defined by Equations 11 and 12, respectively.

2 ≤ nc ≤ 3p − 2 (11)

2 ≤ na ≤ 2(p − 1) (12)

where, p is the number of quantized voltage levels. A com-
parison of the variation of operational complexity for AQRS
algorithm, RSA algorithm, and the workload averaging tech-
nique as a function of buffer size is shown in Figure 4. Since
the number of operations for AQRS algorithm and RSA
algorithm are workload dependent, an upper and a lower
bound for the number of operations have been plotted.

4. EXPERIMENTAL SETUP
To demonstrate the energy savings achievable with the

AQRS algorithm we compare its energy dissipation results
with the results of the conventional workload averaging tech-
nique [2]. For the energy analysis we use the Forward Mapped
Inverse Discrete Cosine Transform (FMIDCT) algorithm [4]
as the data-dependent computation and nine MPEG-2 com-
pressed video sequences as test data. The video sequences
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Figure 4: Operational Complexity vs. Buffer Size

Parameter Value

Frames in a GOP 15
I/P Frame Distance 3
Horizontal Picture Size (Pixels) 176
Vertical Picture Size (Pixels) 144
Frame Rate 30 frames/sec
Bit Rate 4 Mbits/sec
Profile Main
Level Low
Chroma Format 4:2:0

Table 1: MPEG-2 Compression Parameters

comprise of 300-frame color video sequences in QCIF format
commonly used in the research community. More specifi-
cally, the names of the video sequences are Akiyo, Carphone,
Coastguard, Container, Foreman, Hall, Mother, News, and
Silent [7]. The MPEG-2 codec software used for video com-
pression and decompression was acquired from the MPEG
Software Simulation Group [5].

The MPEG-2 video compression parameters used in our
experimental work are given in Table 1.

To study the impact of buffer size on the performance
of the algorithm, we varied the buffer size from 2 to 25.
For energy calculations, we assumed the maximum supply
voltage and the threshold voltage (Vt) to be 3.3V and 0.7V,
respectively. Moreover, we assumed that energy loss in the
DC-DC converter to be negligible.

The simulation tool used for our energy analysis was MAT-
LAB (Version 5) from MathWorks Inc.

5. RESULTS
Figures 5 and 6 show the energy savings achieved by the

AQRS algorithm compared to the conventional workload
averaging technique. For all nine test video sequences the
algorithm produced better energy savings than the workload
averaging technique, and the energy savings ranged from 1%
to 23% for the 300-frame video sequences as the buffer size
was varied from 2 to 25.

The AQRS algorithm achieves these energy savings by
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Figure 5: Energy Savings Comparison with Averag-
ing (Undithered)
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Figure 6: Energy Savings Comparison with Averag-
ing (Dithered)

minimizing the higher quantized rates during rate selection.
Table 2 demonstrates the changes in workload distribution
compared to the corresponding distribution using the RSA
algorithm. As this table shows, there is nearly a 100% reduc-
tion in workload distribution at r = 1.0 and a 75% or higher
reduction for a majority of test cases at r = 0.75. More-
over, there is a small reduction in distribution at r = 0.25
and the majority of workload distributions are concentrated
at r = 0.5. Finally Figure 7 shows the comparative work-
load distributions for all nine test video sequences using the
workload averaging technique, the Rate Selection Algorithm
[1], and the AQRS algorithm. For this comparison, a buffer
size of 10 is used. This figure further highlights the efficiency
of AQRS algorithm in reducing the higher quantized rates,
particularly in the 0.5 > r ≥ 1.0 range as demonstrated in
Table 2.
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Figure 7: Rate Distribution Comparison for All Test Video Sequences
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Sequence r=0.25 r=0.5 r=0.75 r=1.0

Akiyo -5.84% 155.78% -96.76% -100.0%
Carphone -20.47% 172.18% -80.69% -99.48%
Coastguard -35.91% 203.99% -77.83% -99.93%
Container -6.82% 110.66% -36.76% -99.11%
Hall -12.24% 49.07% -85.61% -99.96%
Foreman -19.08% 119.55% -82.73% -99.82%
Mother -11.36% 104.65% -82.67% -99.03%
News -14.12% 209.67% -75.21% -99.26%
Silent -7.59% 96.56% -62.01% -99.85%

Table 2: Workload Distribution Comparison -
AQRS vs. RSA

6. CONCLUSION
In this paper we have presented a highly energy efficient

alternative algorithm to the conventional workload averag-
ing technique for voltage quantized dynamic voltage scal-
ing. The algorithm named Average-based Quantized Rate
Selection is based on the workload averaging technique [2]
and our Rate Selection Algorithm [1]. The algorithm mon-
itors the total buffered workload value, uses the average
buffered workload to estimate the rate, and where possible
selects rates that are equal to quantized rates. At quantized
rates, the energy dissipation of voltage quantized DVS ap-
proaches the energy dissipation of continuous voltage level
DVS. Moreover, the estimation of rate using the average
buffered workload reduces higher quantized rates, there by
reducing the overall energy dissipation. Our experimen-
tal work using the Forward Mapped Inverse Discrete Co-
sine Transform as the data-dependent computation for DVS,
nine MPEG-2 test video sequences as test data, and a four-
level voltage quantization shows that our algorithm pro-
duces better energy savings than the workload averaging
technique for all test cases, and the energy savings achieved
ranges from 1% to 23%.

Apart from the additional energy savings, our algorithm
also has two key advantages over the averaging technique.
First, the algorithm only requires one buffer or half the
buffer size requirement of the averaging technique, making
it very effective for applications with reduced memory and
area requirements. Second, the algorithm eliminates the
need for voltage dithering, there by improving the overall
stability of the system by minimizing the number of voltage
transitions.

Finally, as Figure 4 shows, the AQRS algorithm has a
higher operational complexity compared to the RSA algo-
rithm. However, comparison of the AQRS and the workload
averaging technique shows that for buffer size B > 15, the
overhead of the former (upper and lower bound) is smaller
than the latter, making the AQRS algorithm a very en-
ergy efficient, low complexity replacement algorithm for the
workload averaging technique in voltage quantized dynamic
voltage scaling.
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