
JAPARA – A Java Parallel Random Number Generator Library for
High-Performance Computing

P.D. Coddington and A.J. Newell
School of Computer Science, University of Adelaide

Adelaide, SA 5005, Australia
paulc@cs.adelaide.edu.au

Abstract

Random number generators are one of the most com-
mon numerical library functions used in scientific applica-
tions. The standard random number generator provided
within Java is fine for most purposes, however it does not
adequately meet the needs of large-scale scientific applica-
tions, such as Monte Carlo simulations. Previous work has
addressed some of these problems by extending the stan-
dard Random API in Java and providing an implementation
that includes a choice of several different generator algo-
rithms. One issue that was not addressed in this work was
concurrency. Implementations of the standard Java ran-
dom number generator use synchronized methods to sup-
port the use of the generator across multiple Java threads,
however this is a sequential bottleneck for parallel appli-
cations. Here we present a proposal for further extending
the standard API to support parallel generation of random
number streams, which we have implemented in JAPARA, a
Java Parallel Random Number Generator Library for high-
performance computing.

1. Introduction

Java has the potential to be an excellent language for
developing large-scale science and engineering applica-
tions [5]. Random number generators are commonly used
in these types of “Java Grande” applications, so it is impor-
tant to provide access to an efficiently implemented, high-
quality random number generator library through a stan-
dardized Java application programming interface (API).

Existing random number generators available in the stan-
dard Java libraries are inadequate for use in some applica-
tions such as large-scale Monte Carlo simulations. Previous
work by Coddington et al. [2] addressed many of the defi-
ciencies of the standard java.util.Random class [14],
by extending this class to provide:

• a better default algorithm with a longer period;

• a choice of high-quality, long-period generator algo-
rithms;

• methods for checkpointing and restarting the genera-
tor;

• methods for generating arrays of random numbers, to
avoid method call overhead.

However one issue that was not addressed in this work
was support for concurrency. Scientific applications that
make heavy use of random number generators, such as
Monte Carlo simulation, are often implemented so as to
take advantage of parallel processing, since they typically
require large amounts of computation and are generally
straightforward to parallelize.

Java is well-suited to the development of parallel ap-
plications due to its inbuilt support for threads. However
the reference implementation of the standard Java random
number generator java.util.Random suggests that the
method for random number generation be synchronized, so
it is thread-safe. For parallel programs such as a parallel
Monte Carlo simulation, having a random number genera-
tor that is synchronized is a sequential bottleneck that could
greatly limit the speedup and scalability of the parallel pro-
gram. Even for sequential programs, synchronized methods
in Java can have a significant performance overhead [2].

In this work, we have adapted the random number gen-
erator library of Coddington et al. [2] into a library called
JAPARA (JAva PArallel RAndom number generator li-
brary), which provides a selection of random number gen-
erator algorithms that allow the independent generation of
random number streams on different threads, so there is no
need for synchronized methods for generating the random
numbers. JAPARA was designed to be easy to use, with
a familiar interface to Java programmers. It is based on
the previous sequential library developed by Coddington et

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

al. [2], which provided some simple extensions of the stan-
dard java.util.Random API. JAPARA uses the mini-
mal additional extensions to this API that are required to en-
able support for parallel random number generation, while
still providing the same interface and performance for se-
quential applications.

2. Random Number Generators for Java

There are three different classes providing access to ran-
dom number generators in the standard Java libraries [14].
They all have shortcomings that make them inadequate for
supporting large-scale scientific applications.

The java.security.SecureRandom class pro-
vides an interface to cryptographically strong random num-
ber generators, which are special-purpose generators that
use hardware devices and/or non-linear algorithms to pro-
duce sequences that are not predictable (unlike the simple
linear generators commonly used in numerical libraries).
Cryptographic generators are not used in scientific simula-
tions requiring large quantities of random numbers, since
they are much too slow, or in the case of hardware de-
vices, are not reproduceable. The SecureRandom class is
targeted at cryptography applications, which have different
requirements than scientific simulations, and consequently
this class has an API that is unsuitable for this purpose.

The java.util.Random class provides a well-
structured random number generator interface. There is
a fundamental method called next which returns up to
32 random bits, and the other methods use this to pro-
duce random numbers of different types – nextBoolean,
nextInt, nextLong, nextFloat and nextDouble.
There is also a nextGaussian method to produce ran-
dom numbers with a Gaussian (or normal) probability dis-
tribution, rather than a uniform distribution.

Finally, java.Math provides a random method,
which is just a simpler interface to the nextDouble
method of java.util.Random.

The java.util.Random class provides a good basis
for a random number generator for large-scale scientific ap-
plications, however it has several limitations for these types
of applications:

1. The main problem is that there is no choice of different
generator algorithms. Because random number gen-
erator algorithms are deterministic (i.e. they produce
pseudo-random rather than truly random numbers), no
generator is perfect, so there is always the possibility
that it will adversely affect results for a particular ap-
plication. For this reason simulations should always be
done using at least two different generators to check
that the choice of generator does not affect the results.

2. The generator algorithm used is quite good, and the pe-
riod (the number of random numbers that can be gen-
erated before the sequence repeats itself) is adequate
for current hardware, however it would not adequate
for the kinds of large-scale simulations that are cur-
rently possible on large supercomputers, and will be
common even on commodity systems in 10-20 years
time. A default generator with larger period would be
better for large-scale simulations.

3. Scientific applications such as Monte Carlo simula-
tions typically require such long execution times that
it is essential to checkpoint the state of the simulation,
which includes the state of the random number gener-
ator. How the state of a generator is stored is different
for different generators – it may be anything from a
single integer value to a large array of floating point
numbers. Methods to save and restore the state of the
generator to an object or a file are useful to hide details
of the generator’s state.

4. Many large-scale scientific applications require gener-
ating large arrays of random numbers. Since generat-
ing a random number is typically very fast (of the order
of a microsecond), method call overhead can be signif-
icant. It may be more efficient to provide a method that
fills a specified array with random numbers, rather than
using a loop that calls a standard method to generate a
single random number.

5. Standard implementations of the API use a synchro-
nized method for generating the random numbers, so
that it is thread-safe. For parallel applications, hav-
ing a random number generator that is synchronized
is a sequential bottleneck that could greatly limit the
speedup and scalability of the parallel program.

JAPARA addresses the final point concerning concur-
rency, which will be discussed in Section 4 of this paper.
JAPARA is an extension of previous work by Codding-
ton et al. [2], which addressed the first four points in the
above list, by making minimal extensions to the standard
java.util.Random class. This class is designed so that
a programmer can utilize a different generator algorithm by
extending the class and just overriding the constructor and
the next() method, which is used by all the other meth-
ods for generating different types of random numbers. All
these other methods can just be inherited, or overridden if it
would be more efficient to do so.

Rather than leaving it to the programmer to extend the
standard java.util.Random class with their own gen-
erator implementation, Coddington et al. provided a library
consisting of several classes implementing different gen-
erator algorithms. The programmer can then select from
any of these classes. The recommended mechanism for

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

doing this, which is used by the SecureRandom class
in the java.security package [14], is to provide a
static method getInstance which can be used to obtain
an instance of a specified random number generator class.
The Java classname for the particular algorithm can be op-
tionally supplied to the getInstance method to specify
which algorithm should be used. The method will attempt
to instantiate an object of that class, or throw an exception
if it is not found. If no parameter is supplied a default gen-
erator is returned. This mechanism allows different gener-
ators to be called without having to modify the application
program, by just specifying the generator name as an input
string to the program. It is also trivially extensible to pro-
vide implementations of new generators.

The extensions to the standard java.util.Random
API that are used by JAPARA to address the limitations
listed above are shown in Figure 1.

Several other random number generator libraries for Java
have been developed, mainly to provide Java implemen-
tations of different random number generator algorithms.
These include RngPack [3] and randomX [15], both of
which provide a good choice of high-quality, long-period
generators. However these libraries are not designed to ex-
tend the standard java.util.Random library, which we
believe is a positive feature of our work. Also they do not
address all of the other problems listed above, in particular
the issue of concurrency.

3. Parallel Random Number Generators

In principle it is straightforward to develop a parallel ran-
dom number generator in Java by just running different in-
stances of a standard sequential random number generator
in different threads, thus avoiding the synchronization over-
head from running a single instance of the generator that is
accessed from all threads. However this is not as simple as
it might seem, since we need to avoid having overlapping
or correlated sequences on different threads.

For all of the commonly used random number generator
algorithms, there are various techniques for ensuring that
sequences can be generated independently (i.e. with no syn-
chronization required) on different threads and that there is
no overlap (and minimal correlation) of these sequences [1].
These techniques require some synchronization (or com-
munication) during the initialization of the generator in the
constructor, but after that, calls to the methods for generat-
ing a new random number can be unsynchronized, so there
is no overhead for concurrent execution.

There are four main techniques used for parallel random
number generation:

• Leapfrog – The sequence of random numbers that
would be produced by the sequential random number

generator algorithm is partitioned among the proces-
sors in a cyclic fashion, like a deck of cards dealt to
card players, so that process (or thread) p of an ap-
plication with N processes (or threads), which would
typically be run in an N processor parallel machine,
generates the sub-sequence Xp,Xp+N ,Xp+2N , . . .

• Sequence Splitting or Boosting – The sequence is
partitioned among processes (or threads) in a block
fashion, by splitting it into non-overlapping contigu-
ous sections, with the size of each section being much
larger than would be required for any simulation. This
can be done for generator algorithms that allow effi-
cient boosting to an arbitrary element in the sequence.

• Independent Sequences - The initial seeds are chosen
in such a way as to produce a long period indepen-
dent sequence on each processor (this is only feasible
for certain generators such as lagged Fibonacci gener-
ators).

• Parameterization of the Generator - The generator
has a different parameterization on each processor, so
there is effectively a different generator algorithm run-
ning on each processor.

Most of these approaches will only work for certain gen-
erator algorithms, however at least one of these approaches
will work for all of the commonly used algorithms. Sev-
eral freely available parallel random number generator li-
braries have been developed that use one or more of these
techniques, mostly for use with message-passing MPI pro-
grams, for example PRNGlib [13] and Scalable Library for
Pseudorandom Number Generation (SPRNG) [12].

To our knowledge there has been no implementation of a
parallel random number generator library in Java. L’Ecuyer
et al. have developed a Streams and Substream pack-
age [11] for for C++ and Java that could in principle be used
for parallel random number generation, however it only uses
a single generator algorithm. Our goal was to develop a
parallel library that conformed as much as possible to the
standard java.util.Random API, with the improve-
ments introduced by Coddington et al. [2]. In particular, we
wanted to provide a choice of generator algorithms, which
is very important for large-scale scientific applications.

4. Design

The programming model that JAPARA is aiming to sup-
port is that a user instantiates a separate random number
generator (RNG) object for each thread. These RNG objects
can then generate their own sequences of random numbers
completely independently, so that no synchronization is re-
quired.

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

public class Random extends java.util.Random {

Random();
Random(long seed);

// Allow a choice of generator algorithm
* public static Random getInstance(String type) throws RandomException;
* public static Random getInstance();

// Initialize a new independent generator
** public static void setSequenceSeed();

public void setSeed(long seed);

// Enable checkpointing of generator state
* public Object getState();
* public void setState(Object seeds);
* public Object readState(String filename);
* public void writeState(String filename);

protected int next(int bits);
public void nextBytes(byte[] bytes);
public boolean nextBoolean();
public float nextFloat();
public double nextDouble();
public int nextInt();
public int nextInt(int n);
public long nextLong();
// Added for completeness

* public long nextLong(long n);

// Generate an array of random numbers
* public void nextInt(int[] random_ints);
* public void nextLong(long[] random_longs);
* public void nextFloat(float[] random_floats);
* public void nextDouble(double[] random_doubles);

public double nextGaussian();

}

Figure 1. The API for the JAPARA random number generator library to support large-scale scientific
(Java Grande) applications. Extensions to the standard java.util.Random API proposed in previous
work by Coddington et al. are marked with asterisks. Additional extensions described in this paper
to support parallel execution are marked with a double asterisk. Comment lines indicate the purpose
of the extensions.

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

The main requirements in designing and implementing
JAPARA were to ensure that it provides independent non-
overlapping sequences for each instance of the generator,
while conforming as closely as possible to the sequential
API of java.util.Random, and its extension by Cod-
dington et al. described in the previous section. In particu-
lar, JAPARA should be able to be used for sequential as well
as parallel programs, in which case the interface should be
the same as that defined by Coddington et al., i.e. a simple
extension to java.util.Random.

Perhaps the simplest approach to constructing the paral-
lel random number generator would be to set the seed once
when the first generator object is instantiated (for exam-
ple in the main program or a master thread), and then all
subsequent generator objects that are instantiated in other
threads would be automatically seeded using the techniques
described in Section 3 to ensure that the sequences for each
generator instance do not overlap. This is the approach used
in L’Ecuyer’s Streams and Substream package [11].

However it is difficult to see how to implement this ap-
proach in a simple way and still conform to the semantics
of the constructor for the standard java.util.Random
API. In the standard API, the programmer can specify a par-
ticular seed value to initialize (or seed) the generator in the
constructor, e.g.

Random rand = new Random(mySeed);

or alternatively, seed the generator after the new Ran-
dom object has been instantiated, by using the setSeed
method, e.g.

Random rand = new Random();
rand.setSeed(mySeed);

We could design the parallel API so that the first Random
object is instantiated and seeded in the usual way (as above),
and all subsequent Random objects are automatically given
an appropriate seed using the techniques for creating inde-
pendent random sequences. For example, we could perhaps
do this by ignoring any seed specified in the constructor and
replacing it by the automatically generated seeds, although
this would obviously violate the syntax of the standard API,
and it may be that the programmer really does want to spec-
ify the seeds for all the generators. Alternatively we could
perhaps indicate that automatic seeding should be used by
not specifying a seed in the constructor, e.g.

Random rand = new Random();

However this would also violate the syntax of the standard
API, for which an empty constructor means that the seed
should be set from the current value of the clock.

One possibility would be to overload the constructor by
passing it a dummy value of a particular type, such as a
string. However this is not very elegant, and if we are going

to extend the standard API by adding something like this,
we may as well add something that makes it clear what is
actually happening, i.e. a method that automatically gen-
erates the seeds for a new independent non-overlapping se-
quence of random numbers. In the current implementation
of JAPARA this method is called setSequenceSeed,
as shown in Figure 1. Another possibility that we have
recently considered would be to overload the setSeed
method so that if it is called with no parameters (which is
not allowed in the standard sequential API) then the seeds
are automatically generated. This is perhaps a more elegant
way of indicating what is actually happening, i.e. the seeds
are being set automatically with no input from the user.

In order to automatically seed the generator for each new
instance, for example by using boosting or the independent
sequence method, we use the concept of two different kinds
of seeds:

• A class seed (i.e. a static variable in Java) – this is
set the first time that the user creates any RNG object,
and changed (e.g. boosted) to ensure non-overlapping
sequences every time setSequenceSeed is called.

• An instance seed (i.e. an instance variable that is
different for every RNG object) – by default this is
set based on the seed specified in the constructor or
setSeed, but is set to be the class seed every time
setSequenceSeed is called.

Note that these seeds store the initial state of the gener-
ator for each sequence, so in general they will not be just
a single integer value like the seed that is used to initialise
the generator in the Random constructor or the setSeed
method.

5. Implementation and Algorithms

Currently we have developed parallel versions of two
of the five different generator algorithms implemented by
Coddington et al. [2], and are working on parallelizing the
remaining algorithms. We have also implemented a paral-
lel version of a new combined multiple recursive generator.
The generators currently availble in JAPARA are:

• LCG64 – a 64-bit Linear Congruential Generator
(LCG) with a prime modulus, recommended by
L’Ecuyer [10].

• MultLFG – a multiplicative Lagged Fibonacci Gener-
ator (LFG) with large lags [2].

• CMRG – the combined multiple recursive generator de-
veloped by L’Ecuyer [8, 7] and used in his Streams and
Substreams package [11].

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

Generator Initialization Time (secs)

Parallel CMRG 0.041
Parallel LCG64 0.097

Parallel MultLFG 0.347

Table 1. Time required to initialize 4 indepen-
dent sequences in 4 threads for different gen-
erators in JAPARA.

These generators are all parallelized in the standard way us-
ing either boosting (for the LCG and CMRG) or indepen-
dent sequences (for the LFG).

Since JAPARA provides independent generator in-
stances for each thread, the execution time for each instance
of the random number generator will be the same as mea-
sured for the sequential implementation [2], as long as there
is one thread per processor.

The only performance overhead in the parallel version is
in the initialization of each instance of the generator. Cur-
rently setSequenceSeed is implemented as a synchro-
nized method, to ensure that there are no race conditions
in initializing the generators. This means that the initial-
ization of the generators is done sequentially, which could
potentially be a bottleneck when there are a large number
of threads, particularly for the lagged Fibonacci generator
which needs to initialize an array with the order of a thou-
sand elements.

Some preliminary measurements of the initialization
time are shown in Table 1, measured on a Sun server con-
taining four 296 MHz UltraSPARC-II processors. Since se-
quence creation is sequential, the times increase roughly
linearly with the number of threads, and are independent
of the number of processors used. Although the initializa-
tion times are significantly larger than the generation times
(which are of the order of a microsecond on similar hard-
ware [2]), they are still quite small, however they could
potentially become significant (particularly for the lagged
Fibonacci generator) for very large numbers of threads.

We are investigating the possibility of initializing the se-
quences concurrently. In principle, setting the seeds using
the methods outlined in Section 3 could be done indepen-
delty (and therefore in parallel) as long as the sequence
number is known. So we expect that setSequenceSeed
does not have to be synchronized, although it will need to
call a synchronized method to update and return a static
variable storing the number of sequences. However this
synchronized method should be very fast and allow for sig-
nificant concurrency in the initialization of the sequences.

6. Conclusions and Future Work

Java provides a random number generator in
java.util.Random that is adequate for most applica-
tions, however both the interface and the implementation
lack many of the qualities required for some large-scale
scientific applications. In particular it lacks support for
efficient concurrent execution.

We have designed, implemented and tested a Java ran-
dom number generator library called JAPARA, which ex-
tends the standard Java API to provide additional function-
ality for supporting large-scale scientific applications on
high-performance computers, including a choice of a num-
ber of different high-quality random number generator al-
gorithms.

Each of the generators is implemented so that synchro-
nization is only required for the initialization of the gen-
erators, but not for the generation of random numbers, thus
enabling efficient concurrent generation of independent ran-
dom number streams in multiple Java threads. JAPARA can
also be used for sequential Java programs, providing the
same interface, functionality and performance as our pre-
vious sequential version of this library.

JAPARA is still under development. We are currently
working on implementing parallel versions of the other
commonly-used random number generator algorithms that
were implemented in the sequential version of this library,
as well as some new algorithms.

We are plannning to modify the implementation of the
generators so that the initialization of new sequences can be
done in parallel. Rather than having a synchronized method
to generate the new sequence, which leads to sequential ini-
tialization, the only synchronized method will be assigning
a unique sequence number to each generator instance. For
all the current algorithms, the independent sequences can
be generated in parallel using only this value and the initial
seed for the generator.

Making this change to the design of JAPARA will also
make it easier to support other models of concurrent pro-
gramming. Although the JAPARA library was designed
with the goal of supporting parallelism using Java threads, it
could very easily be modified to work with a message pass-
ing or distributed computing programming paradigm. The
only feature that would need to be changed is the mecha-
nism for assigning a unique sequence number to each gen-
erator instance, which can be done using a synchronized
method in JAPARA, but could be trivially implemented in
any parallel programming model.

We are also working on more rigorous tests of the gen-
erators, both sequential (individual streams for each gen-
erator instance) and parallel (correlations between streams
in different instances of the generator). All of the sequen-
tial generator algorithms used in JAPARA have been sub-

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

jected to a battery of tests and are known to be of high
quality, so the only real issue for sequential testing is to
ensure that the algorithms have been correctly implemented
in Java. So far we have just used two simple tests to pro-
vide a “sanity check” of the Java implementation. Firstly,
the generators were checked to see if the sequence of num-
bers produced by nextDouble(), which must be in the
range [0, 1), have an average of a 0.5 within statistical er-
rors. The second test test checks for a uniform distribution
of the random numbers by generating histograms of the val-
ues of nextDouble() over small intervals. We plan to
apply some more stringent tests to all the generator algo-
rithms before the JAPARA code is publicly released. We
are also working on methods for testing the independence
of the parallel random number generator streams. There
has been surprisingly little research in this area.

References

[1] Paul D. Coddington. Random Number Generators for
Parallel Computers. The NHSE Review,
http://nhse.cs.rice.edu/NHSEreview/, 1996 Volume,
Second Issue.

[2] P.D. Coddington, J.A. Mathew and K.A. Hawick.
Interfaces and Implementations of Random Number
Generators for Java Grande Applications. Proc. of
High Performance Computing and Networks (HPCN)
Europe ’99, Amsterdam, April 1999.

[3] Paul Houle. RngPack.
http://www.honeylocust.com/RngPack/.

[4] F. James. A review of pseudorandom number
generators. Comp. Phys. Comm. 60, 329 (1990).

[5] Java Grande Forum. Making Java Work for High-End
Computing. Java Grande Forum technical report
JGF-TR-1, http://www.javagrande.org/reports.htm.

[6] P. L’Ecuyer. Efficient and portable combined random
number generators. Comm. ACM 31:6, 742 (1988).

[7] P. L’Ecuyer. Combined Multiple Recursive
Generators. Operations Research 44, 816–822, 1996.

[8] P. L’Ecuyer. Good Parameter and Implementations
for Combined Multiple Recursive Random Number
Generators. Operations Research 47, 159–164, 1999.

[9] P. L’Ecuyer and T.H. Andres. A Random Number
Generator Based on the Combination of Four LCGs.
Mathematics and Computers in Simulation 44, 99
(1997).

[10] P. L’Ecuyer, F. Blouin, and R. Couture. A Search for
Good Multiple Recursive Generators. ACM Trans. on
Modeling and Computer Simulation 3, 87 (1993).

[11] P. L’Ecuyer, R. Simard, E. J. Chen and W. D. Kelton.
An Object-Oriented Random-Number Package with
Many Long Streams and Substreams. Operations
Research 50, 1073–1075, 2002.

[12] M. Mascagni, D. Ceperley, and A. Srinivasan.
SPRNG, A scalable library for pseudorandom
number generation. Proc. Third Int. Conf. on Monte
Carlo and Quasi-Monte Carlo Methods in Scientific
Computing, June 1998.

[13] N. Masuda and F. Zimmermann. PRNGlib: A Parallel
Random Number Generators library. Technical
Report CSCS-TR-96-08, CH-6928 Manno,
Switzerland, 1996.

[14] Sun Microsystems Inc. Java Platform 1.2 API
Specification.
http://java.sun.com/products/jdk/1.2/docs/api/.

[15] John Walker. The randomX package for Java.
http://www.fourmilab.ch/hotbits/source/randomX/
randomX.html.

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

