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Abstract: Secondary data selection for estimation of the clutter covariance matrix in 
space-time adaptive processing (STAP) is normally obtained from cells (range rings) in 
close proximity of the cell under test. The aim of this paper is the analysis of performance 
improvement of Space-Time Adaptive radars when secondary data selection is obtained 
by discriminating between quasi-homogeneous areas on the ground which generate 
clutter with different statistics (i.e. clutter edges including littoral, farmland-wooded hills 
or rural-urban interfaces). The algorithm presented in this paper, referred to as the 
Different Homogeneity Detector (DHD), has been tested with simulated data obtained by 
using a general clutter model and a uniform linear array. 

 

1. Introduction 
It is known that space-time adaptive processing (STAP) for airborne radars allows the effect 
of clutter and jamming interference competing with targets to be reduced and higher signal to 
noise and interference ratios (SINR) to be obtained [1]-[2]. The efficacy of these adaptive 
filtering techniques is related to the goodness of estimation of the total interference covariance 
matrix (i.e. clutter plus noise and jamming), which in turn depends on the interference 
statistics and has to be estimated on the fly. In practice, the unknown interference covariance 
matrix is estimated in the ideal condition of statistically independent and identically 
distributed (IID) training data, which are assumed to be representative of the interference 
statistics in a cell under test. When working with real data, in presence of discrete clutter 
returns, targets, jamming and in nonstationary and/or heterogeneous clutter scenario, 
effectiveness of STAP can be highly reduced [3]. Therefore a number of algorithms, the so-
called nonhomogeneity detectors (NHD), have been developed in recent years [4]. These 
detectors are employed to identify and excise outliers thereby improving the performance of 
covariance matrix estimation algorithms by using only homogeneous training data sets. 
However NHDs are only partially effective when the training data used to estimate the clutter 
covariance matrix contains two or more homogeneous areas. This contribution addresses this 
problem. Real data sets are often characterized by a collection of quasi-homogeneous adjacent 
subsets. For example, there can be an area covered by grass and then another with trees 
followed by a river or a sandy beach followed by the sea. The aim of this paper is the 
definition of an algorithm which discriminates between adjacent areas on the ground which 
generate clutter with different, but known, statistics. This approach is not proposed as a 
replacement for statistical nonhomogeneity detection, but as a preprocessing step to enhance 
the ability of these detectors to filter other types of nonhomogeneities such as targets or 
discrete clutter returns. The effects of clutter edges on covariance matrix estimates were first 
analyzed by Melvin using different clutter powers and mean-square velocity spreads of clutter 



Doppler spectra [3]. Melvin used the normalized signal-to-interference-plus-noise ratio, also 
called SINR loss, for evaluating STAP performance in heterogeneous environment. In this 
paper we characterize the normalized SINR as a function of the number of training samples. 
In addition we compare SINR losses for heterogeneous training data to those obtained when 
DHD is applied in conjunction with STAP. Due to the unpredictability of heterogeneity 
characteristics, this analysis extends the results in [3] for practical scenarios of operational 
interest.  
 

2. STAP and DHD in heterogeneous environment 
Consider a simulated clutter data set originated by an ideal terrain area including two different 
and adjacent regions, say “region A” and “region B”. Consider an airborne radar flying above 
region A and moving towards region B. In the Different Homogeneity Detector (DHD) 
algorithm, data from an array antenna operating over a narrow band of frequencies and a basic 
airborne radar scenario are considered: L-band, pulse Doppler, sidelooking radar with no 
platform crab and a velocity of 100 m/s; broadside transmit direction, uniform weighting on 
the transmit illumination function; ten half-wavelength spaced spatial channels (N=10, 

2d λ= ), each with identical cosine squared illumination functions and 180  null 
beamwidths. Each channel measures fifteen pulses (M=15), with NM samples collected over 
L range cells. In addition, we compute all data for a single slant range of 50 km, thereby 
avoiding the range-dependent influence of the two-way antenna pattern, and at a platform 
height of 9 km. The number of clutter patches on a clutter ring is set to 180cN = , and 

2 1av T dβ = = . Suppose that, initially, there are no outliers in the simulated data set. It is 
known that received radar signals from target-free areas can be modelled as Gaussian 
processes. The in-phase and quadrature components are measured to fully represent the 
baseband complex envelope of the received signal. The I and Q components are stored as real 
and imaginary numbers in complex valued samples of the complex envelope. For clutter 
signals formed from the summation of many independent clutter patches, the central limit 
theorem can be invoked. The DHD problem can be formulated as follows. Consider data from 
the first pulse and the first spatial channel. These L complex samples are assumed to be 
Independent circular complex Gaussian random variables with zero mean and variance 2

Aσ  or 
2
Bσ . The square modulus of the complex samples, 2 , 1, ,kz k L= … , is exponentially 

distributed with mean (and standard deviation) 22A Aη σ=  or 22B Bη σ= . Suppose that the 
parameters Aη  and Bη , corresponding to region A and B respectively, are known (they could 
be estimated from data) and that A Bη η< . Consider a moving window which averages the 

square modulus of P samples: 
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independent random variables, if P is not too small, the sample mean is approximately 
Gaussian and its mean is Aη , when all lx  comes from region A, Bη  when all lx  comes from 
region B, and linearly increases from Aη  to Bη  when the moving window goes from region A 
to B (linearly decreases from Bη  to Aη  when the moving window goes from region B to A). It 
is known that the variance of the sample mean decreases with increasing sample size. Thus, to 
detect the border between regions A and B, we calculate the sample mean and compare it with 
the threshold ( ) 2A Bλ η η= + . The performance of this methods depends on the window size 
P. It is observed that other independent samples could be obtained from the other channels 
and pulses. In any case DHD must be performed before STAP, and a window size of sixty 



pulses ( 60P = ) from the first pulse and the first channels allows the sample variance to be 
sufficiently reduced and the border detection to be performed before Space-time processing.  
With this result, if there is a target competing with the clutter in region A, all the cells from 
region B can be excised. This permits STAP to be performed using only homogeneous 
training data. In presence of outliers, this permits NHD to be employed only for quasi-
homogeneous secondary data. Similar results can also be obtained using the Generalized Inner 
Product (GIP) or the test statistics characterizing the Modified Sample Matrix Inversion 
(MSMI) test or the Sample Matrix Inversion algorithm (SMI) [4]. This permits STAP to be 
performed simultaneously with NHD and also with DHD using efficient algorithms.  
 

3. Theoretical considerations and experimental results 
In this section, simulated airborne radar data are used to illustrate the performance 
improvements achieved when DHD is used in conjunction with STAP in heterogeneous 
environment. Detection of targets in clutter involves a decision between two hypotheses 

0 1: , :H H α
0 1 0k/H c,k n,k k/H T k/Hx = x + x x = s + x  , (1) 

for the k-th realization, where n,kx  is the receiver noise vector, α   is a complex constant of 
unknown amplitude and uniformly distributed phase, and c,kx  and Ts  are the space-time 
snapshots of clutter and target, respectively. It is known that the linear transversal filter 

ky = H
k kw x , with { };g E=

0 0

-1 H
k k T k k/H k/Hw = R s R x x , ( 1MNC ×∈kw  and g is an arbitrary 

constant) maximizes the output SINR [1-2]. The covariance matrix kR  is usually unknown 
and is commonly replaced with its maximum likelihood estimate (MLE)  
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XXR x x . The adaptive weight vector is then given by 
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kk Tw = R s . The 

performance of this approach, also called the Sample Matrix Inversion (SMI) algorithm, 

depends on how closely 
∧

kR  approximates kR . The performance as a function of the number 
of training samples has been theoretically characterized in a well-known paper by Reed, 
Mallet, and Brennan [5], using the normalized SINR. We indicate with c,n c nR = R + R  the 

clutter plus noise covariance matrix, 2
n M Nσ ×=nR I , { } 2
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kV  is the matrix of the clutter space-time steering vectors, ( )2
1, ,n Ncdiagσ ξ ξΣ = … , 2 1nσ = , 

and kξ  represents the clutter-to-noise ratio per element and per pulse, Data snapshots are 

generated as 1 2=c,n c,n kx R b  [6], where ( ) ( ) ( )( )1 2 ,1 ,1randn NM j randn NM= + ×kb , and 

‘randn’ indicates the Gaussian random number generator. Normalized SINR is a random 
variable with a beta distribution [5]. We use Monte Carlo simulation to calculate its sample 
mean, as a function of the number of data snapshots ( L ), on 400mcN =  Monte Carlo trials. 
Fig. 1 displays results obtained for edge effects and the following scenario (see [3]): 

, 0v A m sσ =  (primary data, region A) , 1.2v B m sσ =  (secondary data, region B: sea region 
with a surface wind speed greater than 10 m/s [7]), and 100=c,A c,BR R . The presence of 
Intrinsic Clutter motion (ICM) determines a temporal decorrelation [1] which can be taken 
into account through the Hadamard product of the covariance matrix with the matrix 

( ) ( )( )0 , , 1toeplitz Mρ ρ= − ⊗ NA 1… , where N1  is a N N×  matrix of ones and 



( ) ( )( )2 2 2 2 2 2
0exp 8 vi j i j T f cρ π σ− = − − . Fig1 shows the results when the beam is steered 

broadside, ,1.5 , 2 ,3 , 4 ,5L NM NM NM NM NM NM= , the target normalized Doppler 
frequency is 0.3df = , with DHD (all training data from region A) and without DHD ( 2L  
secondary data from region A and 2L  from region B). We observe that, with target free 
training data, DHD data elaboration allows the normalized SINR averaged on mcN  Monte 
Carlo trials to be indistinguishable from the analytic solution (RMB rule): 

{ } ( ) ( )2 1E NSINR L NM L= + − + . Fig. 2 shows the same results in the case of multiple 
borders (A, B, A, B, A) with DHD (all training data from region A) and without DHD ( 10L  
secondary data from region A and 9 10L  secondary data from region B). DHD may be easily 
extended to the case of multiple different homogeneous adjacent clutter regions as a multi-
hypothesis decision problem. 
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