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Abstract

We propose a method for interactively generating a
model-based reconstruction of a scene from a set of images.
The method facilitates the fitting of multiple object models
to the data in a manner that provides the best overall fit to
the image set. This requires that models are not fit indepen-
dently, but rather collectively, each potentially impacting
upon the fit of the other.

1. Introduction

We present a method for generating a model-based de-

scription of a scene, based on both 2D and 3D information.

The 2D information consists of a set of images of the scene,

obtained using a still or video camera. The 3D information

is an incomplete (and possibly noisy) specification of the

3D structure of the scene. This information usually consists

of a sparse set of 3D points either reconstructed from the

images using a structure and motion technique [5, 7], or ob-

tained using a laser range finder. Our goal is to recover a

3D model of the scene from this information that not only

has the correct shape and appearance, but also identifies ob-

jects in the scene and their relationships. For example, in

the scene shown in Figure 2, we aim to recover a model

that includes the information that the scene contains a set of

cubic objects resting on a ground plane.

Such an object-level interpretation of an image set has

a number of advantages over approaches based on recon-

structing points or other low-level features. An object-

level scene description facilitates semantic interpretation

and lighting calculations, for example, and enables a range

of computer graphics techniques such as the insertion of

computer generated characters and object removal.

The method we propose is interactive, in that it allows

full user control, but it does so is a manner which requires

minimal interaction. The user thus provides the minimal

input required to achieve the desired accuracy of fit. In-

teraction is initiated by the user providing high level scene

information which may include a specification of the rela-

tionship between objects. These relationships include ba-

sic geometric concepts such as ‘on top of’, ‘adjacent to’ or

‘within’.

A scene is defined as a set of models. Models are de-

fined in terms of a vector of parameters. These parameters

range from the very generic, such as the position of a model

in world space, to the very specific, such as the branching

frequency for a tree model. Thus, while some parameters

are common to all models, others may apply only to one

model. Models can have pairwise dependencies (for exam-

ple, a cube can be resting on a plane, which constrains the

positions of the cube and the plane). These dependencies

are soft and are expressed through their parameters.

The main contribution of this paper is an algorithm for

fitting models to a scene. The algorithm makes use of the

varying specificity of model parameters to fit using a coarse

to fine strategy. This allows an efficient search within a large

volume of space, and allows the same search algorithm to be

used for a wide variety of models. The algorithm also takes

into account dependencies between models, to further refine

the search space. It relies on some user interaction, but has

been specifically designed to maximise the amount of in-

formation derived from each interaction, so that the burden

placed upon a user is minimised.

The paper is organised as follows. Section 2 defines the

way in which models and their dependencies are specified.

Section 3 describes the likelihood functions that are used

to fit the models to the 2D and 3D data. Section 4 shows

how models are defined by parameters, while Sections 5

and 6 explain the process of fitting these parameters to the

data. Some applications of this method are discussed and

demonstrated in Sections 7 and 8.

2. Model Specification

Each model is defined by an identifying label (for exam-

ple, it might be a cube or a sphere), and, by a slight abuse of
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notation, we identify with each instance of a model a vec-

tor of parameters sharing the same label. The form of this

parameter vector depends on the model type. In the case of

a cube, for example, the parameters define the cube’s posi-

tion, scale, and orientation in 3D space.

2.1. A hierarchical object graph

The relationships between objects are modelled using a

Markov Random Field with a tree structure. This simpli-

fied network model captures pairwise inter-object relation-

ships, without requiring complex techniques for propagat-

ing probabilities through more general graph structures. Re-

lationships such as the fact that objects usually rest on one-

another, for example, can be captured directly within this

model, but more complex ideas involving groups of objects

must be mediated through a common intermediary.

Relationships between models are defined in terms of

their parameters. A relationship is formed between 2 mod-

els when there is a dependency between their parameter

vectors. For example, if a cube is resting on a table, there is

a dependency between the position of the cube and the ta-

ble, and therefore they are related. If a cube is placed on top

of another cube, which in turn is resting on a table, then all

3 are related, but the top cube and the table are conditionally

independent given the middle cube.

2.2. The joint probability

We aim to find the set of models M = {Mξ} where

ξ = 1 . . .Ξ that are most probable given the data D (images

and 3D points) and any prior information I. We represent

the estimation problem as a Markov Random Field with a

hidden node corresponding to each object and an observed

node for each (object-based) measurement. Observed nodes

are linked to the corresponding model nodes, as would be

expected, with the relationships between models providing

the links between model nodes. The relationships between

models have been constrained such that the graph has a tree

structure, which simplifies the calculation of the joint prob-

ability function.

The Hammersley-Clifford theorem states that we can

factorise the joint probability over the model set M as

the (normalised) product of the individual clique potential

functions[2] of the graph. The cliques in this case are all of

size 2. The potential function adopted for the cliques con-

taining an observed node and a model node is based on the

probability of the model given the observation and the prior.

For a model X ,

Pr (X|DI) ∝ Pr (D|XI) Pr (X|I) . (1)

It is the right hand side of this expression which forms the

clique potential function.

The potential function for cliques containing only nodes

representing models (models X and Y for instance) is the

joint probability of the 2 models Pr(X, Y ). The full joint

probability of the set of models M given the data set D and

the prior information I is thus

Pr (M|DI) =
1
Z

∏

M∈M
Pr(D|MI) Pr(M |I)

∏

N∈DM

Pr(M, N),

(2)

where DM represents the set of descendants of M in the

tree. The descendants are chosen here rather than the full

neighbourhood in order to ensure that each model-model

probability is counted only once as is required under the

Hammersley-Clifford Theorem.

Because the definition of a model is quite general, the

method is naturally capable of fitting a range of models,

and also of fitting families of models. A simple model, for

example, might be a plane or sphere. More complex models

might involve objects with non-parametric descriptors, or

families of objects and the relationships between them.

3. Model Observations

We can partition the data into 2D and 3D feature sets

D2 and D3. By assuming that these data sets are indepen-

dently acquired, we can also factorise the likelihood terms

as Pr (D|MI) = Pr (D3|MI) Pr (D2|MI). This assump-

tion may not always be justified; for example when the 3D

data is generated by performing structure and motion esti-

mation based on the same image set as that from which the

2D data is generated. However, an analytic form for the

dependence between Pr (D3|MI) and Pr (D2|MI) is very

difficult to derive, and we thus assume the uninformative

uniform model prior in this case. It is thus always the case

that

Pr (D|MI) ∝ Pr (D3|MI) Pr (D2|MI) . (3)

As part of the definition of a particular object type we define

zero or more of these likelihood functions, and the prior in-

formation I. 3D likelihood functions define the probability

of a set of model parameters given a set of 3D points, and

typically favour parameters that result in many 3D points

lying close to or on the model surface. 2D likelihood func-

tions define the probability of model parameters given the

images—this typically favours image edges near the pro-

jections of model edges, and incorporates any appearance

information that is known about the model. We give exam-

ples of such functions in the following sections.

3.1. 3-Dimensional Likelihood Functions

We now describe one possible 3D likelihood function

which is particularly suitable for point clouds occurring as a
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result of a bundle adjustment procedure. Given that bundle

adjustment minimises the reprojection error we use a likeli-

hood for each point is which is closely related to this error

measure. Assuming that the reconstructed points are condi-

tionally independent given the model M , the 3D component

of the model likelihood can be written as Pr (D3|MI) =∏
P∈D3

Pr (P|MI).
We assume that the error on the observations conforms to

a Gaussian distribution. Because the observations are mea-

sured in the image domain, the likelihood measurements

must also be made in this domain in order to be statisti-

cally justified. Let PM be the point on the surface of the

model M which is closest to the reconstructed data point

P. If we label the projection of a 3D point P into image K
as p(P, K) then we wish to measure the distance between

p(P, K) and p(PM , K) in each of the images that were

used in the estimation of P. The distance in image K is

d2(p(P, K),p(PM , K)) where d2(·, ·) represents the 2D

image-based distance. Not all points in the reconstruction

necessarily belong to the model that is being fitted, so a Hu-

ber function [3] h(·) is applied to the distance measure, to

diminish the influence of points far from the model. This

also has the effect of segmenting the point cloud into those

points belonging, and not belonging, to the object accord-

ing to their position. The distance measure for a 3D point

P thus becomes h(d2(p(P, K),p(PM , K))).
If P from a set of points P = {Pi} where i =

1 . . . n was originally calculated from observations in im-

ages KP = {K} then the negative log likelihood of P given

a model M is

J3(P, M) = f3

∑

P∈P

∑

K∈KP

h(d2(p(P, K),p(PM , K)))
‖KP‖ .

(4)

where f3 is a constant scale factor.

3.2. 2-Dimensional Likelihood Functions

One possible 2-dimensional likelihood is that based on

the assumption that edges in the model will give rise to in-

tensity gradients in the image. Edges have a number of ad-

vantages over corners or other features that might be used

to guide model fitting. These advantages have been well

discussed in the tracking literature (see [6] for example) but

include rapid detection and relative robustness to changes

in lighting.

In order to calculate the degree to which a hypothesised

model is supported by the image intensities the visible edges

are projected back into the image set and a measure is taken

of the corresponding intensity gradients. The measure is the

same as that described in [8] and similar to that used in [6]

amongst others.

Some models, however, do not contain geometry with

prominent edges. In this case a different 2D likelihood is

defined as part of the model. This likelihood is based on

the assumption that the surface of the plane is largely unoc-

cluded by objects not modelled and that it is a Lambertian

surface and will therefore have the same appearance in each

image. The projections of a point on the surface into each

image are related by homographies, which can be calcu-

lated analytically from the camera projection matrices and

the plane parameters (for example, see [1]). The likelihood

of each point on the surface of a hypothesised plane model

is therefore defined by the variance of pixel values at the

projection of that point into each image in which it is visi-

ble. More details are available in [8].

3.3. Relations between models

Model parameters from separate models can be linked

together to express dependencies between them. For exam-

ple, a sphere lying on a table, then the position parameters

T of the sphere and table plane are linked. Rather than sim-

ply forcing these parameters to be the same (or have a fixed

difference) we link them probabilistically, through the term

Pr(M, N) in Equation 2.

4. Model parameters

In general, the definition of any model includes a posi-

tion T and a scale S. For a simple model such as a sphere,

this may be all that is required. However most models will

also contain other parameters specifying their orientation,

elongation and other relevant geometric properties. We can

create a hierarchy of models according to their parameters,

a child model inheriting the parameters of its parent, and

adding extra parameters specific to it. This allows us to for-

mulate a general strategy for fitting models to data, as will

be described later.

4.1. Example: Cube Model

As well as a position T, which is the position of one cor-

ner of the cube, and a scale S which is the side length of the

cube, the cube model has 3 orientation parameters. These

parameters are used to derive two orthogonal unit vectors U
and V that intersect at T, and a normal vector N = U×V.

The cube is then defined by 6 faces bounded by the ver-

tices T, T + SU, T + SU + SV, T + SV, T + SN,

T+SN+SU, T+SN+SU+SV, and T+SN+SV.

The 3D likelihood of the cube is calculated as described

in Section 3, by summing the Huber distances between each

data point and the point on the model surface that is closest

to it. The 2D likelihood is also calculated as in Section 3,

by matching model edges to image gradients. Other regular

polyhedra, such as a sphere and tetrahedron, can be defined,

and their likelihoods computed, in a similar way.
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4.2. Example: The Bounded Plane Model

The bounded plane has a position T which is a point on

the boundary of the plane. The plane is further defined by

two orthogonal unit vectors U and V that intersect at T and

belong to the plane. The scale S has a different meaning

depending on the shape of the plane. If it is a general shape,

there are two scale factors Si,u and Si,v for each point Pi

on the boundary. The boundary of the plane is defined as a

sequence of points. The points are defined in terms of the

plane position and scale, and the vectors U and V: P =
T + Si,uU + Si,vV. If it is a more regular shape, such

as a square, the scale factors are shared between boundary

points. In the case of a square there is only a single scale

factor S which defines each of the 4 boundary points (T,

T + SU, T + SU + SV, and T + SV).

The 3D likelihood of the plane is defined as for the cube

model, by finding the sum of Huber distances from each

point to the nearest point on the model. The 2D likelihood

is based on the photoconsistency measure, due to the lack

of edges expected in this model.

5. Model fitting

Having defined the model representation, and the associ-

ated likelihood functions, we now describe an algorithm for

fitting such models to image data. It is not feasible to gen-

erate and evaluate a set of samples that would effectively

explore Pr (D|MI). Instead we use a coarse-to-fine strat-

egy which exploits the nature of the functions Pr (D3|MI)
and Pr (D2|MI) in order to guide our search for a suitable

model. The function Pr (D3|MI) relates the model to a set

of reconstructed points and is well suited to gross localisa-

tion of the object in the scene, due to the relatively smooth

nature of the associated probability distribution. The func-

tion Pr (D2|MI) relates the model to the appearance of

the object in the image set, and is typically only applica-

ble when the model is very close to the true location of

the object. When this criterion is satisfied, however, it can

achieve very precise localisation, as the associated proba-

bility distribution is typically strongly peaked. Thus the

3D likelihood function is better suited to initial localisation,

while the 2D likelihood is appropriate for further optimisa-

tion based on this initial estimate.

As described earlier, the definition of any model includes

a position T and a scale S. All but the simplest models re-

quire more parameters; however even more complex mod-

els can be approximated by their position (e.g their cen-

troid) and their size. When searching for a model in a 3D

point cloud, a rough approximation of the likelihood of the

model being of a certain location and size can be obtained

by counting the 3D features that occur within a volume of

space centred at T and with radius S. This process could

equally be seen as that of eliminating areas in which fur-

ther sampling for objects would be futile. In this sense the

search process is preemptive, as a search for a model with

many parameters (position, scale, orientation, aspect ratio,

etc.) is carried out as a series of searches. Each search in

the series is over an increasingly large numbers of param-

eters, later searches being more specific to the model type

and refining results.

Given a region of space in which to search (the determi-

nation of this region is described later), we sample a range

of positions from it. At each position, we search within

a spherical region of space centred at that position. The

search range is determined by the maximum extent expected

of any model. Within this search space we calculate a his-

togram of radii of the point cloud. This forms a shape pro-

file that can characterise a shape and be matched against

profiles for known shape templates, such as cubes, pyra-

mids etc. These profiles are not exact, but they are inde-

pendent of shape orientation even for highly unsymmetrical

shapes. They are therefore a useful first cut detector for

a model. For example, the profile for a sphere is a single

sharp peak (ideally a Delta function) at the scale equivalent

to the sphere’s radius. A cube is also a single peak but with

a gradual dropoff. A cuboid (a box with different length

along each axis) has 3 peaks. A planar surface has a profile

that is a straight line. The closer the position is to the cen-

tre of the shape in the data, the more closely its profile will

resemble the model profile.

Figure 1. Profile of the number of points on
a cube surface belonging to a region centred
about a point in space (shown in red).

The result of this process is a set of samples, each at

different locations, and each weighted according to how

likely it is to correspond to a model of the type sought. The

weighting is computed by comparing the radius histogram

to a pre-computed (and appropriately scaled) profile for

that model type, using the Kullback-Leibler divergence[4].

Samples with low weights can be eliminated from the

search, and subsequent searches on the remaining model

parameters applied only in areas of space near samples with
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high likelihood.

5.1. User Interaction

The fitting process is initialised by the user choosing an

object type from the set of available models and selecting a

point on one of the images. The point selected specifies a

ray through the scene which is taken to intersect the desired

object. A set of object hypotheses is generated on the basis

of this ray and the scene information arising from the struc-

ture from motion process. At each sample point the inclu-

sion of 3D points is tested for a set of spheres of increasing

radii, in order to construct the shape profile as described in

the previous section.

The search region need not be set interactively. Given a

set of known models, and given the relationships between

them, the search region for further models is defined by the

parameters of those models already in the scene. For exam-

ple, a plane in the scene defines a planar region in which

other shapes are likely to occur. Given a plane, the volume

of space immediately above it is automatically searched, for

objects that lie on top of the plane. Given a cube, the pla-

nar regions aligned with sides of the cube are searched for

further objects. Thus by interactively selecting one object,

many objects whose positions are linked to that of the orig-

inal object can be located.

In practice, these modes of specifying a search region

are interleaved. The search region for the first shape to be

modelled is specified interactively. Its position (and other

parameters) are used to define further search regions for ob-

jects in the scene related to the initial shape. For instance, a

ball is likely to be resting on a surface, so planes are sought

that are tangential to a ball once it has been located.

6. Example: Fitting Cubes on a Table

In order to explain the operation of the method we now

describe the process of fitting a set of cube models resting

on a common plane model to the video shown in Figure 2.

6.1. Generating Initial Hypotheses

The cube profile function T (P, C, r) is used to calculate

the likelihood of a set of points P , forming a cube with cen-

tre C and radius (half side length) r, integrated over all cube

orientations. Possible cube locations are sampled regularly

within the search region. At each location, the profile func-

tion is evaluated for varying scale as described in Section 5.

This profile is then compared with the precomputed cube

profile by computing the KL divergence between the data

and model histograms.

It is assumed that the object sought will fill at least 1%
and less than 100% of the image used to identify it. This

forms part of the cube model prior Pr(I), and provides

a constraint upon the range of scales that should be eval-

uated at each point in the search region. Due to the ef-

fects of perspective, the range of scales increases for points

in the search space that are further from the camera. The

distance between template centres increases with the calcu-

lated radius, and thus also with the distance to the camera.

The function T (P, C, r) is evaluated for each template and

the parameter vectors corresponding to function evaluations

above the 90th percentile retained. These parameter vectors

are used to initialise the optimisation process.

6.2. Refining Hypotheses

Each initial parameter vector specifies the position and

size of a hypothesised cube. This information initialises an

iterative search for each cube’s orientation based upon the

likelihood function J3(P,C) specified in equation (4). The

orientation of each cube is initially aligned with the camera

coordinate system. A Levenberg Marquardt minimisation

process is carried out on the cost function J3(P,C). The

result of this minimisation is a parameter vector describing

the location, radius, and orientation of a cube hypothesis.

One such parameter vector is recovered for each initiali-

sation. These vectors are checked to ensure that they are

significantly different from each other and that they inter-

sect the ray specified by the user. They may be interpreted

as the identifying the local modes of the probability density

function associated with Pr (D3|MI) Pr (I).
Having explored Pr (D3|MI) we now incorporate

Pr (D2|MI) in order to find the modes of Pr (D|MI). The

2D data likelihood of the model is described in Section 4.1.

Recall that this cost function is based on the image distance

between the projected edge of the model and the local inten-

sity gradient maximum normal to the edge, summed across

multiple points along each edge.

The 2D and 3D likelihood functions can now be com-

bined to generate a complete data likelihood function. Be-

cause they are both log likelihoods, they are combined by

addition; however because they are not normalised a scale

factor is required to ensure that they each contribute appro-

priately to the final likelihood. As the 2D data likelihood is

more sensitive to small changes in the cube parameters, it

typically dominates this final optimisation stage.

6.3. Using Existing Information

Having generated a most likely cube hypothesis the sys-

tem uses this information to find the plane. There are no

reconstructed points associated with the ground plane. The

only applicable likelihood is that described in Section 3.2

which is based on the assumption that the estimated camera

parameters can be used to map the plane texture from one
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image to another. This, by itself, would not be enough to

guide the fitting process, but the joint probability describing

the relationship between the plane and the cube solves this

problem. After sampling and optimising equation (2) for

the cube-plane graph we have an estimate for the parame-

ters of both. The plane estimate can then be used to guide

the sampling process used to search for subsequent cubes

as described in Section 5. The identified cubes are then op-

timised individually, and incorporated into the graph. The

final joint is then maximised numerically over the parame-

ters of all of the models.

7. Results

Figure 2 shows images of a set of cubes resting on a ta-

ble. A semantic model for the scene has been generated by

the method on the basis of only a single user mouse click

on one of the cubes. Having a semantic model of the scene

means that it can be manipulated in a straightforward man-

ner. For example, the second row of Figure 2 is the result

of a command to turn all cubes in the scene into Rubik’s

cubes. Because we know exactly where the cubes are, this

can be done automatically. We also have an accurate ge-

ometric representation of the scene, which means that we

can model physical interactions. In row 3 of Figure 2, a set

of synthetic bouncing balls is dropped onto the scene, and

interacts convincingly with the cube and the table top.

8. Conclusion

This paper has presented a method for the recovery of se-

mantic and geometric structure of a scene, given images of

the scene, a corresponding cloud of 3D points, and some se-

mantic information provided interactively by the user. The

interactive aspect of the system plays to the strength of a

human observer at discerning overall content of a scene,

and that of machine vision at accurately computing detailed

scene structure.
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