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AbstractÐMesh-connected computers (MCCs) are a class of important parallel architectures due to their simple and regular

interconnections. However, their performances are restricted by their large diameters. Various augmenting mechanisms have been

proposed to enhance the communication efficiency of MCCs. One major approach is to add nonconfigurable buses for improved

broadcasting. A typical example is the mesh-connected computer with multiple buses (MMB). We propose a new class of generalized

MMBs, the improved generalized MMBs (IMMBs). We compare IMMBs with MMBs and a class of previously proposed generalized

MMBs (GMMBs). We show the power of IMMBs by considering semigroup and prefix computations. Specifically, as our main result we

show that for any constant 0 < � < 1, one can construct an N
1
2 �N 1

2 square IMMB using which semigroup and prefix computations on

N operands can be carried out in O�N�� time, while maintaining O�1� broadcasting time. Compared with the previous best complexities

O�N 1
8� and O�N 1

16� achieved on a rectangular MMB and GMMB, respectively, for the same computations, our results show that IMMBs

are more powerful than MMBs and GMMBs.

Index TermsÐBus, mesh-connected computer, mesh-connected computer with multiple buses, parallel algorithm, parallel

architecture, parallel computing, processor array.

æ

1 INTRODUCTION

AMONG various parallel architectures, mesh-connected
computers (MCCs) have received considerable atten-

tion. The processors in an MCC are arranged as a processor
array, and each processor is connected to its nearest
neighbors. Due to its simple and regular interconnection
pattern, an MCC is feasible for hardware implementation
and suitable for solving many problems such as matrix
manipulation and image processing. However, the rela-
tively large diameter of an MCC causes a long communica-
tion delay between processors that are far apart. The time
complexities of algorithms running on an MCC are lower
bounded by its diameter. To overcome this problem,
various augmenting mechanisms have been proposed to
enhance the communication efficiency of MCCs. One major
approach is to add buses for improved broadcasting [1], [7],
[8], [9], [13], [15], [19], [21], [22], [23], [24]. A typical example
is the mesh-connected computer with multiple broadcasting
(MMB) [21]. A two-dimensional MMB is a two-dimensional
(2D) MCC with a bus for each row and each column. Fig. 1
shows a 4� 4 2D MMB.

In this paper, we propose a class of improved general-

ized mesh-connected computers with multiple buses

(IMMB). We compare the performances of IMMBs and

MMBs by considering parallel semigroup and prefix

computations. Semigroup computations are an important

class of computation problems. Examples include comput-

ing sum, product, minimum/maximum, Boolean parity,

AND, and OR. Prefix computations are related to semi-

group computations; they have a wide range of applications

such as processor allocation, data distribution and align-

ment, data compaction, job scheduling, sorting, packet

routing, string matching, lexical analysis, matrix computa-

tion, linear recurrence, polynomial evaluation, graph algo-

rithms, general Horner expressions and general arithmetic

formulae. Refer to [2], [6], [16], [17] for references of these

applications. Efficient semigroup and prefix algorithms

serve as important primitives for parallel computing.

Various algorithms for semigroup and prefix computa-

tions on different machine models have been proposed in

the literature. Kumar and Raghavendra [21] showed that

semigroup computations on N operands can be performed

using an N
1
2 �N 1

2 square MMB in O�N 1
6� time. Chen et al.

[11] later showed that prefix computations on N operands

can be performed using on an N
1
2 �N 1

2 square MMB in the

same amount of time. They showed that if the MMB has a

rectangular shape, i.e., the sizes of two dimensions are not

the same, better complexity can be achieved. In particular,

they showed that semigroup and prefix computations on
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N operands can be performed using an N
5
8 �N 1

8 MMB in

O�N 1
8� time. Chung [13] proposed a generalized MMB

(GMMB) architecture in which k2 n1 � n2 MMBs, arranged

as a k� k array, are connected by local links (defined in the

next section). By selecting k � N 1
10, n1 � N 1

2, and n2 � N 3
10,

he showed that semigroup and prefix computations can be

performed using an N
3
5 �N 2

5 GMMB in O�N 1
10� time, which

is the best possible because the diameter of this generalized

MMB is O�N 1
10�. The major drawback of this GMMB is that

broadcasting performance is sacrificed by a factor of

O�N1=c�, where c � 4, for improved semigroup and prefix

computation performances with increased number of buses,

compared with MMB. Semigroup and prefix computations

using d-dimensional MMBs and GMMBs have also been

considered. In [3], [11], it was shown that semigroup and

prefix computations can be performed on N operands using

an N
d2dÿ1�1

d2d �Nd2dÿ2�1

d2d � � � � �Nd�1

d2d d-dimensional MMB in

O�N 1
d2d� time. In [13], it is shown that semigroup and prefix

computations can be performed on N operands using an

N
d2dÿ1�2

d2d�d �Nd2dÿ2�2

d2d�d � � � � �N d�2

d2d�d d-dimensional GMMB in

O�N 1

d2d�d� time. Define the aspect ratio of a n1 � n2 � � � � �
nd d-dimensional mesh as maxfn1;n2;���;ndg

minfn1;n2;���;ndg. We call a

d-dimensional mesh a square mesh if its aspect ratio is 1.

The performances claimed in [3], [11], [13] are only valid for

meshes with very large aspect ratios. Dighe, Vaidyanathan

and Zheng proposed a multiple-bus architecture called bus-

connected ringed tree (BRT) in [15]. In a BRT, each

processor is connected to two buses, and all the buses have

the same size, which is the number of processors connected

to a bus. They showed that a 2D BRT, which is a

2D processor array with multiple buses, can simulate a

mesh-of-trees efficiently. Based on the prefix sum algorithm

of [17] for a tree, a 2D BRT can carry out a prefix

computation in O�logN2� time.
Better performances are possible if switches are added to

make buses reconfigurable. For example, prefix and
semigroup computations can be easily carried out in
O�logN� time using an MBB whose buses can be partitioned
into segments by switches ([22]) or a reconfigurable mesh

([19]). As a special case, Olariu et al. [20] showed that the
prefix sum operation on N integer operands in the range
�0; N ÿ 1� can be performed on an N �N reconfigurable
mesh in O�1� time. In this algorithm, the number of
processors used is much larger than the number of
operands, and dynamically reconfigured paths are used as
an integral part of computation. This technique cannot be
generalized to solve general semigroup and prefix problems
with the same time complexity.

Like the MMBs of [21] and GMMBs of [13], buses of the
IMMBs proposed in this paper do not have switches on
them. The major difference between our IMMB architec-
tures and existing MMB-like architectures is that the buses
in our architectures are partitioned into levels, while
maintaining that each processor is connected to exactly
two orthogonal buses. In an l-level IMMB, buses are
partitioned into l levels of different spans. The diameter of
a d-dimensional l-level IMMB (called (d; l)-IMMB) is dl. In
Section 2, we define the two-dimensional IMMBs. In
Section 3, we show that semigroup and prefix computations
on N operands can be performed using an N

1
2 �N 1

2 square
�2; 2�-IMMB in O�N 1

16� time. We would like to point out that
a �2; 2�-IMMB can simulate its corresponding GMMB
proposed in [13] with a constant factor of slowdown, while
having fewer buses. In terms of number and size of buses,
an IMMB is a trade-off of an MMB and a GMMB. The
performance of of an IMMB is better than that of an MMB
and GMMB. Further performance improvement can be
achieved by increasing the number of levels. In Section 4,
we show that for any constant 0 < � < 1, there exists a
multilevel N

1
2 �N 1

2 square IMMB using which semigroup
and prefix computations on N operands can be carried out
in O�N�� time, while maintaining O�1� broadcasting time.
We also show how to construct an l-level N

1
2 �N 1

2 square
IMMB, where l � O�logN�, on which semigroup and prefix
computations on N operands, and data broadcasting all
take O�logN� time. The generalization of these results to
d-dimensional IMMBs is discussed in Section 5. The major
results presented in this section is that, one can perform
semigroup and prefix computations on N operands in an
N-processor �d; l�-IMMB in O�N 1

ld2d� time. When selecting
l � d, one can always obtain a d-dimensional square IMMB.
We conclude the paper in Section 6 by discussing the
implications of our results.

2 TWO-DIMENSIONAL IMMBs

A two-dimensional IMMB is a two-dimensional mesh-
connected computer (MCC) augmented with buses. We call
the links for the mesh connections local links. The added
buses are divided into l levels, which form a hierarchical
structure. A 2D IMMB is formally defined as follows.

An I�1; �n1;1; n1;2��, a one-level IMMB, is an n1;1 � n1;2

MMB. Processors that are in the boundary rows and
columns are called boundary processors. An I�l; �n1;1; n1;2�;
�n2;1; n2;2�; � � � ; �nl;1; nl;2��, where l > 1, is an l-level
IMMB that is constructed by arranging nl;1nl;2 copies of
I�lÿ 1; �n1;1; n1;2�; �n2;1; n2;2�; � � � ; �nlÿ1;1; nlÿ1;2�� as an
nl;1 � nl;2 array. The processors in each copy of I�lÿ
1; �n1;1; n1;2�; �n2;1; n2;2�; � � � ; �nlÿ1;1; nlÿ1;2�� are collec-
tively called a level-�lÿ 1� submesh. Local links are added
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to connect boundary processors of level-�lÿ 1� submeshes
to enforce nearest-neighbor mesh connections. For easy
references, these local links are referred to as level-l bridge
local links. For each row (respectively, column) of the
nl;1 � nl;2 array of level-�lÿ 1� submeshes, we do the
following: Merge the topmost (respectively, left most) row
(column) buses, which were level-�lÿ 1� buses, of these
IMMBs into one bus. The buses obtained by these
merging operations are called the level-l buses of
I�l; �n1;1; n1;2�; �n2;1; n2;2�; � � � ; �nl;1; nl;2��, and they are
no longer level-�lÿ 1� buses. The remaining level-k buses,
1 � k � lÿ 1, of the nl;1 � nl;2 component level-�lÿ 1�
submeshes are called the level-k buses of I�l; �n1;1; n1;2�;
�n2;1; n2;2�; � � � ; �nl;1; nl;2��. An l-level 2D IMMB is also
referred to as a �2; l�-IMMB. To avoid degeneracy, we
assume that ni;1 � 3 and ni;2 � 3 for 1 � i � l. Define b1 �
n1;1n1;2 and

bi � ni;1ni;2biÿ1 ÿ ni;1�ni;2 ÿ 1� ÿ ni;2�ni;1 ÿ 1�
� ni;1ni;2�biÿ1 ÿ 2� � ni;1 � ni;2

for 1 < i � l. Clearly, bl is the number of buses in
I�l; �n1;1; n1;2�; �n2;1; n2;2�; � � � ; �nl;1; nl;2��. Fig. 2 shows the
structure of I�3; �3; 3�; �3; 3�; �3; 3��, a �2; 3�-IMMB.

An IMMB is represented by a hypergraph G, whose
vertices and hyperedges correspond to the processors and

connections (buses and local links), respectively. Using the
hypergraph theory ([4]), one can derive many topological
properties of IMMB. We refer readers to [26] for the analysis
of hypergraph-based interconnection structures.

In an I�l; �n1;1; n1;2�; �n2;1; n2;2�; � � � ; �nl;1; nl;2��, there are

N �Ql
i�1�ni;1ni;2� processors arranged as a �Ql

i�1 ni;1� �
�Ql

i�1 ni;2� processor array. It contains a �Ql
i�1 ni;1� �

�Ql
i�1 ni;2�MCC (connected by local links) as a substructure;

i.e., after removing buses, we obtain an MCC. In addition to

local links, each processor is connected to exactly two buses.

Each bus belongs to a unique level. It is important to note

that a level-k bus, k > 1, is shared by processors from

several level-�kÿ i� submeshes, where 1 � i � kÿ 1, so it

cannot support concurrent data transmissions among the

level-�kÿ i� submeshes connected by it. In some situations,

as will be shown shortly, concurrent data transmissions on

such a bus can be simulated using other buses with only a

small constant slowdown factor.
Throughout this paper, we adopt the same assumptions

that have been used in all previous work on MMBs and
their variants. We assume that it takes constant time to
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broadcast a message on a bus as in [1], [7], [8], [9], [13], [15],
[19], [21], [22], [23], [24]. To ensure conflict-free accesses of
buses, each processor is equipped with an off-line circuitry
so that bus allocations, although operated dynamically, are
predetermined by an off-line scheduling algorithm which is
known at compilation time. The bus accesses are compiled
in advance so that no two processors attempt to use the
same bus at the same time. With these assumptions, bus
arbitration overheads are ignored, algorithm analysis is
simplified, and comparing different algorithms becomes
easier. The complexity of an algorithm is measured by the
total number of parallel computation steps and parallel
communication steps. These assumptions are adopted in all
previous work on processor arrays with synchronous buses.

Let m �Ql
i�1 ni;1 and n �Ql

i�1 ni;2. We use Pi;j, 1 � i �
m and 1 � j � n, to denote the processor in row i and
column j. Consider the diameter of I�l; �n1;1; n1;2�; �n2;1;
n2;2�; � � � ; �nl;1; nl;2��. Between any two level-�lÿ 1� sub-
meshes in an I�l; �n1;1; n1;2�; �n2;1; n2;2�; � � � ; �nl;1; nl;2��,
there is a path of length at most 2 using level-l buses.
Routing a message from a processor Pi0;j0 to a processor Pi00;j00
using buses can be done as follows: If Pi0;j0 and Pi00;j00 are in
the same level-�lÿ 1� submesh, then we only need to
consider routing within this submesh. If they are in two
different level-�lÿ 1� submeshes, then we find a path from
the level-�lÿ 1� submesh M 0 that contains Pi0;j0 to the level-
�lÿ 1� submesh M 00 that contains Pi00;j00 . This path consists of
at most two buses, say L0 and L00. Let Pa0;b0 and Pa00;b00 be the
two processors in M 0 and M 00 that is connected to L0 and L00,
respectively. Then, to complete the path from Pi0;j0 to Pi00;j00 ,
we need to find a path from Pi0;j0 to Pa0;b0 in M 0 and a path
from Pi00;j00 to Pa00;b00 in M 00 recursively. By induction, there
exists a path from any Pi0;j0 to any Pi00;j00 in an I�l; �n1;1; n1;2�;
�n2;1; n2;2�; � � � ; �nl;1; nl;2�� of length no more than 2l. It is
not difficult to verify that the distance between P1;1 and Pm;n
in an I�l; �n1;1; n1;2�; �n2;1; n2;2�; � � � ; �nl;1; nl;2�� is 2l.
Therefore, the diameter of an I�l; �n1;1; n1;2�; �n2;1;
n2;2�; � � � ; �nl;1; nl;2�� is 2l. Clearly, broadcasting a message
to all processors in an I�l; �n1;1; n1;2�; �n2;1; n2;2�; � � � ; �nl;1;
nl;2�� takes O�l� time.

Our two-level IMMBs closely resemble the GMMBs
proposed in [13], which are constructed using multiple
copies of MMB by only introducing additional local links.

A 9� 9 two-dimensional GMMB is shown in Fig. 3, and
its corresponding IMMB is shown in Fig. 4. Define an
r� s logical MMB on a subset V of rs processors of an
IMMB as a substructure of the IMMB that can simulate
each parallel step of an r� s MMB, with its processors
being in V , in constant time. We can use a �2; 2�-IMMB,
I�2; �n1;1; n1;2�; �n2;1; n2;2��, to simulate its corresponding
2D GMMB of [13] as follows. In each level-1 submesh,
we use the level-1 bus that connects the second processor
row (respectively, column) to simulate a level-1 bus that
connects all processors in the first row (respectively,
column). For example, suppose that processor Pi;j in the
first row (respectively, column) of a level-1 submesh
wants to broadcast a message to all processors in the
same row (respectively, column) of the same submesh. It
can first send the message to processor Pi�1;j (respec-
tively, Pi;j�1) in the second row (respectively, column)
using a local link, and then broadcast it to all processors
in that row (respectively, column) using the level-1 bus
that connects them. After this, each processor in the
second row, (respectively, column) sends the received
message to the corresponding processor in the first row
via a local link. This scheme implies that there exists
n2;1n2;2 disjoint n1;1 � n1;2 logical MMBs defined on the
level-1 submeshes, and each n1;1 � n1;2 MMB substructure
of the 2D GMMB can be simulated by a logical MMB.
This leads to the following claim.

Theorem 1. A �2; 2�-IMMB can simulate its corresponding
2D GMMB with a constant-factor slowdown.

Obviously, the converse of this theorem is not true. This
is because the diameter of the 2D GMMB corresponding to
I�2; �n1;1; n1;2�; �n2;1; n2;2�� is 2�n2;1 � n2;2 ÿ 1�, whereas the
diameter of I�2; �n1;1; n1;2�; �n2;1; n2;2�� is 4. We wlll show
that IMMBs are more powerful than MMBs and GMMBs by
considering semigroup and prefix computations.

Let us compare the structures of two-dimensional MMB,
GMMB, and IMMB of the same size. A common feature of
MMB, GMMB, and IMMB is that all of them contain an
MCC as a substructure, and each processor is connected to
exactly two buses. Define the size of a bus as the number of
processors connected by the bus. All buses in an MMB and
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a GMMB are of the same size, whereas the buses in an
IMMB have variable sizes. The largest bus size of a GMMB
is the same as the size of buses in an MMB. In terms of
semigroup and prefix computations, a GMMB improves the
performance of an MMB by adding more buses, and IMMB
improves the performance of a GMMB by allowing variable
bus sizes. It is important to note that the improved
performance of an IMMB over a GMMB can even be
achieved by using a smaller number of buses, as in the case
of two-level IMMBs.

3 SEMIGROUP AND PREFIX COMPUTATIONS ON A

(2, 2)-IMMB

In this section, we consider semigroup and prefix computa-
tions using a (2, 2)-IMMB, a 2D two-level IMMB. A
semigroup computation is formally defined by a tuple
��; S�, where � is an associative operator, and S �
fa1; a2; � � � ; aNg is a set of operands. This tuple specifies
computation a1 � a2 � � � � � aN . A prefix computation is
also defined by a tuple ��; S�, where � is an associative
operator, and S � �a1; a2; � � � ; aN� is a sequence of operands.
This tuple specifies computations si � a1 � a2 � � � � � ai for
1 � i � N . We assume that the operation � performed on
two operands takes constant time. Since the result sN of a
prefix computation is a result of a semigroup computation,
any algorithm for prefix computations can be used for a
semigroup computation with the same complexity. Thus,
we only need to discuss prefix computations.

By Theorem 1 and the result of [13] on GMMBs,
semigroup and prefix computations on N operands can
be done using I�2; �N 1

2; N
3
10�; �N 1

10; N
1
10�� in O�N 1

10� time. By
further exploiting the power of IMMBs, we obtain better
results.

Consider I�2; �n1;1; n1;2�; �n2;1; n2;2�� such that n1;1 �
n2;2 � n1 and n1;2 � n2;1 � n2. Clearly, I�2; �n1;1; n1;2�;
�n2;1; n2;2�� consists of N � n2 processors arranged as an
n� n square array, where n � n1n2. In another view,
I�2; �n1;1; n1;2�; �n2;1; n2;2�� is an n2 � n1 array of n1 � n2

level-1 submeshes. We call the processor in such a submesh
that has the largest index according to lexicographical order
the leader of the submesh. We observe that the leaders of
level-1 submeshes are processors Pin1;jn2

, where 1 � i � n2

and 1 � j � n1, and they form an n2 � n1 array. It is simple
to see that the leaders Pin1;kn2

and Pin1;�k�1�n2
(respectively,

Pkn1;jn2
and P�k�1�n1;jn2

) of two adjacent level-1 submeshes
are connected by the following path:

Pin1;kn2
ÿ!bridge link

Pin1;kn2�1 ÿ!levelÿ1 bus
Pin1;�k�1�n2

�respectively; Pkn1;jn2
ÿ!bridge link

Pkn1�1;jn2
ÿ!levelÿ1 bus

P�k�1�n1;jn2
�:

Furthermore, the kth level-2 row (respectively, column) bus
can be used to simulate a bus that connects kth leader row
(column). For example, suppose that a submesh leader
wants to broadcast a message to all leader processors in its
row (respectively, column). It can send the message to the
processor in the first row (respectively, column) of its
submesh via the level-1 column (respectively, row) bus it is
connected to, and use the level-2 bus to broadcast the
message to all processors in this row. Then, processors in

this row (respectively, column) send the received messages
to their corresponding processors (leaders) in the last row
(respectively, column) of the submesh via level-1 column
(respectively, row) buses. Thus, I�2; �n1;1; n1;2�; �n2;1; n2;2��
contains a logical n2 � n1 MMB defined on the level-1
leaders.

Let �a1; a2; � � � ; an� be a sequence of n � n1 � n2 operands
for a prefix computation, and A be a prefix algorithm that
runs in O�t�n�� time on an n1 � n2 MMB with each
processor holding one operand. Suppose that

f : fij1 � i � ng ! f�j; k�j1 � j � n1; 1 � k � n2g
is the function used by algorithm A to map ais and sis to
processors; i.e., if f�i� � �j; k�, input ai and result si �
a1 � a2 � � � � � ai are in Pj;k before and after the computa-
tion, respectively. We want to perform prefix computation
on �a1; a2; � � � ; an2� using I�2; �n1;1; n1;2�; �n2;1; n2;2��. We
partition �a1; a2; � � � ; an2� into n subsequences Ai, 1 � i � n,
each having n operands, such that

Ai � �a�iÿ1�n�1a�iÿ1�n�2 � � � ; ain�:
Recall that I�2; �n2;1; n2;2�; �n1;1; n1;2�� consists of an n2 � n1

array of level-1 submeshes, each being an n1 � n2 processor
array. Denote these submeshes as Mk;j's, where 1 � k � n2

and 1 � j � n1. Submesh Mk;j consists of processors Pa;b,
�kÿ 1�n1 � 1 � a � kn1 and �jÿ 1�n2 � 1 � j � jn2. Define

g : fij1 � i � ng ! f�k; j�j1 � j � n1; 1 � k � n2g
such that g�i� � �k; j� if f�i� � �j; k�. We use g�i� to map Ais

to Mk;js. For each Ai, we map its a�iÿ1�n�q to processor Pjq;kq ,
where 1 � q � n, and �jq; kq� � f�q�. In other words, initially
processor P�kÿ1�n1�j0;�jÿ1�n2�k0 , which is in submesh Mk;j,
stores a�iÿ1�n�i0 , where �k; j� � f�i� and �j0; k0� � g�i0� and
1 � i; i0 � n. With this data distribution, the prefix compu-
tation using an I�2; �n1;1; n1;2�; �n2;1; n2;2�� can be carried out
in the following four steps.

1. Execute algorithm A on n level-1 submeshes
concurrently to compute local prefixes so that
processor P�kÿ1�n1�j0;�jÿ1�n2�k0 in submesh Mk;j obtains
a�iÿ1�n�1 � a�iÿ1�n�2 � � � � a�iÿ1�n�i0 . Let

Si � a�iÿ1�n�1 � a�iÿ1�n�2 � � � � � ain:
For each submesh Mk;j, store its computed Si in its
leader processor. By Theorem 1,

I�2; �n1;1; n1;2�; �n2;1; n2;2��
can simulate n disjoint n1 � n2 MMBs with only a
constant-factor slowdown. Hence, these operations
take O�t�n�� time.

2. Execute algorithm A on a logical n2 � n1 MMB with
the leaders of level-1 submeshes as its processors.
The computed result stored in the leader of Mk;j is
Ti � S1 � S2 � � � �Si, where �k; j� � g�i�. This step
takes O�t�n�� time.

3. The leader of each submesh Mk;j, where
�k; j� � g�i�, broadcasts the value Siÿ1, which can
be computed from Ti and Si, to all processors in
Mk;j. Operating in parallel, this can be done in
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O�1� time since I�2; �n1;1; n1;2�; �n2;1; n2;2�� can
simulate n independent MMBs.

4. Each processor performs operation � on the local
prefix computed in Step 1 and the value it received
in Step 3. This takes O�1� time.

In summary, we have the following result.

Theorem 2. If a prefix (respectively, semigroup) operation on
n operands can be carried out in O�t�n�� time using an
n-processor MMB, then the same prefix (resp semigroup)
operation on n2 operands can be carried out in O�t�n�� time
using an n2-processor square �2; 2�-IMMB.

Since the prefix and semigroup computations on

n operands can be performed using an n
3
8 � n5

8 MMB in

O�n1
8� time [11], we have the following corollary of

Theorem 2.

Corollary 1. Prefix and semigroup computations on N operands

can be carried out in O�N 1
16� time using an N

1
2 �N 1

2 square

�2; 2�-IMMB.

If we let each processor hold more than one operand,
semigroup and prefix computations may be performed
more efficiently. To see this, let us distribute n2t�n� operands
to n2 processors such that each processor holds
t�n� operands. In parallel, each processor performs prefix
(or semigroup) computation on its own t�n� operands
sequentially. The total parallel time for this process is
O�t�n��. Then, the parallel operations described above are
performed on the partial results. Since the product of time
and the number of processors is O�n2t�n��, this computation
is cost optimal.

Theorem 3. If semigroup and prefix computations on n operands
can be carried out in O�t�n�� time using an n-processor MMB,
then the same computations on n2t�n� operands can be carried
out using an n2-processor square IMMB in O�t�n�� time,
which is cost-optimal.

The following corollary of Theorem 3 is obtained by
letting n � N 8

17 and t�n� � n1
8 for the O�n1

8�-time algorithms
of [11] that use an n

3
8 � n5

8 MMB.

Corollary 2. Semigroup and prefix computations on N operands

can be carried out using an N
8
17 �N 8

17 square �2; 2�-IMMB in

O�N 1
17� time, which is cost optimal.

4 SEMIGROUP AND PREFIX COMPUTATIONS ON

(2, l)-IMMBS

The algorithms presented in the previous section can be

extended to run on (2, l)-IMMBs, the 2D l-level IMMBs,

where l > 2. Without loss of generality, we only consider

I�l; �n1;1; n1;2�; �n2;1; n2;2�; � � � ; �nl;1; nl;2�� such that nl;1 �
nl;2 � nlÿ1;1 � nlÿ1;2 � � � � � n1;1 � n1;2 � n. For easy re-

ference, we denote this special IMMB by �2; l�-IMMB�n�.
Clearly, there are n2l processors in �2; l�-IMMB�n�, and

these processors form an nl � nl processor array. This

processor array can be viewed as an nlÿkÿ1 � nlÿkÿ1 array

of nk�1 � nk�1 arrays, each being a level-(k + 1) submesh. A

level-�k� 1� submesh is in turn considered as an

n� n array of level-k submeshes. Let Mi;j;k�1, where

1 � i; j � nlÿkÿ1, denote a level-(k + 1) submesh. We use

Mi;j;k�1
i0j0 , 1 � i0; j0 � n, to denote a level-k submesh of

Mi;j;k�1, and use Pi;j;k�1
a;b to denote the processor in the ath

row and bth column of processors in Mi;j;k�1, where

1 � a; b � nk�1. Define processor Pi;j;k�1
i0nkÿnkÿ1�1;j0nkÿnkÿ1�1

as the

leader of level-k submesh Mi;j;k�1
i0j0 for 1 < k < l. As before,

we call the processor in a level-1 submesh that has the

largest index according to lexicographical order the leader

of the level-1 submesh. The leaders of level-k submeshes

are called level-k leaders for short. The level-k leaders in a

level-(k + 1) submesh form an n� n processor array. We

show that for each level-(k + 1) submesh, its level-(k + 1)

buses, a subset of its level-k buses, and and a subset of its

level-k bridge local links (bridge links for short) form an

n� n logical MMB defined on its level-k leaders.

The simulation of a local link connecting the leaders of

Mi;j;k�1
i0 ;j0 and Mi;j;k�1

i0;j0�1 in the same level-(k + 1) submesh

Mi;j;k�1 is by the following path:

Pi;j;k�1
i0nkÿnkÿ1�1;j0nkÿnkÿ1�1

ÿ!levelÿk bus
P i;j;k�1
i0nkÿnkÿ1�1;j0nk

ÿ!levelÿ�k�1� bridge link
P i;j;k�1
i0nkÿnkÿ1�1;j0nk�1

ÿ!levelÿk bus
P i;j;k�1
i0nkÿnkÿ1�1;�j0�1�nkÿnkÿ1�1

:

Similarly, the simulation of a local link connecting the

leaders of Mi;j;k�1
i0;j0 and Mi;j;k�1

i0�1;j0 in the same level-(k +

1)submesh Mi;j;k�1 is by the following path:

Pi;j;k�1
i0nkÿnkÿ1�1;j0nkÿnkÿ1�1

ÿ!levelÿk bus
P i;j;k�1
i0nk;j0nkÿnkÿ1�1

ÿ!levelÿ�k�1� bridge link
P i;j;k�1
i0nk�1;j0nkÿnkÿ1�1

ÿ!levelÿk bus
P i;j;k�1
�i0�1�nkÿnkÿ1�1;j0nkÿnkÿ1�1

:

It is easy to verify that each level-k bus is used in at

most two of these paths, and each level-(k + 1) bus is used in

at most one of these paths. Using these paths, the leaders of

level-k submeshes can simulate an n� n MCC. There are

nÿ 1 horizontal (respectively, vertical) level-(k + 1) buses in

a level-(k + 1) submesh Mi;j;k�1 for 1 � k < l. In this case,

we label them with Bi;j;k�1
h1

to Bi;j;k�1
hnÿ1

(respectively, Bi;j;k�1
v1

to Bi;j;k�1
vnÿ1

) from top to bottom (respectively, from left

to right). The level-(k + 1) bus Bi;j;k�1
hr

(respectively, Bi;j;k�1
vr

)
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connects processors Pi;j;k�1
rnk�1;s

(respectively, Pi;j;k�1
s;rnk�1

) where

1 � s � nk�1. In a level-(k + 1) submesh Mi;j;k�1, the

level-k leader Pi;j;k�1
�r�1�nkÿnkÿ1�1;j0nkÿnkÿ1�1

(respectively,

Pi;j;k�1
i0nkÿnkÿ1�1;�r�1�nkÿnkÿ1�1

), 1 � r � nÿ 1, is connected to

processor Pi;j;k�1
rnk�1;j0nkÿnkÿ1�1

(respectively, Pi;j;k�1
i0nkÿnkÿ1�1;rnk�1

) by

a unique level-k bus. Hence, we can use processors

Pi;j;k�1
rnk�1;j0nkÿnkÿ1�1

(respectively, Pi;j;k�1
i0nkÿnkÿ1�1;rnk�1

) to simulate

level-k leaders Pi;j;k�1
�r�1�nkÿnkÿ1�1;j0nkÿnkÿ1�1

(respectively,

Pi;j;k�1
i0nkÿnkÿ1�1;�r�1�nkÿnkÿ1�1

), 1 � j0 � n, and use level-(k + 1)

bus Bi;j;k�1
hr

(respectively, Bi;j;k�1
vr

) to simulate a level-(k + 1)

bus that connects these level-k leaders. These simulations

cause a constant-factor slowdown. We also note that the

level-k leader processor Pi;j;k�1
nkÿnkÿ1�1;j0nkÿnkÿ1�1

is connected to

processor Pi;j;k�1
nk�1;j0nkÿnkÿ1�1

by a path

Pi;j;k�1
nkÿnkÿ1�1;j0nkÿnkÿ1�1

ÿ!levelÿk bus
P i;j;k�1
nk;j0nkÿnkÿ1�1

ÿ!levelÿ�k�1� bridge link
P i;j;k�1
nk�1;j0nkÿnkÿ1�1

:

and the level-k leader processor Pi;j;k�1
i0nkÿnkÿ1�1;nkÿnkÿ1�1

is
connected to processor Pi;j;k�1

i0nkÿnkÿ1�1;nk�1
by a path

Pi;j;k�1
i0nkÿnkÿ1�1;nkÿnkÿ1�1

ÿ!levelÿk bus
P i;j;k�1
i0nkÿnkÿ1�1;nk

ÿ!levelÿ�k�1� bridge link
P i;j;k�1
i0nkÿnkÿ1�1;nk�1

:

Thus, we are able to use the level-(k + 1) bus Bi;j;k�1
h1

(respectively, Bi;j;k�1
v1

) to simulate a level-(k + 1) bus that

connects level-k leaders Pi;j;k�1
nkÿnkÿ1�1;j0nkÿnkÿ1�1

(respectively,

Pi;j;k�1
i0nkÿnkÿ1�1;nkÿnkÿ1�1

), 1 � j0 � n, with a constant-factor slow-

down. For k � lÿ 1, there are n horizontal level-(k + 1)

buses and n vertical level-(k + 1) buses, and all of them can

be used to simulate the buses connecting level-�lÿ 1�
leaders. For example, for the �2; 3�-IMMB�3� shown in

Fig. 2, the connections used to simulate 3� 3 logical MMBs

of level-1 leaders are shown in Fig. 5 and the connections

used to simulate the 3� 3 logical MMB of level-2 leaders are

shown in Fig. 6. The shaded processor in Fig. 6 is the leader

of a level-3 submesh. This IMMB is used to construct a

�2; 4�-IMMB�3�. Summarizing the above discussions, we

have the following lemma.

Lemma 1. For any level-(k + 1) submesh Mi;j;k�1, where 1 <
k < l and 1 � i; j � nlÿkÿ1, in (2, l)-IMMB(n), there is a
logical n� n MMB on its level-k submesh leaders using all its
level-(k + 1) buses, a subset of its level-k buses, and a subset of
its level-(k + 1) bridge links.
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The following fact is also useful in our prefix algorithm.

For brevity, we omit its proof.

Lemma 2. For any level-(k + 1) submesh Mi;j;k�1, where 1 <

k < l and 1 � i; j � nlÿkÿ1, in �2; l�-IMMB�n�, there is a path

that consists of a level-k bus and a level-(k + 1) bus from its

leader to any of its level-k leader.

Let �a1; a2; � � � ; an2� be a sequence of n2 operands for the

prefix computation and A be a prefix algorithm that runs in

O�t�n2�� time on an n� n MMB with each processor

holding one operand. Suppose that

f : fij1 � i � n2g ! f�j; k�j1 � j; k � ng
is the function used by algorithm A to map ais and sis to

processors in an n� n MMB; i.e., if f�i� � �r; c�, input ai
and result si � a1 � a2 � � � � � ai are in Pr;c before and after

the computation, respectively. We want to perform prefix

computation on a sequence A � �a1; a2; � � � ; an2l� using (2, l)-

IMMB(n). We partition A into n2 subsequences Ai,

1 � i � n2, each having n2�lÿ1� operands, such that

Ai � �a�iÿ1�n�1a�iÿ1�n�2 � � � ; ain2�lÿ1� �. We use f�i� to map Ai

to the level-�lÿ 1� submesh Mr;c;l. Let

Si � a�iÿ1�n�1 � a�iÿ1�n�2 � � � � � ain2�lÿ1� :

We want to use each level-�lÿ 1� submesh Mr;c;l to compute

Si, where �r; c� � f�i�. To do so, we partition each Ai into n2

subsequences Ai;1; Ai;2; � � � ; Ai;n2 , each having n2�lÿ2� oper-

ands. We assign Ai;j to the level-�lÿ 2� submesh Mr;c;l
r0;c0 ,

where �r; c� � f�i� and �r0; c0� � f�j�. We recursively parti-

tion each subsequence Ailÿ1;ilÿ2;���;ik�1
into n2 subsequences

Ailÿ1;ilÿ2;���;ik�1;ik , 1 � ik � n2, and assign each of these sub-

sequences to a level-k submesh of the level-(k + 1) submesh

for Ailÿ1;ilÿ2;���;ik�1
using function f until each Ailÿ1;ilÿ2;���;i0

contains exactly one operand, which is assigned to a unique

processor. For 1 � k � lÿ 1, let

Silÿ1;ilÿ2;���;ik�1;ik � �aj2Ailÿ1 ;ilÿ2 ;���;ik�1 ;ik
aj:

We call Silÿ1;ilÿ2;���;ik�1;ik the active value of unit Ailÿ1;ilÿ2;���;ik�1;ik .

Our algorithm consists of three phases. The first phases

have lÿ 1 iterations. In the first iteration, Algorithm A is

performed on all logical n� n MMBs defined on level-1

submeshes, and the active values of these submeshes are

stored in their leaders. In the kth iteration, 1 < k � lÿ 1,

algorithm A is performed on all logical n� n MMBs

defined on the leaders of level-�kÿ 1� submeshes, and the

active values of all level-(k + 1) submeshes are routed to

their respective leaders. By Lemma 1 and Lemma 2, each
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iteration takes O�t�n2�� time, which is the time required for

prefix computation on n operands using an n� n MMB.

The total time for the first phase is O�l t�n2��.
In the second phase, the leader of a level-k submesh

broadcasts its active value to its level-1 leaders in the

submesh. This broadcasting operation involves 1) sending

its active value to one of its level-�kÿ 1� leaders, 2) broad-

casting the item to all its level-�kÿ 1� leaders using the

logical n� n MMB defined on these level-�kÿ 1� leaders,

and 3) recursively broadcasting to leaders of lower levels. A

bus conflict problem arises: broadcasting from the leader of

a level-k submesh to all its level-�kÿ 1� leaders and

broadcasting from the leader of a level-�kÿ 1� submesh to

all its level-�kÿ 2� leaders may need to use the same level-k

buses. To avoid such conflicts, we use a ªpipeliningº

strategy, which consists of lÿ 2 steps, Step 1 through

Step lÿ 2. In the jth step, level-�lÿ 2iÿ j� leaders broadcast

to the level-�lÿ 2iÿ jÿ 1� leaders in their level-�lÿ 2iÿ j�
submesh, where 0 � i � lÿj

2 using logical n� n MMBs

defined on the level-�lÿ 2iÿ jÿ 1� leaders. By Lemma 1

and Lemma 2, there is no conflict in the use of buses in this

process. It is easy to verify that after �lÿ 2� steps, all data at

higher level leaders are broadcast to level-1 leaders. Then,

each level-1 leader broadcasts all data it has received to the

processors in its level-1 submesh. The overall running time

for the second phase is O�l�.
The task of the third phase is for each processor to

update its prefix value using the data it received in the

second phase. The time for this phase is obviously O�l�. In

summary, the total time for this three-phase prefix algo-

rithm is O�lt�n2��, assuming that Algorithm A takes

O�l t�n2�� time. The first phase of this algorithm can be

used to perform a semigroup operation. By the results of

[11], [21], semigroup and prefix computations on n2

operands can be carried out using an n� n MMB O�n1
3�

time, i.e., t�n2� � O�n1
3�. Let N � n2l. Then, semigroup and

prefix computations on N operands can be carried out

using an l-level square (2, l)-IMMB(n) in O�lN 1
6l� time. For

any given constant 0 < � < 1, selecting l such that l � 1
6�

leads to the following theorem.

Theorem 4. For any constant 0 < � < 1, there exists an N
1
2 �N 1

2

square �2; l�-IMMB�n� using which semigroup and prefix
operations on N operands can be carried out in O�N�� time.

For any constant 0 < � < 1, let N1ÿ� � n2l. We select l

such that l � 1ÿ�
6� to construct an N

1ÿ�
2 �N 1ÿ�

2 (2, l)-IMMB(n).

If we distribute N operands to N1ÿ� processors of this (2,

l)-IMMB(n), semigroup and prefix operations on these

N operands can be carried out in O�N�� time. Hence, we

have the following claim.

Corollary 3. For any constant 0 < � < 1, there exists an N
1ÿ�

2 �
N

1ÿ�
2 square (2, l)-IMMB(n) using which semigroup and prefix

operations on N operands can be carried out in O�N�� time,
which is cost optimal.

If we let n be a constant, say n � 3, then semigroup and
prefix computations on N operands can be performed on a
square �2; l�-I(3) in O�l� time, which leads to the following
claim.

Theorem 5. Semigroup and prefix computations on N operands
can be performed using an O�logN�-level N

1
2 �N 1

2 square
IMMB in O�logN� time.

Let each processor hold logN operands, the following
corollary is straightforward.

Corollary 4.. Semigroup and prefix computations on N operands

can be performed on an O�logN�-level N
1
2��������

logN
p � N

1
2��������

logN
p square

IMMB in O�logN� time, which is cost optimal.

There is no contradiction between Theorem 4 and
Theorem 5. The better performance claimed in Theorem 5
is achieved by using more buses.

5 EXTENSION TO d-DIMENSIONAL IMMBS

Our definition of l-level 2D IMMBs can be extended to

define d-dimensional IMMBs. A d-dimensional l-level

IMMB is denoted by �d; l�-IMMB. The processors in an n1 �
n2 � � � � � nd d-dimensional IMMB is denoted by Pi1;i2;���;id ,
where 1 � ij � nj and 1 � j � d. In a way similar to the

definition of 2D IMMBs, we can formally define (d,

l)-IMMBs in a recursive fashion, assuming that a

d-dimensional MMB is a 1-level d-dimensional IMMB, and

its buses are level-1 buses. For a �d; lÿ 1�-IMMB, we call its

level-�lÿ 1� buses that connect the processor with the

smallest index according to lexicographical order (i.e.,

P1;1;���;1) its representative level-�lÿ 1� buses. Clearly, there

are exactly d representative level-k buses, one for each

dimension. We use n �Qd
i�1 nl;i copies of a �d; lÿ 1�-IMMB

to construct a (d, l)-IMMB as follows. Arrange these

�d; lÿ 1�-IMMBs, which are referred to as level-�lÿ 1�
submeshes, as an nl;1 � nl;2 � � � � � nl;d array. Boundary

processors are connected by bridge local links, and

representative level-�lÿ 1� buses are merged into level-l

buses. For brevity, we omit the detailed formal definition.

We illustrate the construction of a �3; l�-IMMB from

�3; lÿ 1�-IMMBs in Fig. 7. In Fig. 7a, we show a

�3; lÿ 1�-IMMB with thick line segments designating its

three representative level-�lÿ 1� buses. In Fig. 7b, we

illustrate the construction of a (3,l)-IMMB from nine copies

of the �3; lÿ 1�-IMMB shown in Fig. 7a. In this case,

nl;1 � nl;2 � nl;3 � 3. The representative level-�lÿ 1� buses

of level-(lÿ 1) 3D submeshes are merged into level-l buses,

as shown in Fig. 7b, and the three thicker line segments

designate the representative level-l buses of the constructed

(3, l)-IMMB. If the bus merge operation is not performed in

the construction of a 2-level d-dimensional IMMB, we

obtain a d-dimensional GMMB. By Theorem 1, it is easy to
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verify that the diameter of a (d,l)-IMMB is dl. It is also

straightforward that any d-dimensional GMMB can be

simulated by its corresponding 2-level d-dimensional IMMB

(which has fewer buses) with a constant-factor slowdown.

It was shown in [3], [11] that a prefix computation on

N operands can be performed in O�N 1
24� time using an N

13
24 �

N
7
24 �N 1

6 3D MMB. The aspect ratio of this MMB is N
3
8. It

was shown in [13] that the same computation can be

performed in O�N 1
27� time using an N

14
27 �N 8

27 �N 5
27

3D GMMB. The aspect ratio of this GMMB is N
1
3. Since a

3D GMMB of [13] can be simulated by a 2-level 3D IMMB

obtained by merging a subset of its buses with a constant-

factor slowdown, semigroup and prefix computations on

N operands can be performed in O�N 1
27� time using a 2-level

3D N
14
27 �N 8

27 �N 5
27 3D IMMB. Actually, we can do much

better.
Let n1 � n13

24, n2 � n 7
24, n3 � n1

6, and n � n1n2n3. We

construct a (3,2)-IMMB by arranging n copies of n
13
24 � n 7

24 �
n

1
6 MCC, each being referred to as a level-1 3D submesh, as

an n
1
6 � n 7

24 � n13
24 3D array. Each processor is referred by

Px;y;z, where 1 � x � n17
48, 1 � y � n14

48, and 1 � z � n17
48. It is

not difficult to see that all level-1 buses and a subset of links

can be used to simulate n disjoint n
13
24 � n 7

24 � n1
6 3D MMBs.

We call the processor in a level-1 3D submesh that has the

largest index according to lexicographical order the leader of

the submesh. The reader will not fail to see that the buses and

links in this �3; 2�-IMMB define an n
1
6 � n 7

24 � n13
24 logical

MMB on the leaders of level-1 3D submeshes. Hence, the

algorithm of [11] can be run on all level-1 submeshes

concurrently, and the same algorithm can be run on the

logical n
1
6 � n 7

24 � n13
24 MMB defined on level-1 leaders. By

letting N � n2, we have the following theorem:

Theorem 6. Semigroup and prefix computations on N operands
can be performed using an N

17
48 �N 14

48 �N 17
48 �3; 2�-IMMB in

O�N 1
48� time.

This theorem is a generalization of Theorem 2. Note

that a (3,2)-IMMB can be considered as constructed from

a three-dimensional GMMB by merging some of its buses.

This result is an improvement over the best known

O�N 1
27� time complexity achieved by a GMMB. The aspect

ratio of the N
17
48 �N 14

48 �N 17
48 �3; 2�-IMMB is N

1
16 and is also

better. We might have constructed an N
26
48 �N 14

48 �N 8
48

�3; 2�-IMMB with an n
13
24 � n 7

24 � n1
6 array of n

13
24 � n 7

24 � n1
6

level-1 submeshes. While having the same O�N 1
48� time

complexity for semigroup and prefix computations, this

�3; 2�-IMMB has a much larger aspect ratio N
3
8. In fact,

without lossing time efficiency, several �3; 2�-IMMBs with

different aspect ratios can be constructed by choosing

different permutations of n1, n2, and n3.

A 3-level N
1
3 �N 1

3 �N 1
3 3D IMMB can be recursively

constructed from an arbitrary n1 � n2 � n3 MMB. First, we

construct a 2-level n2n1 � n3n2 � n1n3 IMMB by arranging

n � n1n2n3 copies of an n1 � n2 � n3 MMB, which are

level-1 3D submeshes, as an n2 � n3 � n1 3D array, and

properly adding bridge links and merging some level-1

buses into level-2 buses. Then, we construct a 3-level

n3n2n1 � n1n3n2 � n2n1n3 IMMB by arranging n copies of

this n2n1 � n3n2 � n1n3 IMMB, which are level-2

3D submeshes, as an n3 � n1 � n2 3D array, and properly

adding bridge links and merging some level-2 buses into

level-3 buses. The resulting structure is a 3-level n� n� n
IMMB. Let n1 � n13

24, n2 � n 7
24, n3 � n1

6. By properly select-

ing leaders of 3D submeshes at every level, we can

identify disjoint logical MMBs and run the prefix

algorithm of [3], [11] on these MMBs in a way similar

to that described in the previous section. It is simple to

verify that semigroup and prefix computations on

n3 operands on this IMMB takes O�n 1
24� time. Letting

N � n3, we have the following theorem.

Theorem 7. Semigroup and prefix computations on N operands

can be performed using an N
1
3 �N 1

3 �N 1
3 �3; 3�-IMMB in

O�N 1
72� time.
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Fig. 7. The construction of a 3D l-level IMMB. (a) A �3; lÿ 1�-IMMB, with its three representative level-�lÿ 1� level-�lÿ 1� buses designated by thick

line segments. (b) A �3; l�-IMMB constructed using 9 �3; lÿ 1�-IMMBs of (a).



In [3], [11], it was shown that semigroup and prefix

computations can be performed on N operands using

an N
d2dÿ1�1

d2d �Nd2dÿ2�1

d2d � � � � �Nd�1

d2d d-dimensional MMB in

O�N 1

d2d� time. In [13], it is shown that semigroup and prefix

computations can be performed on N operands using an

N
d2dÿ1�2

d2d�d �Nd2dÿ2�2

d2d�d � � � � �N d�2

d2d�d d-dimensional GMMB in

O�N 1

d2d�d� t ime. Using the n
d2dÿ1�1

d2d � nd2dÿ2�1

d2d � � � � � nd�1

d2d

d-dimensional MMB as a level-1 IMMB, we can construct

a (d,l)-IMMB recursively, with a (d, k)-IMMB constructed

using n copies of n
d2dÿ1�1

d2d � nd2dÿ2�1

d2d � � � � � nd�1

d2d level-�kÿ 1�
submeshes. By properly selecting processors as leaders at

different levels in a similar way to what we did for the

2D case in the previous section, we can run the algorithm

for the n
d2dÿ1�1

d2d � nd2dÿ2�1

d2d � � � � � nd�1

d2d d-dimensional MMB

given in [3], [11] on logical MMBs defined on these levels.

It is not difficult, though tedious, to prove the following

generalization of Theorems 6 and 7.

Theorem 8. Semigroup and prefix computations on N operands

can be performed using an N-processor �d; l�-IMMB in

O�N 1

ld2d� time.

Since a �d; 2�-IMMB can be considered as constructed

from a d-dimensional GMMB by merging some of its buses,

our time complexity O�N 1

ld2d� is a significant improvement

over the time complexity O�N 1

d2d�d� achieved by a

d-dimensional GMMB. Also, the time complexity claimed

in Theorem 8 can be achieved by a set of �d; l�-IMMBs with a

wide range of different aspect ratios .
Consider constructing a �d; d�-IMMB recursively as

follows. The �d; l�-IMMB, 1 � l � d, is constructed by an

n1���1�lÿ2� mod d� � n1���2�lÿ2� mod d� � � � �
� n1���i�lÿ2� mod d� � � � � � n1���d�lÿ2� mod d�:

The resulting �d; d�-IMMB is an n� n� � � � � nz������������}|������������{d

�d; d�-IMMB,

where n �Qd
i ni. Choosing nis such that ni � N

d2dÿi�1

d2d , we

have the following extension of Theorem 8.

Theorem 9. Semigroup and prefix computations on N operands

can be performed using a d-level N
1
d �N 1

d � � � � �N 1
d

z����������������}|����������������{d

d-dimensional IMMB in O�N 1
d2dd
� time.

6 CONCLUDING REMARKS

In this paper, we proposed a generalization of mesh-

connected computers with multiple buses, the IMMBs.

Processors in an IMMB form a hierarchy of clusters

(submeshes) of different sizes, and buses are partitioned

into levels for fast data movement among processor clusters

at different levels. Like an MMB and a GMMB, each

processor in an IMMB is connected to exactly two buses,

and consequently, each processor has a constant number of

ports. We investigated the computation power of IMMBs by

comparing their semigroup and prefix computation perfor-

mances with that of MMBs and GMMBs. Specifically, we

showed that for any constant 0 < � < 1, one can construct

an N
1
2 �N 1

2 square IMMB using which semigroup and

prefix computations on N operands can be carried out in

O�N�� time, while maintaining O�1� broadcasting time. This

significantly improves the best time complexities achieved

on MMBs and IMMBs for the same computations.

Compared with the previous best complexities O�N 1
8�

and O�N 1
16� achieved on a rectangular MMB and GMMB,

respectively, for the same computations, our results show

that IMMBs are more powerful than both MMBs and

GMMBs. We also provided improved results for higher

dimensional processing array We showed that 2-level

d-dimensional IMMBs are more powerful than their

corresponding d-dimensional GMMBs, since 2-level

d-dimensional IMMBs can simulate their GMMB counter-

parts efficiently, while having fewer number of buses and

relatively smaller diameters. This statement is not restricted

to semigroup and prefix computations; it holds for solving

any problem.

The IMMBs provide more design alternatives, since in

addition to d, the number of dimensions, one can also select

l, the number of bus levels. For a practical N value, the

number of processors, both l and d can be selected as small

constants no greater than 3, though theoretically it was

shown that larger l and d values lead to better performances

for sufficiently large N . In our examples, l is fixed for all

dimensions. It is possible to select different l values for

different dimensions. The best semigroup and prefix time

complexities achieved on MMBs and GMMBs so far were

developed for MMBs and GMMBs with large aspect ratios.

We showed that l can be used to control aspect ratios, in

addition to its uses for better performances. In particular,

we showed how to construct IMMBs with aspect ratios

equal to 1 that have very good semigroup and prefix

computation performances. This is not possible for both

MMBs and GMMBs.

In a real implementation of an IMMB, buses at higher

levels may be implemented with larger bandwidths by

either using more wires or more expensive technology to

alleviate the increased congestions. This approach is similar

to the fat trees proposed in [18] and implemented in the

CM-5 machine [25]. Fiber optics may be used to implement

buses at the highest level. Three dimensions may be

preferred to two dimensions for reducing the number of

processors attached to a bus.

Solving other problems using MMBs and GMMBs has

been considered [5], [9], [10], [12], [14], [21]. For example,
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Chen et al. [10] designed an O�N 1
8 logN�-time median-

finding algorithm for an N
3
8 �N 5

8 MMB, and Bhagavathi et

al. [5] designed an selection algorithm with the same

complexity. Chung [14] designed an O�N 1
10 logN�-time

selection algorithm for an N
3
5 �N 2

5 GMMB. It is not difficult

to show that the time complexities of selection algorithms

using IMMBs are within �logN� times the time complexities

of our semigroup and prefix algorithms using IMMBs.
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