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Abstract— The use of multicast inference on end-to-end mea-
surement has recently been proposed as a means to obtain underly-
ing multicast topology. In this paper we analyze the algorithm of the
binary loss tree classif ication with hop count (HBLT). We compare
it with the algorithm of binary loss tree classif ication (BLT) and
show that the probability of misclassif ication of HBLT decreases
more quickly than BLT as the number of probing packets increases.
The inference accuracy of HBLT is always 1 — the inferred tree is
identical to the physical tree — in the case of correct classif ication,
whereas that of BLT is dependent on the shape of the physical tree
and inversely proportional to the number of internal nodes with
single child. Our analytical result shows that HBLT is superior
to BLT not only on time complexity but also on misclassif ication
probability and inference accuracy.

Key words: Multicast, topology inference, hop count,
misclassif ication probability, inference accuracy.

I. INTRODUCTION

For the efficient use of network resources, multicast has
become one of the most popular forms of communication.
The potential benefits obtained from topological information
on multicast distribution trees becomes increasingly important.
Knowledge of multicast topology can significantly facilitate
resource management, and can be applied to build schemes for
loss recovery and congestion control in the context of multicast
sessions supporting heterogeneous receivers [1], [4].

There has been much research on multicast topology dis-
covery. Existing approaches can be classified into two types:
those based on end-to-end measurements [3], [2], [6], [5], [7],
[11] and those requiring the help of intervening network nodes
[8], [9].

The key idea underlying the first approach is that receivers
sharing common paths on the multicast tree associated with a
given source will see correlations in their packet losses. The
multicast tree can thus be inferred based on the shared loss
statistics for transmitted probe packets. The key advantage of
the approach lies in its applicability to inferring multicast trees
requiring no support from internal nodes. It permits however,
identification of the logical multicast topology rather than the
actual physical topology. As discussed in the sequel, a long
path with no branches would be identified as a single logical
link. With this approach, all single-child nodes are deleted
in the inferred logical topology. In practice this may not be
an appropriate inference of the actual topology because there
may exist many nodes with only one child. The scheme of
binary loss tree classification (BLT) is a representative of

this approach which provides a good combination of inference
accuracy and computational simplicity [7], [10].

The second approach to multicast topology discovery is
based on the use of the MTRACE feature currently imple-
mented in the IGMP protocol. The main advantage of this
approach is that it provides full information on the multicast
topology based on currently available IGMP features. The
physical topology including interface addresses of routers can
therefore be obtained. This however, shall rely heavily on
special services at routers.

Based on algorithm proposed in [5], [7], [10] from end-to-
end loss measurement, an improved algorithm, namely binary
loss tree classification with hop count (HBLT), has recently
been proposed in [12] which can identify nodes with both
two children and single child, and thus produce the inferred
topology much closer to the physical topology than that of
BLT. In HBLT, an additional parameter of hop count is
incorporated. It doesn’t require support from internal nodes
which is necessary in the second approach, and can infer
multicast topologies which BLT is unable to infer. This paper
is concerned with the analysis of misclassification probability
and inference accuracy of HBLT.

The paper is organized as follows. In Section II math-
ematical models of multicast network are introduced. The
procedures of BLT and HBLT are described in Section III.
Misclassification analysis is given in Section IV. Section V
compares the degree of inference accuracy for both algorithms.
Section VI concludes the paper.

II. MATHEMATICAL MODELS OF MULTICAST NETWORK

We begin with reviewing the tree and loss models used
to formulate the BLT Algorithm and the improved algorithm
HBLT. The physical multicast tree is modelled as a tree
comprising actual network elements (the nodes) and the com-
munication links that join them.

• Tree model
Let T = (V,L) denote a multicast tree with node set V

and link set L. The root node 0 is the source of probes, and
R ⊂ V denotes the set of leaf nodes representing the receivers.
A link is said to be internal if neither of its endpoints is the
root or a leaf node. Let W denote V \({0, 1} ∪ R), where
1 is the child node of 0. Each non-leaf node k has a set of
children node d(k) = {di(k) | 1 ≤ i ≤ nk} , and non-root
node k has a parent P (k) . The link

(
p(k), k

) ∈ L can be
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simply denoted by link k. If j is descended from k, it could be
written j ≺ k or k = pr(j) for r being a positive integer. Let
a(U) mean the nearest common ancestor of a subset U ⊂ V ,
Nodes U are said to be siblings if they have the same parent,
i.e., if f(k) = a(U),∀k ∈ U . The subtree of T rooted at
k is denoted by T (k) =

(
V (k), L(k)

)
, and the receiver set

R(k) = R ∩ V (k). Figure 1 shows an example of multicast
tree model.

Fig. 1. A multicast tree model

• Loss model

For each link an independent Bernoulli loss model is
assumed: each probe is successfully transmitted across link
k with probability αk. Thus the progress of each probe down
the tree is described by an independent copy of a stochastic
process X = (Xk)k∈V as follows. X0 = 1, Xk = 1 if the
probe packet reaches node k ∈ V and 0 otherwise. If Xk = 0,
Xj = 0,∀j ∈ d(k). Otherwise, P [Xj = 1|Xk = 1] = αj

and P [Xj = 0|Xk = 1] = 1 − αj . Define α0 = 1,
α = (αi)i∈V .The pair (T, α) is called a loss tree. PT,α

denotes the distribution of X on the loss tree (T, α). If
0 < αk < 1,∀k ∈ V \{0}, the loss tree is said to be a
canonical tree. Any tree (T, α) in non-canonical form can
be reduced to a canonical tree (T ′, α′) [5]. Henceforth only
canonical loss trees are discussed in this paper.

III. ALGORITHMS FOR MULTICAST TOPOLOGY

DISCOVERY

In this section, we summarize the procedures of BLT and
HBLT. For simplicity only inference algorithms for binary tree
inference are concerned here.

A. Binary Loss Tree Classification (BLT)

In BLT, When a probe packet is sent on the path from
the root to the nearest ancestor of two receivers, the same
link condition is provided. Thus the pair of receivers share
the same loss rate. Since the loss rate cannot decrease as the
path is extended, the pair of receivers whose shared loss rate
is greatest will be siblings. This pair is identified as a pair
of siblings and replaced by a composite node that represents
their parent. Iterating this procedure shall then reconstruct the
binary tree.

For identifying the siblings, the loss distribution function
B(U) [5] is applied. When U is a set of siblings, B(U) is

minimized, which implies the sharing loss rate of the set is
maximized. BLT works as follows:

Step1: Find the set of receivers which minimize B(U);
Step2: Mark the set siblings and deletes them from the
set requiring inferred;
Step3: Substitute a composite node that represents their
parent for the siblings and adds it to non-inferred set;
Step4: Iterate the above procedure in the rest of the set
requiring inferred.

In this way the logical multicast tree is reconstructed
by observing the probability distribution of the receivers in
bottom-up fashion.

In practice, B(U) is estimated by B̂(U).

B̂(U) =
∑n

i=1 X̂
(i)
u1

∑n
i=1 X̂

(i)
u2

n
∑n

i=1 X̂
(i)
u1 X̂

(i)
u2

(1)

Here U = {u1, u2}, n is the number of probe packets,
(Xi

k)i=1,··· ,n
k∈R denotes the measured outcomes observed at the

receiver arising from each of n probes.
When u1, u2 are siblings, B̂(U) will be minimized.
Note that the inferred tree by BLT is a logical tree which

is followed by such rules. The logical topology induced by
a physical topology T is formed from T after all internal
nodes with only one child have been collapsed into their parent
recursively (as defined in [10]). Thus a physical tree can be
converted to a logical tree. The logical multicast tree has the
property that every node has at least two descendants, apart
from the root node (which have only one) and the leaf-nodes
(which have none). BLT can infer such kind of logical tree
in correctly inferring case. But it can never infer the actual
physical tree if single-child node exists.

B. Binary Loss Tree Classification with Hop Count (HBLT)

In order to identify those single-child nodes to obtain a
multicast topology which is closer to the actual physical tree,
HBLT takes hop count into account. It can infer all the internal
nodes with different values of hop count, including those nodes
with single child. Links terminating at single-child nodes can
also be identified.

Though one more parameter is considered, HBLT doesn’t
add more burden to the multicast network because hop count
can be computed by simply reading the TTL values of the
probe packets at receivers. For internal nodes, the values of
hop count can be easily computed by degression. Therefore
application of hop count to topology inference is very efficient.

HBLT infers the multicast topology from the node with the
maximum hop count and proceeds in a bottom up fashion.
Since real siblings must have the same value of hop count, the
set of all the receivers is classified to different sets according to
the value of hop count. In the procedure of identifying siblings,
only comparison between the sets with the same value of hop
count is necessary. It works as follows:

Step 1: Classify all the receivers nodes to different node
sets according to hop count;
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Step 2: Identify siblings in the set of nodes with the
maximum value of hop count;
Step 3: Substitute them with their parent node, the value
of hop count is reduced by 1, and loss distribution is
obtained by “OR” operation of the siblings;
Step 4: After the siblings are identified in the node set
with certain hop count, repeat the same procedure in the
node set with hop count value decreased by 1 until the
set with hop count value 1.

The multicast topology is reconstructed in this way. HBLT
provides higher performance in inference speed than BLT. As
analyzed in [12], the time complexity of HBLT in the worst
case is O(l2), while that of BLT is O(l3). The expected time
complexity of HBLT is estimated at O(l ∗ log2 l), which is
much better than that of BLT O(l3).

IV. MISCLASSIFICATION PROBABILITY ANALYSIS

In this section, we describe the model of failure of HBLT,
and analyze the probability of misclassification. Since HBLT
proceeds by recursively classifying receivers, topology mis-
classification can be analyzed by looking at how sets of
receivers can be misclassified in the estimated topology T̂ .

Definition 1: Let (T, α) be a loss tree with T = (V,L),
and (T̂ , α̂) be an inferred loss tree with T̂ = (V̂ , L̂). Denote
the receiver set of i by RT (i) and let RT = ∪iR

T (i). If
∀i ∈ W = V \({0, 1}∪R), RT (i) = RT̂ (̂i), the node i is said
to be classified correctly.

For a binary tree, the topology is correctly classified if
and only if ∀i ∈ W is correctly classified. So we can study
topology misclassification by looking at the misclassification
of receivers for each i. For both BLT and HBLT, computing
loss distribution of internal nodes is necessary when estimating
B(U). Therefore we use the following general formula of loss
distribution function, as presented in [5].

B̂(S1, S2) =

∑n
i=1 ∨j∈S1Y

(i)
j

∑n
i=1 ∨j∈S2Y

(i)
j

n
∑n

i=1(∨j∈S1Y
(i)
j ) · (∨j∈S2Y

(i)
j )

=
γ̂(S1)γ̂(S2)

γ̂(S1) + γ̂(S2) − γ̂(S1 ∪ S2)
(2)

Where

Y
(i)
k = X

(i)
k = ∨j∈d(k)Y

(i)
j = ∨j∈RT (k)Y

(i)
j ,

S1, S2 are two non-empty disjoint subsets of RT . Y
(i)
k is the

loss distribution of node k for the ith probe packet, which is
the union of all its descendants’ loss distribution. For U ⊂ V ,
γ̂(U) = n−1

∑n
i=1 ∨j∈UY

(i)
j is the fraction of probe packets

that reach some receiver descended from some node in U .
As the number of probe packets n increases,

B̂(S1, S2) asymptotically approaches to B(S1, S2),
limn→∞ B̂(S1, S2) = B(S1, S2). B(U) is the function
of loss distribution at a set of nodes U that is minimized
when U is a set of siblings. γ(U) = P [∨k∈U ∨j∈R(k)Xj = 1],
which is approximated by γ̂(U) in practice.

B(S1, S2) =
P [∨j∈S1Xj = 1]P [∨j∈S2Xj = 1]

P [∨j∈S1Xj · ∨j∈S2Xj = 1]

=
γ(S1)γ(S2)

γ(S1) + γ(S2) − γ(S1 ∪ S2)
(3)

Assume that the height of the multicast tree is h, so the
maximum value of hop count is h. Each node set with the
same hop count value k is denoted by Hk, 1 ≤ k ≤ h.
The coherence coefficient of Hk, denoted by εk, is defined
to be the correlation among the nodes within Hk, 1 ≤ k ≤ h.
Coherence coefficients ε1, ε2, ...εh are used to decide whether
two nodes are siblings. Let the event Gi describe that HBLT
correctly classifies nodes in RT (i) for some i ∈ W . This
happens if every descendent of i finds its sibling in HBLT
inference correctly.

Let D(S1, S2, S3) be the difference between B(S1, S2)
and B(S1, S3), and D̂(S1, S2, S3) the difference between
B̂(S1, S2) and B̂(S1, S3). Define a set S(i) as

S(i) = {(S1, S2, S3) : S1, S2, S3 ⊂ Hk, 1 < k < h,

S1, S2 ⊂ RT (i), S3 ⊆ RT \RT (i),
Sp �= Φ, p = 1, 2, 3, Sp �= Sq, p �= q}.

Lemma 1: A sufficient condition for correct classification
of i is that

D̂(S1, S2, S3) = B̂(S1, S2) − B̂(S1, S3) > 0 (4)

and
B̂(S1, S2) < εk (5)

for all (S1, S2, S3) ∈ S(i).
Let Q(S1, S2, S3) be the event that equation (4) and

(5) hold, Qi be the event that Q(S1, S2, S3) holds for all
S1, S2, S3 ∈ S(i). Thus, Qi =

⋂
(S1,S2,S3)∈S(i) Q(S1, S2, S3).

Let Ḡi be the event that i is classified incorrectly, P f
i be the

misclassification probability on node i. Then

Gi ⊇ Qi (6)

P f
i = P [Ḡi] ≤

∑
(S1,S2,S3)∈S(i)

P [Q̄(S1, S2, S3)] (7)

Denote by G the multicast tree that is correctly classified,
then we have that

G ⊇
⋂

i∈W

Qi =
⋂

i∈W

⋂
(S1,S2,S3)∈S(i)

Q(S1, S2, S3) (8)

Consequently the misclassification probability of the in-
ferred tree by HBLT is as follows.

P f
HBLT = P [Ḡ]

≤
∑
i∈W

∑
(S1,S2,S3)∈S(i)

P [Q̄(S1, S2, S3)] (9)

Theorem 1: For each i ∈ W and all ((S1, S2, S3) ∈
S(i)),

√
n · (D̂(S1, S2, S3) − D(S1, S2, S3)) converges in

distribution to a Gaussian random variable with mean 0 and
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variance σ2(S1,S2,S3)
ξ as the number of probes n → ∞, where

D(S1, S3, S3) = B(S1, S3) − B(S1, S2), ξ ≥ 2.
Proof:

From Theorem 10 of [5], we know that by use of BLT,
for each i ∈ W and all ((S1, S2, S3) ∈ S(i)),

√
n ·

(D̂(S1, S2, S3)−D(S1, S2, S3)) can be described as a standard
normal distribution N(0, σ2(S1, S2, S3)) as n → ∞. For
every classification of siblings descended from i, S1, S2 are
selected from subsets of all nodes which are descendent of
i, and S3 is selected from the subsets that don’t belong to
the subtree rooted at i. In HBLT, only S1, S2, S3 within the
subsets with the same value of hop count are sampled, εk acts
as imaginative node in S3, which makes equation (4) hold
after replacing S3 by εk. All these (S1, S2, S3) can be known
as a sampling from the normal total sets. Assume the number
of sampling is ξ, then the mean of sampling is still 0, and the
variance is the original variance divided by ξ.

By Theorem 1, we can approximate P [Q̄(S1, S2, S3)] by
Ψ

( − √
n · √ξ · D(S1,S2,S3)

σ(S1,S2,S3)

)
, Ψ is the cdf of the standard

normal distribution. For large n, P [Q̄(S1, S2, S3)] can be
approximated as follows.

P [Q̄(S1, S2, S3)] ≈ e
−(n/2)·ξ·D2(S1,S2,S3)

σ2(S1,S2,S3) (10)

The logarithmic asymptotic of P [Q̄(S1, S2, S3)] is the fol-
lowing:

log P [Q̂(S1, S2, S3)] ∼ −n · ξ · D2(S1, S2, S3)
2σ2(S1, S2, S3)

(11)

From equation (7) we know P f
i is dominated by

Pmax(Q̂(S1, S2, S3)). P f
i ≈ Pmax(Q̂(S1, S2, S3))

when min(S1,S2,S3)∈S(i)
D2(S1,S2,S3)
σ2(S1,S2,S3)

. After substituting
D2(S1, S2, S3) and σ2(S1, S2, S3), it was shown from
Theorem 10 in [5] that

min(S1,S2,S3)∈S(i)
D2(S1, S2, S3)
σ2(S1, S2, S3)

= α̂i + O(‖ α ‖2), (12)

where αi is the loss rate of link (f(i), i), α̂i = 1−α, ‖ α ‖=
maxk∈V α̂k → 0. P f

i can be approximated as:

P f
i ≈ e−α̂i

n
2 ξ (13)

From equation (9) we know P f
HBLT is dominated by

maxi∈W P f
i likewise, that is,when

α̂f = mini∈W α̂i (14)

holds. Under this condition, logarithm on P f
HBLT is expected

to be asymptotically linear on n with negative slope:

ξ

2
· α̂f

.
Compared with the asymptotical slope of BLT, α̂f/2, HBLT

shows better performance. Therefore, misclassification prob-
ability of HBLT decreases more quickly than that of BLT as
the number of probe packet increases, as depicted in Figure
2.

Fig. 2. Misclassification probability comparison between BLT and HBLT

V. ANALYSIS ON INFERENCE ACCURACY

In this section, we compare the inferred trees by BLT and
HBLT to analyze the inference accuracies. It is clear that
inferred trees for BLT contains only those nodes with two
children in the physical tree, whereas that by HBLT contains
nodes with both two children and one child in the physical
tree. Considering that both algorithms classify correctly, the
objected trees are much different from each other. From this
view inference accuracy is discussed in this section.

Fig. 3. Logical trees inferred by BLT and HBLT when misclassification
probability is 0

Assume that both algorithms classify correctly, the inferred
trees are shown in Figure 3, where the left tree is inferred tree
by HBLT which is the same as the original physical tree and
the right tree is the inferred tree by BLT. It is obvious that the
correctly inferred tree by BLT changes a lot in the structure
from the original physical tree, whereas the correctly inferred
tree by HBLT is the same as the actual physical tree. We
analyze their difference in inference accuracy.

Assume that the actual physical tree has n internal nodes.
Every internal node has 1 child at the probability of α, and has
2 children at the probability of 1 − α. Let n1 be the number
of nodes that have 1 child, and n2 be the number of nodes
that have 2 children. Then we have n = n1 + n2. Denote by
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ci the number of children of internal node i.{
P{ci = 1} = α
P{ci = 2} = 1 − α

(15)

E(n1) =
2∑

x=1

P{ci = x} · E[n1 | ci = x]

= P{ci = 1} · E[n1 | ci = 1]
+ P{ci = 2} · E[n1 | ci = 2]
= n · α (16)

When all internal nodes have 1 child, E[n1 | ci = 1] is n;
if all internal nodes have 2 children, E[n1 | ci = 2] equals 0.

Definition 2: For a multicast tree that has n internal nodes,
the inference accuracy of an algorithm is defined as the
number of inferred internal nodes divided by the actual total
number of internal nodes in the case that the algorithm
classifies correctly.

Clearly, the expected number of internal nodes that have
single child is nα. In BLT all these single-child nodes are
deleted. It only infers all those internal nodes that have two
children. Henceforth, the BLT’s accuracy degree is

n − E(n1)
n

= 1 − α (17)

Suppose that α = 1/2, a half of internal nodes will fail
to be identified. The inference accuracy of BLT is 1/2. As α
increases, i.e., the probability of every internal node having
single child increases, the inference accuracy of BLT will
decrease. If with a large probability every internal node has
single child, the inferred tree by BLT will be very different
from the original physical tree. The inference accuracy of BLT
is thus very low in such case.

However, for HBLT, the inference accuracy is irrelevant
to α, so it can identify all the internal nodes regardless of
the number of children they have. The inference accuracy is
therefore always equal to 1.

VI. CONCLUSION

In this paper, we have analyzed misclassification probability
and inference accuracy of the recently proposed algorithm
HBLT. Comparison between HBLT and BLT is discussed,
which shows that HBLT outperforms BLT significantly. The
misclassification probability of HBLT decreases more quickly
than BLT as the number of probe packets increases. The
inference accuracy of HBLT is always 1 and the inferred
tree by HBLT is thus identical to the actual physical tree,
in the case of correct classification. However, the inference
accuracy of BLT is inversely proportional to the number of
internal nodes with single child in the multicast tree. The
inferred logical tree may differ significantly from the actual
physical tree. Our analysis shows that incorporating hop count
in the process of topology inference is a promising technique
and may benefit various applications on network topology
discovery.
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