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Abstract—In this letter, segmentation techniques for terahertz
(T-ray) computed tomographic (CT) imaging [1] are investigated.
A set of linear image fusion and novel wavelet scale correlation seg-
mentation techniques is adopted to achieve material discrimination
within a 3-D object. The methods are applied to a T-ray CT image
dataset taken from a plastic vial containing a plastic tube. This setup
simulates the imaging of a simple nested organic structure, which
provides an indication of the potential for using T-ray CT imaging
to achieve T-ray pulsed signal classification of heterogeneous layers.

Index Terms—Tomography, T-rays, wavelet transform.

1. INTRODUCTION

-RAYS is a collective term to describe the part of the elec-
T tromagnetic spectrum from 0.1 to 10 THz. The application
of T-rays, especially in the biomedical and security fields, is at-
tractive owing to two intrinsic properties: a nonionizing nature
and the ability to penetrate dry, nonpolar, and nonmetallic mate-
rials. Rapid improvements in T-ray detectors and sources make
it possible to image objects through optically opaque layers. At
present, 3-D T-ray CT imaging is being developed based on
T-ray spectroscopy [1]. T-ray CT imaging has the promise to
play an important role in a large number of clinical applica-
tions, particularly as a means of assisting clinical diagnosis. In
this letter, a 3-D classification scheme to implement T-ray CT
imaging is investigated. Image fusion and segmentation tech-
niques, including a novel wavelet scale correlation method, are
adopted to achieve the discrimination of heterogeneous mate-
rials within a 3-D object. The methods are applied to 4-D T-ray
imaging datasets of a vial containing a tube, illustrated in Fig. 1,
with an arrow line indicating the T-ray measurement path.

II. BRIEF REVIEW TO TERAHERTZ IMAGING

In T-ray CT, 4-D datasets are acquired. The axes of these
datasets correspond to 1) the projection angle; 2) the offset, a per-
pendicular distance of the projection path to the rotation axis; 3)
the vertical axis, perpendicular to the paper to label target heights;
and 4) the sampled time. Two processing steps are required for
T-ray CT reconstructions: i) 1-D Fourier transforms (FTs) of
incident T-ray pulses; ii) filtered back projection of spatial FTs,
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Fig. 1. Reconstructed T-ray CT. (a) Target object photograph with arrow line
indicating the measurement height of 7 mm. (b) Reconstructed 3-D T-ray CT.
(c) Reconstructed T-ray CT slides at the first ten frequencies, in increasing order
from top left at the object height of 7 mm.
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Fig. 2. (a) Detected T-ray signal and reference; (b) their spectra in log scale
with offsets of 2 and 4 a.u. corresponding to the original and deconvolved
spectra, respectively, for clarity.

which is a collection of 1-D projections at all projection angles.
The processing used in this T-ray CT experiment are described in
detail in [1]. Fig. 1(a) shows an optical photograph of the experi-
mental setup. Vertical slices used for this experiment are spaced
1 mm apart, while each T-ray CT reconstructed slice image has a
resolution of 89 x 89 pixels. Fig. 1(b) shows the full reconstructed
3-D T-ray CT model; Fig. 1(c) shows the reconstructed 2-D T-ray
CT slicesregarding the 10 lowest frequencies at a height of 7 mm.

Fig. 2(a) shows a detected T-ray signal and its reference pulse.
Fig. 2(b) shows magnitudes of Fourier transform of pulses in (a)
with an offset for clarity. The black solid line is the deconvolved
T-ray spectrum. The oscillations that appear in the incident T-ray
pulses and as dips on the T-ray spectra are a result of water vapor
[3], [4] in the beam path. From the spectra, it is evident that the
useable bandwidth of the signals is limited to 2 THz, due to the
reduction in signal strength as frequency increases. In addition,
there are a large number of noise sources in a T-ray system, which
are discussed in [5]. As a consequence, the SNR of the T-ray
signals are high for only the lower parts of the frequency range.

III. METHODOLOGY

The setup consisting of a tube inserted inside a vial is imaged
at various heights, ranging from 5 to 9 mm (from the bottom),
in 1-mm increments. To achieve 3-D T-ray CT classification,
image fusion methods and segmentation techniques are applied
to extract three different target segments. The image fusion is
achieved through merging two or more images at the same target
height. A linear combination of weighted slice images is com-
puted for image fusion with an aim to achieve border consistency
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in the fused T-ray CT images. Due to SNR limitations in the ex-
perimental apparatus at high frequencies discussed above, only
images corresponding to the ten lowest frequencies, from 0.0213
t0 0.213 THz, are selected. In this work, the weighting scheme is
empirically chosen to be 1/15 for the five lower frequencies and
2/15 for the five higher frequencies to compensate for the atten-
uation in signal strength in the higher frequency components.
The resultant fused image has clear target contours and shows
strong contrast between the target regions and the background.

Segment detection achieves differentiated subdivision of con-
stituent regions of an image. In this letter, a novel 2-D wavelet
scale correlation method is used to extract target segments from
the background. This method is motivated by 1-D wavelet scale
correlation denoising. First, the target cross sections are assumed
to be corrupted by additive white Gaussian noise, which is dis-
tributed randomly. The target objects are separated by their ab-
sorption coefficients, which are indicated by the intensity in the
images. With the incremental wavelet scale, the noise is reduced
and the target intensity (energy) is increased in an image. After
computing undecimated 2-D DWTs [6], [7] of fused T-ray CT
images, an increased energy with an increase in wavelet scale is
used as a cue to extract the target regions. The wavelet scale cor-
relation based segmentation algorithm is summarized as follows.

1) Calculate undecimated 2-D DWT coefficients at first and

second scales: sq(m,n), so(m,n), respectively.
2) Compute the correlation Ry »(m, n) for the two scales

Ry 2(m,n) = s1(m,n) x sa(m,n). (D

3) Compute the energy of R; 2(m,n) and s;(m,n) and use
them to normalize the correlation coefficients

Ea=Ssi(mn), Enie=SH,(mn) @
T,2(m7n) :Rlaz(m7n)(Esl/ER172)1/2' 3)

4) If |R o(m,m)| > Alsi(m,n)], (A is a parameter, chosen
to be 1 for this experiment), the pixel at (1, n) is extracted
as part of a target segment, otherwise it is regarded as
background.

The Canny edge detector, combined with Otsu’s threshold
method [2], is used to perform the final subtraction of each
target function edge [2] in the T-ray CT image. The current
algorithm only requires a single parameter \ in the threshold.

IV. EXPERIMENTAL RESULTS

The algorithm described in Section III is applied to extract
segments corresponding to the glass vial and plastic tube. The
extracted approximate subimages, after computation of the 2-D
DWT of the 89 x 89 fused images, are shown in Fig. 3(a) and
(b); the Daubechies 4 wavelet is used in this case. The result
of the correlation is shown in Fig. 3(c). Fig. 4(a) illustrates the
separated segment images corresponding to height from bottom
to top equal to 5 to 9 mm.

V. SEGMENTATION QUALITY

The segmentation quality cannot be directly verified since
the explicit ground truth is not known. This is typical of to-
mographic applications—the subjects are not cut up to provide
knowledge of the ground truth. In this experiment, we exploit
the fact that the internal structure, the tube, is straight. This im-
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(b)
Fig. 3. Illustration of the approximate and correlated images after two scales
of 2-D DWT of T-ray CT fused image. (a) The first-scale approximate image
of 2-D DWT of T-ray CT image. (b) The second-scale image of 2-D DWT of
T-ray CT image. (c) The correlation output image.
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Fig.4 (a)Segmented image sets at heights from 5 to 9 mm, from bottom of vial.
The upper subfigures are the tube segments; the lower subfigures are the vial
segments. (b) Centroid locations of tube segment. The vertical and horizontal
axes represent numbers of pixels.

plies that the segmented glass tube positions [see top row in
Fig. 4(a)] should be proportionally displaced from each other,
since they correspond to constant increments of 1 mm in height.
To obtain this measurement, we find the centroid of the extracted
glass tube for each height, L1-L5, and the resultant = and y lo-
cations are plotted in Fig. 4(b).

The linear regression line, with slope of —0.7 and an offset of
81.54 pixels, is used to fit the five measured centroids. The mean
square error of each point to the given solid line is 1.034. This
indicates that our algorithm is capable of locating the centroid
of the plastic tube to within a few pixels. Given the number of
noise sources and the quality of the reconstructed images, this
error is considered to be reasonable.

VI. CONCLUSION

This letter investigates an application of wavelet based
segmentation-by-fusion. It is a first exploration of automatic
T-ray CT target identification within 3-D heterogeneous struc-
tures. The algorithm successfully segmented different target
regions and was able to correctly locate the regions to within
a few pixels.
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