Active control of sound in a small single engine aircraft cabin with virtual error sensors

Colin D. Kestell

Department of Mechanical Engineering
Adelaide University
South Australia 5005
Australia

A thesis submitted in fulfillment of the requirements for the degree of Ph.D in Mechanical Engineering

on the 24th of August 2000

(accepted on 13th November 2000)
Abstract

The harmful effects of aircraft noise, with respect to both comfort and occupational health, have long since been recognised, with many examples of sound control now implemented in commercial aircraft. However, the single engine light aircraft cabin is still an extremely noisy environment, which apparently has been side-lined by both cost and weight constraints, especially with respect to low frequency sound reduction. Consequently, pilots and passengers of these aircraft are still exposed to potentially damaging noise levels and hearing damage can only be avoided by the proper use of ear defenders. Minimisation of the noise around the occupants of the aircraft reduces the dependency of personal ear defenders and is conducive to a more comfortable, hygienic and less stressful environment. This thesis describes the basis of a theoretical and experimental project, directed at the design and evaluation of a practical active noise control (ANC) system suitable for a single engine light aircraft.

Results from initial experiments conducted in a single engine aircraft demonstrated the viability of ANC for this application. However, the extreme noise, the highly damped cabin, the multiple tone excitation, the severe weight limitations and the requirement of air worthiness certification severely complicated the problem of achieving noise reduction throughout the entire aircraft cabin. Compromising the objective to only achieving local control around the occupants still presented difficulties because the region of attenuated noise around the error sensors was so small that a nearby observer experienced no sound level reduction whatsoever.
The objective was therefore to move the control zone away from the error sensor and place a broad envelope of noise reduction immediately around the occupant’s head, through the use of “virtual sensors”, thus creating the perception of global noise control.

While “virtual sensors” are not new (Garcia-Bonito et al. (1996)), they are currently limited to acoustic pressure estimation (virtual microphones) via the initial measurement of an observer / sensor transfer function. In this research, new virtual sensor algorithms have been developed to:

1. minimise the sound level at the observer location
2. broaden the control region,
3. adapt to any physical system changes and
4. produce a control zone that may ultimately follow an observer’s head

The performance of the virtual sensors were evaluated both analytically and experimentally in progressively more complex environments to identify their capabilities and limitations. It was found that the use of virtual sensors would, in general, attenuate the noise at the observer location more effectively than when using conventional remotely placed error sensors. Such a control strategy was considered to be ideal for a light single engine aircraft, because it would only require small light speakers (possibly fitted into a head-rest) to achieve a broad control zone that envelopes the region around the occupants’ heads.
Statement of originality

To the best of my knowledge, except where otherwise referenced and cited, everything that is presented in this thesis is my own original work and has not been presented previously for the award of any other degree or diploma in any University. If accepted for the award of the degree of Ph.D. in Mechanical Engineering, I consent that this thesis be made available for loan and photocopying.

Colin D. Kestell.
Acknowledgments

This thesis would not exist without the help and invaluable support of my family, the university staff, my peers and my friends.

Diane, my wife, has been extremely supportive in many ways and deserves a special mention, as do my three children, Garreth, Glenn and Beth. They have all been patient, there for me when it counted and have all given me good reason to strive for success.

Professor Colin Hansen has been an ideal supervisor, in terms of professional support, encouragement and by sharing the odd laugh or two. I would also like to thank the examiners (Dr. Scott D. Sommerfeldt and Professor Stephen Elliott) for their constructive criticism, which has helped to improve the quality of this thesis.

Ben Cazzolato has consistently provided invaluable help and advice. My fellow students Robert Koehler, Marc Simpson and Xun Li also deserve a mention as do the administrative and technical staff. All have given help and friendship. I must also mention Clint, who lost his head a couple of times, but held it together when it counted.

David Betteridge of Southern Aircraft Maintenance provided a much appreciated initial opportunity to study aircraft noise first hand and the Sir Ross and Sir Keith Smith fund has generously assisted with the funding of this project.

Thank you all.
Contents

Abstract

Statement of originality

Acknowledgements

1 Introduction

1.1 Objective

1.2 Scope

2 Literature review

2.1 Applications of active noise control

2.1.1 Propeller aircraft

2.1.2 Automotive cabins

2.1.3 Active headsets

2.2 Single engine aircraft noise characteristics
3.4 Active noise control in the laboratory 50
3.5 Active noise control within the aircraft 51
3.6 Conclusions from the initial experiments 55

4 Evolving a hypothesis to reduce the observers’ experience of noise 57
4.1 Introduction .. 57
4.2 Extending the zone of attenuation 60
4.3 Moving the zone of attenuation 60
4.4 Combining the benefits (the hypothesis) 63

5 Forward wave prediction theory 65
5.1 Introduction .. 65
5.2 Virtual microphone .. 67

5.2.1 Two microphone first-order pressure prediction 67
5.2.2 Three microphone second-order pressure prediction 68
5.3 Virtual energy density sensor 70

5.3.1 Two microphone first-order prediction 70
5.3.2 Three microphone second-order prediction 72
5.4 Higher-order prediction methods 73
5.5 Movement tracking 74
6 Evaluating the performance of forward prediction virtual error sensors

6.1 Introduction .. 75

6.2 Method .. 76

6.3 A free field model 81
 6.3.1 The system 82
 6.3.2 Control of a 100 Hz sinusoidal wave 82
 6.3.3 Control of a 200 Hz sinusoidal wave 83
 6.3.4 Control of a 400 Hz sinusoidal wave 85
 6.3.5 Conclusions 88

6.4 Experimental verification of the free field model 90
 6.4.1 The system 90
 6.4.2 Control of a 100 Hz sinusoidal wave 92
 6.4.3 Control of a 200 Hz sinusoidal wave 96
 6.4.4 Control of a 400 Hz sinusoidal wave 97
 6.4.5 Conclusions 100

6.5 Virtual sensors in a long narrow duct. 103
 6.5.1 The system 104
 6.5.2 Results for the rigidly terminated duct 106
 6.5.2.1 On-resonance 106
6.5.2.2 Off-resonance .. 109

6.5.3 Results for the damped duct 115

6.5.3.1 On-resonance .. 115

6.5.3.2 Off-resonance .. 118

6.6 Conclusions .. 121

7 Forward wave prediction errors 127

7.1 Introduction .. 127

7.2 Sensor spacing with respect to wavelength 129

7.3 Short wavelength noise 133

7.4 The near field effect of speakers 139

7.5 High-order modes ... 145

7.5.1 Mass and stiffness controlled modes 145

7.5.2 First order derivative 148

7.5.3 High-order derivatives 151

7.6 Conclusions .. 153

8 Forward prediction virtual error sensors in an aircraft cabin 157

8.1 Introduction .. 157

8.2 Method ... 158
8.3 Results .. 163
 8.3.1 Remotely placed control source speakers 163
 8.3.1.1 One control source 163
 8.3.1.2 Two control sources 167
 8.3.2 Control source speakers fitted into a head-rest 171
 8.3.2.1 One control source 171
 8.3.2.2 Two control sources 175
 8.4 Conclusions 178

9 A comparison of virtual sensing methods 181
 9.1 Introduction 181
 9.2 Method 182
 9.3 Results 183
 9.3.1 Comparing the performance of the virtual sensors 183
 9.3.2 Changing the transfer function 186
 9.4 Conclusion 187

10 Conclusions and future research 189
 10.1 Conclusions 189
 10.2 Future research 193
List of Figures

1.1 Lueg’s 1936 patent application ... 2

2.1 An example of the Lord Corporation active noise control in a twin engine aircraft for the blade pass fundamental only. The upper schematic illustrates no active noise control while the lower shows the effect of active noise control. 6

2.2 An example of the Elliott Aviation active noise control in a twin engine aircraft. ... 7

2.3 The Ultra Electronics NVS “UltraQuiet cabin”. The red contoured regions represent a “high” noise level and the blue regions represent a reduced noise level. ... 8

3.1 A Piper Archer, registration VHPOQ. .. 39

3.2 The three speakers that were modelled, designed and built for the initial experiments. .. 42

3.3 The predicted frequency response of a speaker driven at 1 Watt and measured at a distance of 1 m. The black trace is the free air condition, the green trace is with an infinite baffle, the blue trace is a sealed enclosure and the red trace is for a band pass vent. .. 43
3.4 The measured frequency response of the band pass speaker compared to the model. The red trace is the 100 Watt response and the blue trace is the 50 Watt response, both measured at 1 m. The frequency response from the model (+20dB for a 100 Watt output) is shown as a background water mark.

3.5 The speaker response showing harmonic distortion for excitation at 77 Hz.

3.6 The phase locked reference signal generator.

3.7 The active noise control system with the phase locked reference signal generator.

3.8 The third octave analysis of the noise measured at the pilot’s ear in the Piper Archer aircraft cabin, for both full throttle and idle engine conditions.

3.9 The narrow band analysis of the noise measured at the pilot’s ear in the Piper Archer aircraft cabin for a full throttle condition.

3.10 The frequency response function of the cabin, measured at the pilot’s ear.

3.11 The active noise control of the replayed flight data in the anechoic chamber, showing control of the BPF fundamental and the first three harmonics. The upper trace (which uses the left hand scale) shows the uncontrolled noise as a dashed line and the controlled noise as a red solid line. The lower blue trace (which uses the right hand scale) shows the attenuation that resulted from active noise control.

3.12 The equipment used for the Piper Archer active noise control experiment and the interior of the aircraft.

3.13 The active noise control of real time aircraft noise where only the BPF (77 Hz) is controlled with one control source and one error sensor. The upper trace (which uses the left hand scale) shows the uncontrolled noise as a dashed line and the controlled noise as a solid line. The lower trace (which uses the right hand scale) shows the attenuation that resulted from active noise control.
3.14 The reduction in attenuation as the distance between the measurement location and the error sensor is increased. .. 54

4.1 A schematic representation of the local region of control that may occur around a single microphone error sensor. ... 58

4.2 A schematic representation of the broad region of control that may occur with a cost function that is more spatially constant than acoustic pressure squared. 59

4.3 A schematic representation of the region of control that may occur by estimating an acoustic pressure squared cost function at the observer location. The ghosted sensors represent the “virtual sensor” location. ... 59

4.4 A schematic representation of the region of control that may occur by estimating an energy density cost function at the observer location. The ghosted sensors represent the “virtual sensor” location. ... 60

5.1 Forward wave prediction. .. 66

6.1 The effect of errors introduced into the control algorithm to limit the achievable attenuation. In each example the error sensor is separated from the observer by a distance of 4h. In each sub-figure the vertical line is the observer (desired control) location and the physical sensor locations are shown with a circle. .. 78

6.2 Comparing the pressure minimisation at a single location with energy density control using only one control source. The vertical line is the observer (desired control) location and the physical sensor locations are shown with a circle. . . 79
6.3 A comparison of the primary and controlled sound pressure levels for first-order virtual energy density control at the observer location, first-order energy density control at the sensors and minimising the acoustic pressure at the two error sensors. There are two control sources and a primary noise tone at 100 Hz. The vertical line is the observer (desired control) location and the physical sensor location is shown with a circle. The minima are shown between two of these in each case. .. 80

6.4 A schematic diagram of the modelled system. 83

6.5 The primary and controlled sound pressure level from a 100 Hz single sound source along a 0.5 m length in a free field. The actual sensors are marked with a circle and the observer location by a vertical line. 84

6.6 The primary and controlled sound pressure level from a 200 Hz single sound source along a 0.5 m length in a free field. The actual sensors are marked with a circle and the observer location by a vertical line. 86

6.7 The primary and controlled sound pressure level from a 400 Hz single sound source along a 0.5 m length in a free field. The actual sensors are marked with a circle and the observer location by a vertical line. 87

6.8 The experimental configuration in the anechoic chamber. 91

6.9 A 100 Hz primary sound source controlled via one control source. Measured along a 0.5 m length in an anechoic chamber, the actual sensors are marked with a circle and the observer location by a vertical line. 93

6.10 The primary sound field. ... 94

6.11 Examples of extrapolation (prediction) error. 94
6.12 A 100 Hz primary sound source controlled via two control sources. Measured along a 0.5 m length in an anechoic chamber, the actual sensors are marked with a circle and the observer location by a vertical line.

6.13 A 200 Hz primary sound source controlled via one control source. Measured along a 0.5 m length in an anechoic chamber, the actual sensors are marked with a circle and the observer location by a vertical line.

6.14 A 200 Hz primary sound source controlled via two control sources. Measured along a 0.5 m length in an anechoic chamber, the actual sensors are marked with a circle and the observer location by a vertical line.

6.15 A 400 Hz primary sound source controlled via one control source. Measured along a 0.5 m length in an anechoic chamber, the actual sensors are marked with a circle and the observer location by a vertical line.

6.16 A 400 Hz primary sound source controlled via two control sources. Measured along a 0.5 m length in an anechoic chamber, the actual sensors are marked with a circle and the observer location by a vertical line.

6.17 The long narrow duct.

6.18 A rigidly terminated duct response, comparing the results from the numerical model and the experimental verification. The chosen resonance occurs at 250 Hz in the model and 252 Hz in the experiment. The chosen anti-resonance occurs at 269 Hz in the model and 272 Hz in the experiment.

6.19 The uncontrolled and controlled sound pressure along a rigidly terminated duct at an acoustic resonance with one control source and various error sensing strategies. The actual transducer locations are marked by a circle and the observer location with a vertical line.
6.20 The uncontrolled and controlled sound pressure along a rigidly terminated duct at an acoustic resonance, with two control sources and various error sensing strategies. The actual transducer locations are marked by a circle and the observer location with a vertical line.

6.21 The uncontrolled and controlled sound pressure along a rigidly terminated duct at an acoustic anti-resonance with one control source and various error sensing strategies. The actual transducer locations are marked by a circle and the observer location with a vertical line.

6.22 The uncontrolled and controlled sound pressure along a rigidly terminated duct at an acoustic anti-resonance with two control sources and various error sensing strategies. The actual transducer locations are marked by a circle and the observer location with a vertical line.

6.23 A damped duct response, comparing the results from the numerical model and the experimental verification. The chosen resonance occurs at 261 Hz in the model and 262 Hz in the experiment. The chosen anti-resonance occurs at 281 Hz in the model and 282 Hz in the experiment.

6.24 The uncontrolled and controlled sound pressure along a damped duct at an acoustic resonance with one control source and various error sensing strategies. The actual transducer locations are marked by a circle and the observer location with a vertical line.

6.25 The uncontrolled and controlled sound pressure along a damped duct at an acoustic resonance with two control sources and various error sensing strategies. The actual transducer locations are marked by a circle and the observer location with a vertical line.
6.26 The uncontrolled and controlled sound pressure along a damped duct at an acoustic anti-resonance with one control source and various error sensing strategies. The actual transducer locations are marked by a circle and the observer location with a vertical line. 122

6.27 The uncontrolled and controlled sound pressure along a damped duct at an acoustic anti-resonance with two control sources and various error sensing strategies. The actual transducer locations are marked by a circle and the observer location with a vertical line........................ 123

7.1 Tonal noise with a wavelength of 40 h (1 m). The shaded region shows the mechanism for prediction and the region to the right shows the trace of the waveform and waveform estimates as they pass the sensors. 130

7.2 Tonal noise with a wavelength of 30 h (0.75 m). The shaded region shows the mechanism for prediction and the region to the right shows the trace of the waveform and waveform estimates as they pass the sensors. 131

7.3 The effect of wavelength and sensor spacing on the amplitude prediction accuracy of a first and second-order virtual microphone. The separation distance between each physical sensor is h and $4h$ between the virtual microphone location and the nearest physical sensor. 132

7.4 The effect of wavelength and sensor spacing on the phase prediction accuracy of a first and second-order virtual microphone. The separation distance between each physical sensor is h and $4h$ between the virtual microphone location and the nearest physical sensor. 133

7.5 The increasing dominance of high frequency noise with higher-order differentials. ... 135

xxi
7.6 The variation of an assumed constant amplitude first-order differential in the presence of constant amplitude noise, with an increasing wavenumber (or frequency).

7.7 The variation of an assumed constant amplitude second-order differential in the presence of constant amplitude noise with an increasing wavenumber (or frequency).

7.8 A tonal waveform with a wavelength of 40\(h\) superimposed with constant amplitude tonal noise that is 30dB lower in magnitude and has a wavelength of 10\(h\). The shaded region shows the mechanism for prediction and the region to the right shows the trace of the waveform and waveform estimates as it passes the sensors.

7.9 A tonal waveform with a wavelength of 40\(h\) superimposed with constant amplitude tonal noise that is 30dB lower in magnitude and has a wavelength of 5\(h\). The shaded region shows the mechanism for prediction and the region to the right shows the trace of the waveform and waveform estimates as it passes the sensors.

7.10 The prediction error as a function of the extraneous noise wavelength (\(\lambda_n\)) and the wavelength of the noise intended to be controlled (\(\lambda_c\)).

7.11 The 25mm diameter horn speakers.

7.12 A comparison of the primary noise fields.
7.13 Comparing the active noise control results using a second order virtual microphone error sensor and either 150 mm diameter enclosed speakers or 25 mm diameter horn speakers. A 200 Hz primary sound source was controlled via one control source. Measurements were made along a 0.5 m length in an anechoic chamber, the actual sensors are marked with a circle and the observer location by a vertical line. 141

7.14 A schematic definition of the near and far field (after Bies and Hansen (1996)). 142

7.15 Extending the range of the schematic shown in figure 7.14, to show the effect of reducing the characteristic dimension of the speakers. The lines that are labeled for each source, represent a frequency range of between 100Hz and 400Hz, at a distance of 2m from the speakers. 144

7.16 The contributions of two modes to a response at a frequency f_c, shown in both the frequency and the spatial domain. 146

7.17 The mobility plot of modes in a reactive system showing the mass and stiffness residues. 147

7.18 The relative amplitude of modes as a function of their natural frequency f_n with respect to f_c. 147

7.19 The spatial derivative sensitivity as a function of the non-dimensional wavenumber ($2k_n h$). ... 150

7.20 The spatial derivative sensitivity to different acoustic modes (with respect to the non-dimensional modal wavenumber $2k_n h$) in a reactive enclosure. 151

7.21 Second order spatial derivative sensitivity to different acoustic modes (with respect to the non-dimensional modal wavenumber $2k_n h$) in a reactive enclosure. 153

8.1 The Cessna 150 fuselage and cabin. ... 158
8.2 The measurement equipment configuration.

8.3 The speaker and measurement locations when using remotely placed control sources.

8.4 The speaker and microphone locations when the control source speakers are located in the observer’s head-rest.

8.5 ANC spectra at the observer location with only one control source, located on the wind-screen shelf. In each case the physical sensors are located $4h$ (100mm) from the observer’s ear.

8.6 The primary and controlled sound pressure level from at various frequencies using a single control source remotely located from the observer. The actual sensors are marked with “Æ” and the observer location is at the far left hand side of each graph.

8.7 ANC spectrums at the observer location with two control sources. One is located on the wind-screen shelf and the other behind the observer’s seat. In each case the physical sensors are located $4h$ (100mm) from the observer’s ear.

8.8 The primary and controlled sound pressure level from at various frequencies using two control sources remotely located from the observer. The actual sensors are marked with “Æ” and the observer location is at the far left hand side of each graph.

8.9 ANC spectrums at the observer location with one control source located in the observer’s head-rest. In each case the physical sensors are located $4h$ (100mm) from the observer’s ear.
8.10 The primary and controlled sound pressure level from at various frequencies using a single control source located in the observer’s head-rest. The actual sensors are marked with “○” and the observer location is at the far left hand side of each graph. .. 174

8.11 ANC spectrums at the observer location with two control sources both located in the observer’s head-rest. In each case the physical sensors are located 4h (100mm) from the observer’s ear. .. 176

8.12 The primary and controlled sound pressure level from at various frequencies using two control sources remotely located from the observer. The actual sensors are marked with “○” and the observer location at the far left hand side of each graph. .. 177

9.1 An additional reflective surface added near to the observer to change the frequency response measured at the observer location and the sensor location. 183

9.2 The difference between the primary and control source acoustic fields (individually generated, without cancellation) at measurement location 21 (the observer location) and measurement location 17 (the sensor location) in the Cessna 150 fuselage. ... 184

9.3 Comparison of the transfer function based virtual microphone to the various types of forward wave prediction virtual sensors. The sensor locations are marked with a circle and the observer location is at the far left of each graph. 185

9.4 Comparing the change in the primary source and the control source acoustic fields when an additional reflective surface is placed near to the observer. 186

9.5 The effect of an additional reflective surface, placed near to the observer, on the transfer function based virtual microphone. ... 187
10.1 The concept of movement tracking .. 194

10.2 A proposed concept for spatially filtering short wavelength noise 195

10.3 First and second-order forward wave prediction of a traveling waveform that is represented by the cyan coloured curve. The black curve shows the first-order estimate and how it is predicted at the observer location (blue vertical line) from the signals that are measured at the sensors (blue dotted vertical lines and circles). Similarly, the red curve shows the second-order prediction .. 195

10.4 The addition of extra sensors to allow spatial filtering. A traveling waveform is represented by the cyan coloured curve, the black curve shows the first-order prediction and the red curve shows the second-order prediction. The actual sensors are marked with an open circle and the observer location by a solid vertical line ... 197
List of Tables

3.1 A list of the equipment that was used for the initial experiments 40

6.1 A list of the equipment that was used in the experiment to validate the predicted performance of the virtual sensors 76

6.2 A summary of the attenuation levels at the observer location (separated from the sensors by 4h) that resulted from using various error sensors in the free field model. Negative attenuation values show a gain in the sound pressure level 89

6.3 A summary of the attenuation levels at the observer location (separated from the sensors by 4h) that resulted from using various error sensors in the experimental verification of the free field model. Negative attenuation values show a gain in the sound pressure level 103

6.4 A summary of the attenuation levels at the observer location (separated from the sensors by 4h) that resulted from using various error sensors in the duct model. Negative attenuation values show a gain in the sound pressure level 123

6.5 A summary of the attenuation levels at the observer location (separated from the sensors by 4h) that resulted from using various error sensors in the experimental verification of the duct model. Negative attenuation values show a gain in the sound pressure level 124
8.1 A list of the equipment that was used in the Cessna 150 experiments.

8.2 A summary of the maximum attenuation improvement (when compared to using a single microphone error sensor, 0 dB) in the Cessna cabin at the observer location using various error sensors. The frequencies where the maximum attenuation improvement occurs are shown in brackets. The sensors are separated from the observer by $4h$ (100 mm).