Development of Small-Molecule Ligands for SH3 Protein Domains

by Steven Robert Inglis
B.Sc. (Hons)

A thesis submitted for the degree of Doctor of Philosophy

THE UNIVERSITY OF ADELAIDE
AUSTRALIA

December 2004

A joint venture between the School of Molecular & Biomedical Science (Discipline of Biochemistry) and the School of Chemistry & Physics (Discipline of Chemistry) at the University of Adelaide, South Australia
Contents

Summary .. VIII
Statement ... IX
Acknowledgements ... X
Abbreviations .. XII

Chapter 1 Introduction
1.1 Significance .. 1
1.2 The SH3 Domains .. 2
 1.2.1 SH3 domain structure ... 2
 1.2.2 SH3 domain ligands: early discoveries ... 2
 1.2.3 Recent developments with SH3 ligands ... 5
 1.2.3.1 Proline-rich peptides containing non-peptide binding elements 5
 1.2.3.2 Peptoid ligands: use of non-natural amino acids .. 6
 1.2.3.3 UCS15A: a non-peptide SH3/proline-rich peptide inhibitor 8
 1.2.4 Biology of the SH3 domains ... 9
 1.2.4.1 The Tec family of non-transmembrane Protein Tyrosine Kinases (PTKs)............. 9
 1.2.4.2 The Grb2 adaptor protein ... 11
 1.2.4.3 SH3 domains as targets for therapeutic development 11
 1.3 Strategies in drug discovery ... 12
 1.3.1 Computational methods in drug design ... 14
 1.3.2 NMR methods in drug development ... 15
 1.4 2-Aminoquinoline as a Tec SH3 domain small-molecule ligand 15
 1.5 Aims and approach for PhD project .. 20

Chapter 2 Additional Characterisation of the 2-Aminoquinoline/Tec SH3 Domain Binding Event
2.1 Introduction ... 22
2.2 Synthesis of some simple 2-aminoquinoline derivatives .. 23
 2.2.1 Synthesis of (N-methyl)quinolin-2-ylamine ... 24
 2.2.2 Synthesis of N-(quinolin-2-yl)acetamide .. 25
 2.2.3 Synthesis of 2-amino-5,6,7,8-tetrahydroquinoline ... 26
2.3 Additional investigation into the Fluorescence Polarisation (FP) method for testing of compounds for SH3 domain binding ... 28
 2.3.1 SH3 vs GST-SH3 proteins in the FP assay: A comparison of results 29
Chapter 3 Exploring Methods to Improve 2-Aminoquinolline Binding Affinity 1: Synthesis and Binding Studies of N-Benzylated-2-Aminoquinolline Derivatives

3.1 Introduction..48
3.2 Synthesis of 2-(benzylamino)quinoline derivatives...50
 3.2.1 Investigation into reductive amination using sodium triacetoxyborohydride....50
 3.2.2 Synthesis of N-benzylated-2-aminoquinolines by Lewis acid assisted
 reductive amination...51
3.3 Ligand binding studies of N-benzylated-2-aminoquinolline derivatives with the
 Tec SH3 Domain..58
 3.3.1 NMR chemical shift perturbation experiments..58
 3.3.1.1 Ligand binding assays..58
 3.3.1.2 Chemical shift mapping of ligand binding events...............................60
 3.3.2 Discussion of SAR information..61
3.4 Summary: Chapter 3..62
Chapter 4 Exploring Methods to Improve 2-Aminoquinoline Binding Affinity 2: Synthesis and Binding Studies of 6-Substituted-2-Aminoquinolines

4.1 Introduction .. 64

4.2 Synthesis of simple ring-substituted-2-aminoquinolines .. 65

4.2.1 Synthesis of simple 6-substituted-2-aminoquinolines .. 66

4.2.2 Synthesis of simple 5- and 7-substituted-2-aminoquinolines 71

4.3 Synthesis of 6-substituted-2-aminoquinolines with more complex functionality 1 73

4.3.1 Investigation into benzylic oxidation of 2-chloro-6-methylquinoline 73

4.3.2 Investigation into aldehyde protecting groups ... 76

4.3.3 Investigation into methods for de-protection of cyclic acetals 79

4.3.3.1 Use of pyridinium tosylate as a catalyst for the de-protection of cyclic acetals 79

4.3.3.2 Investigation into de-protection of cyclic acetals using aqueous acids 81

4.3.3.3 Use of zirconium tetrachloride/sodium borohydride for the de-protection of cyclic acetals .. 82

4.3.3.4 Use of p-toluenesulfonic acid for the de-protection of cyclic acetals 84

4.3.3.5 Summary .. 84

4.4 Tec SH3 domain/6-substituted-2-aminoquinolines binding studies 1 85

4.4.1 Fluorescence Polarisation peptide competition assays .. 85

4.4.2 NMR chemical shift perturbation assays .. 86

4.4.2.1 Exchange processes and determination of ligand binding constants 87

4.4.2.2 Chemical shift mapping of ligand binding events .. 89

4.4.3 Interpretation of SAR information .. 89

4.4.4 Investigation into stability of acetals during ligand binding experiments 91

4.4.5 Summary .. 92

4.5 Synthesis of 6-substituted-2-aminoquinolines with more complex functionality 2: Uncovering the limitations of the Kóródi method .. 92

4.5.1 Cyclic acetals as precursors for acyclic alcohols ... 93

4.5.1.1 A preliminary investigation .. 93

4.5.1.2 Investigation into optimising the reaction .. 94

4.5.2 Acyclic alcohols as precursors for synthesis of new 2-aminoquinolines with diverse functionality .. 96

4.5.2.1 Adding new functionality to 2-chloroquinolines ... 97

4.5.2.2 Investigation into compatibility of the amination method of Kóródi with a range of 2-chloroquinoline derivatives ... 100
4.5.2.3 Investigation into methods for protection of aliphatic alcohol derivatives of 2-chloroquinoline ... 105
4.5.3 Summary ... 110
4.6 Synthesis of 6-substituted-2-aminoquinolines with more complex functionality 3:
 Investigation into alternative amination methods 110
 4.6.1 Investigation into conversion of simple 2-chloroquinolines into 2-(benzylamino)quinolines using benzylamines as nucleophiles .. 111
 4.6.1.1 Preliminary investigation ... 111
 4.6.1.2 Modification of approach for convenient de-protection 113
 4.6.2 Investigation into conversion of more complex 2-chloroquinolines to 2-(4-methoxybenzylamino)quinolines, and their subsequent de-benzylations ... 115
 4.6.2.1 Investigation into suitability of aliphatic alcohol derivatives of 2-chloroquinoline ... 115
 4.6.2.2 Investigation into suitability of the phthalimido derivative of 2-chloroquinoline ... 119
 4.6.3 Summary ... 122
4.7 Synthesis of 6-substituted-2-aminoquinolines with more complex functionality 4:
 Towards convergent synthesis ... 123
 4.7.1 Synthesis of a ‘key intermediate’ for use in convergent synthetic strategy 125
 4.7.1.1 Synthesis of N-(6-methylquinolin-2-yl)acetamide 125
 4.7.1.2 Synthesis of N-[6-(bromomethyl)quinolin-2-yl]acetamide 129
 4.7.2 Testing suitability of ‘key intermediate’ for use in convergent synthetic strategy 1: Attempted coupling with primary alcohols ... 130
 4.7.2.1 Testing the coupling reaction through substitution via alkoxide formation 131
 4.7.2.2 Testing the coupling reaction through silver oxide catalysis 134
 4.7.2.3 Brief investigation into ‘key intermediate’ with alternative protecting group for amino functionality ... 136
 4.7.3 Testing suitability of ‘key intermediate’ for use in convergent synthetic strategy 2: Substitution reactions under milder conditions ... 137
 4.7.3.1 Substitution with ‘key intermediate’ and phthalimide: A simple synthesis of 6-aminomethylquinolin-2-ylamine ... 138
 4.7.3.2 Substitution with ‘key intermediate’ and acetate: A simple synthesis of 6-hydroxymethylquinolin-2-ylamine, and potential utility in a modified convergent synthetic strategy ... 140
 4.7.3.3 Substitution with original ‘key intermediate’ and phenoxide: A brief yet promising investigation ... 147
 4.7.4 Summary ... 150
Chapter 5 Specificity Studies of 2-Aminoquinoline and Derivatives with other SH3 Domains

5.1 Introduction... 171
5.2 Specificity of 2-aminoquinoline ... 173
 5.2.1 FP competition assays with 2-aminoquinoline and the Nck, Hck, and Fyn SH3 domains .. 173
 5.2.2 Discussion of SAR information ... 174
5.3 Specificity of 6-substituted-2-aminoquinolines with the Nck SH3 domain 176
 5.3.1 FP competition assays with Nck SH3 domain and 2-aminoquinolines 33, 64 and 69 .. 176
 5.3.2 Discussion of SAR information ... 177
5.4 Summary: Chapter 5 .. 178

Chapter 6 Conclusions, Future Work and Final Discussion

6.1 Conclusions and Future Work .. 179
 6.1.1 Aim 1: Additional characterisation of the 2-amino-quinoline/SH3 domain binding event (Chapter 2) .. 179
 6.1.2 Aim 2: Development of 2-aminoquinoline derivatives with improved affinity for the Tec SH3 domain (Chapters 3 and 4) ... 180
 6.1.2.1 Synthesis and binding studies of N-benzylated-2-aminoquinoline derivatives (Chapter 3) .. 180
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1.2.2 Synthesis and binding studies of 6-substituted-2-aminoquinoline derivatives (Chapter 4)</td>
<td>181</td>
</tr>
<tr>
<td>6.1.3 Aim 3: Identification of a ligand suited to structure determination of its complex with the SH3 domain by NMR methods (Chapter 4)</td>
<td>183</td>
</tr>
<tr>
<td>6.1.4 Aim 4: Investigation into specificity of 2-aminoquinoline and derivatives with other SH3 domains (Chapter 5)</td>
<td>185</td>
</tr>
<tr>
<td>6.2 Final Discussion</td>
<td>185</td>
</tr>
</tbody>
</table>

Chapter 7 Experimental

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 Chemistry General</td>
<td>188</td>
</tr>
<tr>
<td>7.2 Sources of ligands not included in the experimental chapter</td>
<td>189</td>
</tr>
<tr>
<td>7.3 Synthesis of compounds presented in Chapter 2</td>
<td>189</td>
</tr>
<tr>
<td>7.4 Synthesis of compounds presented in Chapter 3</td>
<td>193</td>
</tr>
<tr>
<td>7.5 Synthesis of compounds presented in Chapter 4</td>
<td>199</td>
</tr>
<tr>
<td>7.5.1 Synthesis of compounds presented in Sections 4.2 and 4.3</td>
<td>199</td>
</tr>
<tr>
<td>7.5.2 Synthesis of compounds presented in Section 4.5</td>
<td>214</td>
</tr>
<tr>
<td>7.5.3 Synthesis of compounds presented in Section 4.6</td>
<td>224</td>
</tr>
<tr>
<td>7.5.4 Synthesis of compounds presented in Section 4.7</td>
<td>230</td>
</tr>
<tr>
<td>7.6 Protein Methods 1: Expression and Purification</td>
<td>241</td>
</tr>
<tr>
<td>7.6.1 General protein methods</td>
<td>241</td>
</tr>
<tr>
<td>7.6.1.1 Common buffers and abbreviations</td>
<td>241</td>
</tr>
<tr>
<td>7.6.1.2 Purification of Glutathione-S-Transferase-SH3 fusion proteins using agarose/glutathione chromatography</td>
<td>242</td>
</tr>
<tr>
<td>7.6.1.3 Determination of protein concentration using Bradford dye binding assay</td>
<td>243</td>
</tr>
<tr>
<td>7.6.1.4 Thrombin digestion</td>
<td>243</td>
</tr>
<tr>
<td>7.6.1.5 Size exclusion chromatography</td>
<td>243</td>
</tr>
<tr>
<td>7.6.1.6 PD10 buffer exchange chromatography</td>
<td>244</td>
</tr>
<tr>
<td>7.6.1.7 SDS-PAGE - sodium dodecyl sulfate-polyacrylamide gel electrophoresis</td>
<td>244</td>
</tr>
<tr>
<td>7.6.2 Protein preparation methods</td>
<td>245</td>
</tr>
<tr>
<td>7.6.2.1 Bacterial growth media</td>
<td>245</td>
</tr>
<tr>
<td>7.6.2.2 Procedure for preparation of uniformly 15-labelled Tec SH3 protein for NMR spectroscopy</td>
<td>245</td>
</tr>
<tr>
<td>7.6.2.3 Procedure for preparation of protein samples for FP studies</td>
<td>248</td>
</tr>
</tbody>
</table>
7.7 Protein Methods 2: Ligand Binding Assays

7.7.1 Testing of compounds for binding to the Tec SH3 Domain using NMR Spectroscopy

7.7.2 Fluorescence Polarisation (FP) Assays

7.7.2.1 FP peptide binding experiments

7.7.2.2 FP peptide competition assays

References

Appendices

Appendix 1: Derivation of the Equilibrium Binding Dissociation Constant, K_d

Appendix 2: Data analysis process for NMR chemical shift perturbation assay

Appendix 3: Data analysis process for Fluorescence Polarisation peptide displacement assay

Appendix 4: Published article; Inglis et al., *J. Med. Chem.* 2004, 47, 5405-5417
Summary

Src Homology 3 (SH3) domains are small protein-protein interaction domains that bind to proline-rich peptides, mediating a range of important biological processes. Because the deregulation of events involving SH3 domains forms the basis of many human diseases, the SH3 domains are appealing targets for the development of potential therapeutics. Previously in the field, no examples of entirely small-molecule ligands for the SH3 domains have been identified. However, in our research group, we have discovered a class of heterocyclic compounds that bind to the Tec SH3 domain at conserved residues in the proline-rich peptide binding site, with weak to moderate affinity. The highest affinity of these was 2-aminoquinoline ($K_d = 125 \mu M$).

In this thesis, a range of approaches are described, that were intended to contribute towards development of higher affinity small-molecule ligands for the Tec SH3 domain. Preliminary experiments, involving testing a variety of compounds structurally related to 2-aminoquinoline, provided new structure activity information, and led to a better understanding of the 2-aminoquinoline/SH3 domain binding event. The major component of this thesis is a thorough investigation into the synthesis of a range of 2-aminoquinoline derivatives. N-Substituted-2-aminoquinolines were synthesised, however these compounds bound the SH3 domain with slightly lower affinity than 2-aminoquinoline. 6-Substituted-2-aminoquinolines were subsequently prepared, and ligands were identified with up to six-fold improved affinity relative to 2-aminoquinoline, and enhanced selectivity for the Tec SH3 domain.

The techniques used for the ligand binding studies were Nuclear Magnetic Resonance (NMR) chemical shift perturbation and Fluorescence Polarisation (FP) peptide displacement assays. As part of the ligand binding studies, it was intended that the 3D structure of a 2-aminoquinoline ligand/SH3 complex would be obtained using NMR methods, provided that a ligand was identified that bound the SH3 domain in slow exchange on the NMR timescale. However, this goal was not fulfilled. Despite this, the work presented in this thesis provides a solid foundation for the development of potent 2-aminoquinoline ligands for SH3 domains, with engineered specificity.
Statement

This thesis contains no material that has been accepted for the award of any other degree or diploma in any university or other tertiary institution. To the best of my knowledge and belief, it contains no material previously published or written by another person, except where due reference has been made in the text. In addition, no work performed by another person has been presented, without due reference in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being available for loan and photocopying.

Steven R Inglis, December 2004.
Acknowledgements

The completion of this PhD has been a long, and challenging journey. Therefore, I must now acknowledge many people who have assisted with making the journey a most satisfying one.

Firstly, I must offer sincere thanks to my principal supervisor Dr. Grant Booker, for giving me the opportunity to undertake a PhD, in a field of research that I have grown to enjoy greatly. Without your contribution to ensuring I could receive a scholarship, who knows where I would be now! Many thanks also for your belief in me, your support and enthusiasm, kind nature, and open door policy. All of these little things have helped greatly to make the PhD experience more enjoyable.

I would like to also offer equally sincere thanks to my co-supervisor (or perhaps not so co-!!) Dr. Simon Pyke. You too have routinely given up significant amounts of your time to assist me with various problems. You have also made a great contribution to my scientific development and understanding of Chemistry. Your level of enthusiasm for the project, and support for me has been outstanding and I am most greatful.

Thanks to all members of the Booker group. Special mention should go to, Cvetan Stojkoski for your assistance with protein work, IT support, and for being a good mate to have a beer with. Thanks also to Kasper Kowalski for assistance with protein NMR experiments, and Anita Merkel, simply for providing a happy face around the place, and making the Booker lab a most pleasant place to work. Thanks to other Booker group members past and present, who have helped with various things or been good lab mates: eg. Kim Branson, Sharon Pursglove, Sue Fowler, Bec Bilton, Innes Atmosukarto, Carlie Delaine, Filomena Occhiodoro, Eric Bonython, Iain Murchland, Lucky Tran and Lisa Biggs.

Many thanks to all members of the Pyke group. Special thanks to Dr. David Armitt. Dave, you have been a great asset to our lab, and have always happy to help with chemical problems, however large or small. Your knowledge of organic synthesis is far and wide, and this was very helpful, on many occasions. Thanks to Lab 3 and other chemistry department members, past and present who have helped with various things, or who have simply been good people to work with: eg. Ben Greatrex, Sally Plush, Marcus Cole, John Carver, Jacqui Cawthray, Rhiannon Jones, Daniel Fritz, Penny Kerr, Daniel Bilusich, Suresh Dua, Sam Peppe, Monique Jensen, Sean Alexander and Emma Wiadrowski. Special thanks also to John Cameron, for doing such a fine job running the chemistry store, and to Phil Clements for
Acknowledgments

maintenance of the NMR spectrometers. These two features are critical for the effective running of a chemistry department.

I must also give a HUGE thankyou to my family, particularly my parents, Nicole and Norm for tremendous love and support throughout the PhD journey. Mum and Dad, I feel greatly indebted to you both for (still) providing me with a good home, and all of the creature comforts that help so much when you take on a huge job, like a PhD. Hopefully I can repay you, in someway one of these days. Thanks also to my sister Michèle and brother in law Nige, for your love and support over the years. Thanks too Nige for all the tennis games, and I am hoping we can start to play regularly again soon. (I am also planning to win for once.) Thanks also to my brother Paul and partner Nicole, for additional love and support, and for allowing me to come and stay with you in Melbourne at call.

Last, but definitely not least, thanks to my loving girl friend, and best friend, Rebecca. You have been very patient, caring, and understanding of my needs throughout my PhD, and you were always keen to listen during testing times. Thankyou for all you have done for me. I love you very much. May we share some more relaxing times together, beyond this thesis!!
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMAP</td>
<td>N,N-dimethylaminopyridine</td>
</tr>
<tr>
<td>DMF</td>
<td>N,N-dimethylformamide</td>
</tr>
<tr>
<td>DMSO</td>
<td>dimethyl sulfoxide</td>
</tr>
<tr>
<td>FP</td>
<td>Fluorescence Polarisation</td>
</tr>
<tr>
<td>GST</td>
<td>glutathione-S-transferase</td>
</tr>
<tr>
<td>HSQC</td>
<td>Heteronuclear Single Quantum Coherence</td>
</tr>
<tr>
<td>mP</td>
<td>millipolarisation (units)</td>
</tr>
<tr>
<td>NBS</td>
<td>N-bromosuccinimide</td>
</tr>
<tr>
<td>SAR</td>
<td>structure activity relationship</td>
</tr>
<tr>
<td>SH2</td>
<td>Src Homology 2</td>
</tr>
<tr>
<td>SH3</td>
<td>Src Homology 3</td>
</tr>
<tr>
<td>TFA</td>
<td>trifluoroacetic acid</td>
</tr>
<tr>
<td>THF</td>
<td>tetrahydrofuran</td>
</tr>
<tr>
<td>TLC</td>
<td>thin layer chromatography</td>
</tr>
</tbody>
</table>