FACTORS AFFECTING MUCOSAL HEALING, RECILIATION, AND CILIARY FUNCTION AFTER ENDOSCOPIC SINUS SURGERY IN THE SHEEP

Thesis submitted in January 2005 for the Degree of Masters of Surgery in the University of Adelaide

by

David Alexander Michael Wabnitz, M.B., B.S. (Adel.)

The work described in this thesis was performed within the Department of Surgery Otolaryngology – Head & Neck Surgery, University of Adelaide
TABLE OF CONTENTS

TITLE PAGE

TABLE OF CONTENTS

TABLE OF FIGURES AND TABLES

ABSTRACT

DECLARATION

PREFACE

ACKNOWLEDGMENTS

CHAPTER 1 AIMS

CHAPTER 2 INTRODUCTION

2.1 Chronic Rhinosinusitis

2.1.1 *Definition and Disease Burden*

2.1.2 *Pathophysiology of Chronic Rhinosinusitis*

2.1.3 *Microscopic Features of Chronic Rhinosinusitis*

2.2 Surgical Treatment

2.2.1 *Functional Endoscopic Sinus Surgery*

2.2.2 *Wound Healing*

2.2.3 *Intraoperative Techniques*

2.2.3.1 Surgical Technique – Preservation of Mucosa

2.2.3.2 Surgical Technique – Powered Instrumentation

2.2.3.3 Surgical Technique – Middle Turbinectomy

2.2.3.4 Surgical Technique – Medialization of the Middle Turbinate

2.2.3.5 Nasal Packing – Non-absorbable

2.2.3.6 Nasal Packing – Absorbable

2.2.4 *New Developments – Growth Factors*
2.2.5 Postoperative Protocols

2.2.5.1 Debridement
2.2.5.2 Intranasal Saline Douching
2.2.5.3 Antibiotics
2.2.5.4 Corticosteroids

2.2.6 Complications of FESS

2.3 The Assessment of FESS

2.3.1 Subjective Outcome Assessment
2.3.1.1 Symptom Assessment
2.3.1.2 Quality of Life

2.3.2 Objective Outcome Assessment
2.3.2.1 Structure – Endoscopic Appearance
2.3.2.2 Structure – Light Microscopy
2.3.2.3 Structure – Electron Microscopy
2.3.2.4 Structure – Radiography
2.3.2.5 Structure – Acoustic Rhinometry
2.3.2.6 Function – Ciliary Beat Frequency
2.3.2.7 Function – Mucociliary Transport
2.3.2.8 Function – Olfaction
2.3.2.9 Function – Anterior Rhinomanometry
2.3.2.10 Function – Properties of Mucous

2.4 Animal Models

2.4.1 Mouse Model
2.4.2 Rabbit Model
2.4.3 Pig Model
2.4.4 Dog Model
2.4.5 Sheep Model
2.4.6 A Diseased Animal Model
CHAPTER 3 THE EFFECT OF HYALURONIC ACID PACKING, WITH AND WITHOUT INSULIN-LIKE GROWTH FACTOR 1, ON EPITHELIAL REGENERATION AFTER FULL THICKNESS NASAL MUCOSA INJURY IN AN ANIMAL MODEL OF CHRONIC RHINOSINUSITIS

3.1 Introduction
3.2 Methods
3.3 Results
3.4 Discussion
3.5 Conclusion

CHAPTER 4 THE EFFECT OF HYALURONIC ACID PACKING, WITH AND WITHOUT INSULIN-LIKE GROWTH FACTOR 1, ON CILIARY REGENERATION AFTER FULL THICKNESS NASAL MUCOSA INJURY IN AN ANIMAL MODEL OF CHRONIC RHINOSINUSITIS

4.1 Introduction
4.2 Methods
4.3 Results
4.4 Discussion
4.5 Conclusion

CHAPTER 5 THE EFFECT OF HYALURONIC ACID PACKING, WITH AND WITHOUT INSULIN-LIKE GROWTH FACTOR 1, ON CILIARY BEAT FREQUENCY AFTER FULL THICKNESS NASAL MUCOSA INJURY IN AN ANIMAL MODEL OF CHRONIC RHINOSINUSITIS
CHAPTER 6 AN INVESTIGATION INTO THE CORRELATION OF
MEASURES OF CILIARY ULTRASTRUCTURE AND CILIARY
BEAT FREQUENCY IN AN ANIMAL MODEL OF CHRONIC
RHINOSINUSITIS

6.1 Introduction
6.2 Methods
6.3 Results
6.4 Discussion
6.5 Conclusion

CHAPTER 7 THE EFFECT OF NORMAL SALINE AND HYPERTONIC
SALINE ON CILIARY BEAT FREQUENCY IN HEALTHY
HUMAN VOLUNTEERS

7.1 Introduction
7.2 Methods
7.3 Results
7.4 Discussion
7.5 Conclusion

CHAPTER 8 SUMMARY, CONCLUSIONS, AND FUTURE DIRECTIONS

BIBLIOGRAPHY
<p>| Figure 1 | Electron Microscopy Grade by pack used at baseline | pg 87 |
| Figure 2 | Electron Microscopy Grade by pack used at 8 weeks after injury | pg 88 |
| Figure 3 | Electron Microscopy Grade by pack used at 16 weeks after injury | pg 89 |
| Figure 4 | Grade of reciliation based on scanning electron microscopy appearance – Grade I: normal cilia with normal orientation | pg 94 |
| Figure 5 | Grade of reciliation based on scanning electron microscopy appearance – Grade II: ciliated epithelium but disorientated | pg 95 |
| Figure 6 | Grade of reciliation based on scanning electron microscopy appearance – Grade III: stumps of cilia, regenerating cilia | pg 96 |
| Figure 7 | Grade of reciliation based on scanning electron microscopy appearance – Grade IV: no identifiable cilia | pg 97 |
| Figure 8 | Grade of reciliation based on scanning electron microscopy appearance – Grade V: unusable | pg 98 |
| Figure 9 | Direction of beating of cilia of the lateral nasal wall of the sheep (as determined by Lucas and Douglas, 1934) | pg 104 |
| Figure 10 | Ciliary Beat Frequency (in Hertz) for Grades I, II, III, and IV | pg 122 |</p>
<table>
<thead>
<tr>
<th>Table 1</th>
<th>Staging of disease based on Computed Tomography – Lund-Mackay CT score (Lund and Mackay, 1993)</th>
<th>pg 52</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2</td>
<td>Percentage of epithelialization for each site of injury</td>
<td>pg 73</td>
</tr>
<tr>
<td>Table 3</td>
<td>Percentage of epithelialization by time and pack used</td>
<td>pg 74</td>
</tr>
<tr>
<td>Table 4</td>
<td>Two-tailed p-values for Student’s paired t-test analysing differences between packs at different time points</td>
<td>pg 74</td>
</tr>
<tr>
<td>Table 5</td>
<td>Grade of reciliation based on scanning electron microscopy appearance</td>
<td>pg 85</td>
</tr>
<tr>
<td>Table 6</td>
<td>Grade of reciliation for each site of injury</td>
<td>pg 86</td>
</tr>
<tr>
<td>Table 7</td>
<td>Summary of Grade V specimens by pack used at different time points</td>
<td>pg 89</td>
</tr>
<tr>
<td>Table 8</td>
<td>p-values for Fisher’s exact test comparing the grade of reciliation (Grade A versus Grade B) as determined by scanning electron microscopy at each time point</td>
<td>pg 90</td>
</tr>
<tr>
<td>Table 9</td>
<td>Ciliary beat frequency for each site of injury</td>
<td>pg 109</td>
</tr>
<tr>
<td>Table 10</td>
<td>Ciliary beat frequency (\pm standard deviation) in Hertz by time and pack used</td>
<td>pg 110</td>
</tr>
<tr>
<td>Table 11</td>
<td>Two-tailed p-values for Student’s paired t-test analysing differences in ciliary beat frequency between packs at different time points</td>
<td>pg 110</td>
</tr>
<tr>
<td>Table 12</td>
<td>Grade of reciliation and ciliary beat frequency (in Hertz) by sheep and site/pack used</td>
<td>pg 121</td>
</tr>
<tr>
<td>Table 13</td>
<td>Mean CBF \pm standard deviation (in Hertz) by grade of reciliation</td>
<td>pg 122</td>
</tr>
<tr>
<td>Table 14</td>
<td>Two-tailed p-values for Student’s paired t-test analysing differences in CBF between different reciliation grades</td>
<td>pg 123</td>
</tr>
<tr>
<td>Table 15</td>
<td>Ciliary beat frequency measurements (in Hertz) in healthy volunteers after administration of 0.9% saline and 3.0% saline</td>
<td>pg 134</td>
</tr>
<tr>
<td>Table 16</td>
<td>Ciliary Beat Frequency by concentration of saline and time after saline administration (mean \pm standard error of the mean)</td>
<td>pg 134</td>
</tr>
</tbody>
</table>
ABSTRACT

The effect of absorbable packing on the healing of nasal respiratory epithelium after endoscopic sinus surgery (ESS) was examined in a diseased sheep model. Full thickness injuries were created on the lateral nasal wall of sheep infested with *Oestrus ovi*. Sites of injury were packed on one side with hyaluronic acid (HA) packing or hyaluronic acid packing impregnated with insulin-like growth factor-1 (HA+IGF1) in a randomized fashion. The opposite side was left unpacked as a control. Biopsies were obtained for light microscopy, scanning electron microscopy, and ciliary beat frequency (CBF) analysis over a period of 16 weeks. Statistical analysis of results was performed in order to determine if any intervention had any impact on healing and to determine if there was any correlation between extent of regeneration as assessed by electron microscopy and CBF. Furthermore assessment of the effect of isotonic and hypertonic saline on ciliary beat frequency was performed in healthy human volunteers.

Reepithelialization was increased in the HA+IGF1 group compared to the HA group and controls at eight weeks after injury but not at later time points. Ciliary regeneration was improved in the HA+IGF1 group compared to the HA group and controls at 16 weeks. CBF was noted to be worse at the eight week time point with the HA+IGF1 group compared to the HA group and controls, but no other statistically significant effects on CBF were noted. This most likely represents a spurious finding. Wide distributions of CBF results were noted, reflecting numerous missing data points due to methodological difficulties. There was a trend noted toward increased CBF with improved grades of reciliation, although this correlation
was not statistically significant. However this trend was supported by the finding of statistically significant differences between individual and combined grades of reciliation. Hypertonic saline was found to have a ciliostimulatory effect when compared to normal saline at 5 minutes after administration in healthy human subjects. This effect had disappeared by 60 minutes after administration.

It is suggested that the presence of insulin-like growth factor-1 at the time of mucosal injury improves epithelial regeneration in the short term, but is not sufficient for this effect to be sustained. This improved early epithelial regeneration forms a foundation for ciliary regeneration, as is reflected in an improved grade of reciliation at 16 weeks. Our interventions had no effect on CBF, and various experimental problems made it difficult to provide further comment on CBF results. There is evidence that CBF improves as the grade of ciliary regeneration improves following ESS. Furthermore, hypertonic saline appears to also have a positive impact on CBF, which is likely to reflect changes in the rheological properties of mucous. A number of possible avenues of enquiry are delineated and recommendations for future research are outlined.
DECLARATION

I declare that this thesis contains no material which has been accepted for the award of any other degree or diploma in any university, and that to the best of my knowledge and belief, the thesis contains no material previously published or written by another person, except where due reference is made in the text of the thesis.

I further consent to the thesis being made available for photocopying and loan if applicable, if accepted for the award of the degree.

David Alexander Michael Wabnitz
A portion of this work described within this thesis has been submitted for publication, as listed below.

Wabnitz DAM, Wormald PJ (2005). A blinded randomised controlled study on the effect of buffered 0.9% and 3% sodium chloride intranasal sprays on ciliary beat frequency. Laryngoscope [in press].

ACKNOWLEDGEMENTS

The work described in this thesis was performed at the Departments of Surgery and Otolaryngology – Head & Neck Surgery, at the University of Adelaide, Adelaide, and the Queen Elizabeth Hospital, Woodville, South Australia.

This work was supported in part by the following scholarships –

- The Queen Elizabeth Hospital Research Foundation Postgraduate Research Scholarship, 2002. Awarded by the Basil Hetzel Institute/The Queen Elizabeth Hospital Research Foundation, Woodville, South Australia.

- Faculty of Health Sciences Research Scholarship, 2002. Awarded by the University of Adelaide, Adelaide, South Australia.
I would like to express my sincere thanks to the following people for their invaluable assistance:

Professor Peter-John Wormald

 my supervisor, and Head of the University of Adelaide and Flinders
 University Departments of Otolaryngology – Head and Neck
 Surgery

 for his guidance, encouragement, wisdom, and patience throughout
 this long journey that I thought would never end

Dr Leslie Shaw, Dr David McIntosh and Dr Suresh Rajapaksa

 my colleagues

 for allowing me, and indeed helping me, to stand on their shoulders

Mr Damian Adams and Ms Jo Cool

 from the Child Health Research Institute, North Adelaide

 for their assistance with tissue processing and analysis

Ms Lyn Waterhouse

 from Adelaide Microscopy, University of Adelaide

 for her generous guidance through the world of electron microscopy

Mr Ken Porter and Mr Adrian Hines

 from the Animal Research Facility at the Queen Elizabeth Hospital

 for their assistance in the management and care of the animals used in this study
George and Helen Wabnitz

my parents

who have given me all I have through their extraordinary sacrifice

Paul, Kerry, Daniel, and Andrew Wabnitz

my brothers and sister

who each continue to inspire me by the manner in which they live their

lives and with their outstanding achievements

Alexander and Samuel Wabnitz

my children

whom I delight in

Louise Wabnitz

my wife

whose enduring love and support continues to blow me away

whenever I have the opportunity to pause long enough between

reading scientific papers to reflect on it