A 3D CT ANALYSIS OF MALAY CLEFT LIP AND PALATE INFANTS

Zainul Ahmad Rajion
BDS, Grad Dip Clin Dent

A thesis submitted for the degree of Doctor of Philosophy

Dental School, University of Adelaide
2004
TABLE OF CONTENTS

DECLARATION... xxiii

ACKNOWLEDGEMENTS .. xxiv

SUMMARY .. xxvi

CHAPTER 1 AN INTRODUCTION TO CLEFT LIP AND PALATE 1

1.1 Background to the Present Investigation ... 1

1.2 History of Cleft Lip and Palate ... 2

1.3 Aetiology of Cleft Lip and Palate ... 2

1.4 Overview of Normal Embryonic Craniofacial Development 3

1.4.1 Formation of the Primary Palate .. 3

1.4.2 Development of the Palate .. 5

1.5 Classification of Cleft Lip and Palate ... 10

1.5.1 Cleft Lip, with or without Clefting of the Alveolar Process (Cleft of the Primary Palate) (CL) .. 10

1.5.2 Isolated Cleft Palate (ICP) .. 11

1.5.3 Combined Cleft Lip and Palate (CLP) .. 11

1.6 Care for Cleft Children in Kota Bharu, Malaysia 12

1.7 Pre-operative Craniofacial Morphology in Infants with

Cleft Lip and Palate ... 12

1.8 Aims of this Study ... 15

1.9 Significance of this Study .. 17
CHAPTER 2 GENERAL LITERATURE REVIEW .. 25

Section A

2.1 Genetic and Molecular Basis of Cleft Lip and Palate 25
 2.1.1 Transforming Growth Factor ... 26
 2.1.2 Extracellular Matrix ... 27
 2.1.3 Proto-oncogene BCL3 ... 28
 2.1.4 Retinoic Acid Receptors (RARα) 29
 2.1.5 Chromosome 6 .. 30

2.2 Environmental Factors ... 30

2.3 Isolated Cleft Palate (ICP) ... 31

2.4 Summary ... 32

Section B

2.5 Anthropometric Evaluation of Craniofacial Abnormalities 33

2.6 Introduction to Cephalometric Radiology 34
 2.6.1 Cephalometric Analysis .. 34
 2.6.2 Limitation of Cephalometrics .. 35

2.7 Computed Tomography .. 36
 2.7.1 History of CT ... 36
 2.7.2 Application of 3D Imaging to the Study of Craniofacial Dysmorphology ... 37
CHAPTER 3 GENERAL METHODOLOGY AND STUDY SAMPLE

3.1 Ethical Approval .. 51
3.2 Patient Selection .. 51
3.3 Participating Clinical Units .. 51
3.4 Preparatory Work - September 2001 ... 52
3.5 Data Collection ... 52
 3.5.1 Difficulties Encountered .. 55
3.6 CT Scanner, Hospital University Sains Malaysia, Kota Bharu 56
 3.6.1 The CT Scanning Protocol ... 57
 3.6.1.1 Head alignment ... 58
 3.6.1.2 Head immobilisation ... 59
 3.6.1.3 Scanning procedure and data transfer .. 59
3.7 Steps of 3D CT Reconstruction ... 60
 3.7.1 The Data Processing and Visualization Workstation 60
 3.7.2 Transferring Digital Images to the Computer .. 61
 3.7.3 Image Generation and Display .. 62
 3.7.4 Image Measurement ... 62
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.5</td>
<td>Method for 3D Landmark Determination</td>
<td>63</td>
</tr>
<tr>
<td>3.7.6</td>
<td>Morphometric Analyses</td>
<td>64</td>
</tr>
<tr>
<td>3.8</td>
<td>Persona 3-D Medical Imaging and Analysis</td>
<td>64</td>
</tr>
<tr>
<td>3.8.1</td>
<td>Clip</td>
<td>65</td>
</tr>
<tr>
<td>3.8.2</td>
<td>Wire</td>
<td>66</td>
</tr>
<tr>
<td>3.8.3</td>
<td>Interrogate</td>
<td>66</td>
</tr>
<tr>
<td>3.8.4</td>
<td>Defaults</td>
<td>67</td>
</tr>
<tr>
<td>3.8.4.1</td>
<td>Z, Y, X Cuts</td>
<td>67</td>
</tr>
<tr>
<td>3.8.4.2</td>
<td>Images 1 and 2</td>
<td>69</td>
</tr>
<tr>
<td>3.8.4.3</td>
<td>Stereo</td>
<td>70</td>
</tr>
<tr>
<td>3.8.4.4</td>
<td>Magnify</td>
<td>71</td>
</tr>
<tr>
<td>3.8.4.5</td>
<td>Oblique Cutter</td>
<td>71</td>
</tr>
<tr>
<td>3.8.5</td>
<td>Landmark Determination</td>
<td>72</td>
</tr>
<tr>
<td>3.8.5.1</td>
<td>Select Landmark</td>
<td>73</td>
</tr>
<tr>
<td>3.8.6</td>
<td>Wireframe Display</td>
<td>74</td>
</tr>
<tr>
<td>3.8.7</td>
<td>Measure</td>
<td>75</td>
</tr>
<tr>
<td>3.8.8</td>
<td>Quit</td>
<td>76</td>
</tr>
<tr>
<td>3.9</td>
<td>Persona Software and the Cleft Data</td>
<td>76</td>
</tr>
<tr>
<td>3.10</td>
<td>Measurement of Distances, Dimensions and Angles</td>
<td>78</td>
</tr>
<tr>
<td>3.10.1</td>
<td>Methods of Measurement of Distances and Angles</td>
<td>79</td>
</tr>
<tr>
<td>3.11</td>
<td>Statistical Analysis</td>
<td>79</td>
</tr>
<tr>
<td>3.11.1</td>
<td>General Linear Modeling</td>
<td>80</td>
</tr>
<tr>
<td>3.12</td>
<td>Errors of Measurement and their Analysis</td>
<td>81</td>
</tr>
<tr>
<td>3.12.1</td>
<td>General Introduction</td>
<td>81</td>
</tr>
<tr>
<td>3.12.1.1</td>
<td>Types of Errors</td>
<td>82</td>
</tr>
</tbody>
</table>
Table of Contents

3.12.1.2 Detecting Systematic Errors .. 83
3.12.1.3 Estimating Random Error ... 83
3.12.2 Error Analysis for this Study ... 84
3.12.2.1 Landmark relocation error 86
3.12.2.2 Errors of variables... 88
3.12.3 Conclusion .. 90
REFERENCES ... 92

CHAPTER 4 THE HYOID BONE IN INFANTS WITH CLEFT LIP AND PALATE

4.1 Introduction... 93
4.2 Materials and Methods... 95
4.2.1 Data Collection .. 95
4.2.2 CT Protocol.. 95
4.2.3 Hyoid Variables ... 95
4.2.4 Statistical Analysis.. 100
4.2.5 Errors of the Method.. 100
4.3 Results.. 100
4.4 Discussion... 112
REFERENCES ... 118

CHAPTER 5 THE CERVICAL SPINE IN INFANTS WITH CLEFT LIP AND PALATE

5.1 Introduction... 123

CHAPTER 6 THE NASOPHARYNX IN INFANTS WITH CLEFT LIP AND PALATE... 149

6.1 Introduction.. 149

6.2 Materials and Methods... 152

6.2.1 Data Collection ... 152

6.2.2 CT Protocol... 152

6.2.3 Nasopharyngeal Variables .. 152

6.2.3.1 Nasopharyngeal width .. 153

6.2.3.2 Nasopharyngeal height.. 155

6.2.3.3 Nasopharyngeal depth... 155

6.2.3.4 Nasopharyngeal angles 155

6.2.4 Statistical Analysis.. 158

6.2.5 Errors of the Method... 158

6.3 Results.. 158
CHAPTER 7 THE CRANIAL BASE IN INFANTS WITH CLEFT LIP AND PALATE.. 177

7.1 Introduction.. 177

7.2 Materials and Methods.. 179

7.2.1 Data Collection ... 180

7.2.2 CT Protocol.. 180

7.2.3 Cranial Base Variables.. 180

7.2.3.1 Cranial base height.. 180

7.2.3.2 Cranial base length.. 180

7.2.3.3 Sella distance .. 182

7.2.3.4 Clivus length ... 182

7.2.3.5 Angle .. 183

7.2.3 Statistical Analysis... 184

7.2.4 Errors of the Method.. 184

7.3 Results... 184

7.4 Discussion .. 190

7.5 Conclusion ... 194

REFERENCES .. 195
CHAPTER 8 THE SPHENO-OCCIPITAL SYNUCHONDROSIS IN INFANTS WITH CLEFT LIP AND PALATE 199
 8.1 Introduction .. 199
 8.2 Materials and Methods ... 201
 8.2.1 Data Collection ... 201
 8.2.2 CT Protocol ... 201
 8.2.3 Spheno-occipital Synchondrosis Variables 201
 8.3 Statistical Analysis ... 203
 8.4 Errors of the Method ... 203
 8.5 Results .. 204
 8.6 Discussion .. 206
 8.7 Conclusion ... 209
 REFERENCES .. 211

CHAPTER 9 GENERAL DISCUSSION AND CONCLUSION 213
 9.1 Introduction .. 213
 9.2 3D CT Analysis of the Morphology of Cleft Lip and Palate 218
 9.2.1 Hyoid Bone ... 218
 9.2.2 Cervical Spine ... 220
 9.2.3 Nasopharynx ... 222
 9.2.4 Cranial Base .. 223
 9.2.5 Spheno-occipital synchondrosis (SOS)................................. 224
 9.2.6 Summary of Findings .. 225
 9.3 Summary of the Findings for Isolated Cleft Palate (ICP) 227
 9.4 Comparison between Males and Females .. 228
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.5</td>
<td>Limitations</td>
<td>228</td>
</tr>
<tr>
<td>9.6</td>
<td>Future Studies</td>
<td>229</td>
</tr>
<tr>
<td>9.7</td>
<td>General Conclusion</td>
<td>230</td>
</tr>
<tr>
<td>REFERENCES</td>
<td></td>
<td>232</td>
</tr>
<tr>
<td>APPENDIX I</td>
<td>ETHICAL APPROVAL</td>
<td>239</td>
</tr>
<tr>
<td>APPENDIX II</td>
<td>OSSEOUS LANDMARK DEFINITIONS (BY REGION)</td>
<td>241</td>
</tr>
<tr>
<td>APPENDIX III</td>
<td>PLOTS OF VALUES OF STUDY VARIABLES IN CLEFT LIP AND PALATE AND NON-CLEFT GROUPS</td>
<td>257</td>
</tr>
<tr>
<td>APPENDIX IV</td>
<td>RESULTS OF GENERAL LINEAR MODELING ANALYSIS</td>
<td>277</td>
</tr>
<tr>
<td>APPENDIX V</td>
<td>ACADEMIC ACTIVITIES</td>
<td>295</td>
</tr>
</tbody>
</table>
LIST OF TABLES

CHAPTER 3 GENERAL METHODOLOGY AND STUDY SAMPLE.......... 51

Table 3.1 Age and sex distribution of the cleft and NC groups....................... 53
Table 3.2 Landmark relocation error. .. 87
Table 3.3 Errors of variables.. 88

CHAPTER 4 THE HYOID BONE IN INFANTS WITH CLEFT LIP AND PALATE.. 93

Table 4.1 Unadjusted means (\(\bar{x}\)), standard deviations (SD) and coefficients of variation (CV) of the hyoid bone variables (in mm or degrees). ... 102
Table 4.2 Adjusted means and standard errors of the hyoid bone variables (in mm or degrees).. 103
Table 4.3a The level of the hyoid in relation to the cervical vertebrae and occurrence of aspiration pneumonia.. 110
Table 4.3b Chi-square analysis for the level of the hyoid bone relative to C3.. 110
Table 4.3c Chi-square analysis for the level of the hyoid bone and aspiration pneumonia.. 110
Table 4.4a Level of the tip of the epiglottis in relation to aspiration pneumonia.. 111
Table 4.4b Chi-square analysis for the level of the epiglottis and aspiration pneumonia.. 111
CHAPTER 5 THE CERVICAL SPINE IN INFANTS WITH CLEFT LIP AND PALATE

Table 5.1 Unadjusted means (\(\bar{x}\)), standard deviations (SD) and coefficients of variation (CV) of the vertebral bodies and intervertebral spaces. .. 129

Table 5.2 Adjusted means and standard errors of the cervical spine variables. ... 130

Table 5.3a Cleft lip and palate and cervical spine anomalies.. 133

Table 5.3b Chi-square analysis of occurrence of CLP and cervical spine anomalies ... 133

Table 5.4 Ossification of anterior arch of C1 in CLP and NC infants............. 133

CHAPTER 6 THE NASOPHARYNX IN INFANTS WITH CLEFT LIP AND PALATE

Table 6.1 Unadjusted means (\(\bar{x}\)), standard deviations (SD) and coefficients of variation (CV) of the nasopharyngeal variables (in mm and degrees) ... 159

Table 6.2 Adjusted means and standard errors of the nasopharyngeal variables (in mm and degrees)... 160

CHAPTER 7 THE CRANIAL BASE IN INFANTS WITH CLEFT LIP AND PALATE

Table 7.1 Unadjusted means (\(\bar{x}\)), standard deviations (SD) and
coefficients of variation (CV) of the cranial base variables (in mm and degrees) ... 185

Table 7.2 Adjusted means and standard errors of the cranial base variables (in mm and degrees) ... 186

CHAPTER 8 THE SPHENO-OCCIPITAL SYNCHONDROSIS IN INFANTS WITH CLEFT LIP AND PALATE 199

Table 8.1 Unadjusted means (\bar{x}), standard deviations (SD) and coefficients of variation (CV) of the spheno-occipital synchondrosis variables (in mm and degrees) ... 204

Table 8.2 Adjusted means and standard errors of the spheno-occipital synchondrosis variables (in mm and degrees) ... 205
LIST OF FIGURES

CHAPTER 1 AN INTRODUCTION TO CLEFT LIP AND PALATE 1

Figure 1.1 The formation of the face (Moore, 1982) 4

Figure 1.2 The formation of cleft lip (Moore, 1982) 6

Figure 1.3 Coronal section of a 52-day to 57-day human embryo, showing
the fusion of the palatal shelves with each other and the nasal
septum (Sperber, 2001) .. 8

Figure 1.4 Formation of cleft lip and palate (Moore, 1982) 9

Figure 1.5 The classification of Kernahan (1990). This divides the
deformity into three groups: clefts of the primary palate alone,
clefts of the secondary palate alone, and clefts of the primary
and secondary palates. ... 11

CHAPTER 3 GENERAL METHODOLOGY AND STUDY SAMPLE 51

Figure 3.1 Showing the sedated infant prior to CT scanning 57

Figure 3.2 The author and radiographer positioning the infant prior to CT
scanning ... 58

Figure 3.3 The author and radiographer immobilising the patient’s head 59

Figure 3.4 The CT scanner workstation at the Radiology Department,
HUSM ... 60

Figure 3.5 The main Interrogate menu .. 67

Figure 3.6 The Z, Y, X axial cuts with the sliding menu display 68

Figure 3.7 Two reconstructed 3-D images are displayed by default as
shown. **Image 1** is the model interpolated from the set of Z-
axis views. A ‘movie’ set of images can be run to show the picture rotating. **Image 2** is the model interpolated from the X-axis views that can also be rotated. ... 69

Figure 3.8 The stereo window. A nominated file is selected using the file selection browser. .. 70

Figure 3.9 The magnify window. .. 71

Figure 3.10 The Oblique Cut view is displayed showing a default slice through the data.. 72

Figure 3.11 An example of the landmark window showing the bones for landmark determination. ... 74

Figure 3.12 The wireframe display window. ... 74

Figure 3.13 Wire-frame models of identified landmarks can be colour-coded and overlayed on a 3D reconstructions and cuts. 75

Figure 3.14 3D CT reconstructions of: (a) UCLP (b) CL (c) BCLP (d) ICP and (e) NC.. 76

Figure 3.15 Bony and soft tissue views of (a) CL and (b) UCLP. 77

Figure 3.16 Coronal slice (left) and axial slice (right) through the nasal septum of a UCLP patient showing the nasal turbinates. The deviated nasal septum is also visible. ... 78

CHAPTER 4 THE HYOID BONE IN INFANTS WITH CLEFT LIP AND PALATE.. 93

Figure 4.1 Measuring the length and height of the greater horn (greater horn left and right) and the height of the body of hyoid bone at the anterior part... 96
Figure 4.2 Sagittal view showing the level of the hyoid bone in relation to the cranial base (measured from basion and inferior sphenoid-occipital synchondrosis). ... 97

Figure 4.3 The distance from the hyoid bone to the cervical spine (sagittal view). ... 98

Figure 4.4 Level of the hyoid bone and tip of the epiglottis in relation to the cervical vertebrae (sagittal view). .. 99

Figure 4.5 Hyoid bone angle was measured from the most superior medial point on the surface of the body of the hyoid to sella and nasion (sagittal view).. 99

Figure 4.6 Adjusted means and standard errors for the lower length of the left greater horn of the hyoid bone. The ICP group was significantly smaller than the other cleft groups...................... 104

Figure 4.7 Adjusted means and standard errors for the upper length of the left greater horn of the hyoid bone. The ICP group was significantly smaller than the other cleft groups (inferior view). .. 104

Figure 4.8 Illustrating the normal shape of the hyoid bone in NC patients. ... 105

Figure 4.9 Illustrating the smaller size of the hyoid bone in patients with ICP (inferior view)... 105

Figure 4.10 Adjusted means and standard errors for the distance from the hyoid bone to the basion. The CLP groups were significantly larger than the NC group .. 106

Figure 4.11 Adjusted means and standard errors for the angle of the hyoid bone. The CLP groups were significantly smaller than the NC group. .. 107

Figure 4.12 Low level of the hyoid bone in relation to cervical vertebrae (at C4) (sagittal view) ... 107
Figure 4.13 Showing the high level of the hyoid bone in relation to cervical vertebrae in an NC patient (at C2) (sagittal view). 108

Figure 4.14 Sagittal view showing the position of the hyoid bone and the epiglottis. The tip of epiglottis of NC (left) is at C2, however, for the CLP it is at a lower position (between C2 and C3). 108

Figure 4.15 Showing an absence of ossification of the body of the hyoid bone in CLP patients (inferior view). ... 109

Figure 4.16 A CT scan showing the absence of ossification of the body of the hyoid bone in CLP patients (posterior view) 109

CHAPTER 5 THE CERVICAL SPINE IN INFANTS WITH CLEFT LIP AND PALATE.. 123

Figure 5.1 The overall length of the cervical spine was calculated by adding the heights of vertebral bodies (C2-C7) and the intervertebral spaces (sagittal view)... 126

Figure 5.2 Measurement of the individual vertebral bodies and intervertebral spaces from C2 to C7 (sagittal view) 126

Figure 5.3 The height of vertebral body of C3 was significantly smaller in CLP compared to NC (p<0.05). ... 130

Figure 5.4 The height of vertebral body of C4 was significantly smaller in CLP compared to NC... 131

Figure 5.5 The height of vertebral body of C7 was significantly smaller in CLP compared to NC... 131

Figure 5.6 The intervertebral spaces between C5/C6 in CLP infants were significantly greater compared to the NC group. However, the intervertebral space of C5/C6 in the ICP group was significantly smaller than in the other cleft groups............................ 132
Figure 5.7 The cervical angle was significantly reduced in CLP compared to the NC group. 132

Figure 5.8 Synostosis of the posterior arch at C2, C3 and C4 in a patient with UCLP. This patient also shows a short posterior arch of C1 (posterior view). 134

Figure 5.9a Right view of a patient with BCLP showing tilting of the posterior arch of C1. 135

Figure 5.9b Right view of a patient with ICP showing tilting of the posterior arch of C1. 135

Figure 5.10 Posterior views of patients with: UCLP showing separation of the anterior tubercle of C1 (above) and ICP showing asymmetry of the anterior tubercle of C1 to the right (below). 136

CHAPTER 6 THE NASOPHARYNX IN INFANTS WITH CLEFT LIP AND PALATE 149

Figure 6.1 3D CT reconstruction of axial view showing the measurement of the width from the hamular notch, hamular process and posterior inferior point of the lateral pterygoid plate. 153

Figure 6.2 3D CT reconstruction of axial view showing the measurement of the width from the hamulus to posterior inferior point of the lateral pterygoid plate, maxillary tuberosity and zygoma. 154

Figure 6.3 3D CT reconstruction of axial view showing the measurement of the height from the vomer to left and right hamulus (—) and the depth measured from basion to left and right hamulus (……) and basion to posterior part of vomer (- - -). 155

Figure 6.4 3D CT reconstruction of axial view showing the measurement of the hamulus angle from the hamulus to the maxillary tuberosity and to the lateral pterygoid plate. 156
Figure 6.5 3D CT reconstruction of sagittal view showing the sphenopalatine angle was measured as the angle between nasion, sella and anterior nasal spine. .. 157

Figure 6.6 3D CT reconstruction of sagittal view showing the vomerine angle measured between nasion-sella and anterior nasal spine-vomer. ... 157

Figure 6.7 Adjusted mean values and standard errors for the hamular notch width in CLP and NC groups. The CLP groups were significantly wider than the NC group and the ICP group was significantly smaller when compared to other CLP groups. 161

Figure 6.8 Adjusted mean values and standard errors for the hamulus width in CLP and NC groups. The CLP groups were significantly wider than the NC group and the ICP group was significantly smaller when compared to other CLP groups. 161

Figure 6.9 Adjusted mean values and standard errors for the lateral pterygoid plate width in CLP and NC groups. The CLP groups were significantly wider than the NC group and the ICP group was not significantly different when compared to other CLP groups. The males (M) were significantly larger than females (F). .. 162

Figure 6.10 There was a significant increase in the distance between the maxillary tuberosities in CLP groups compared to NC (p<0.05). The ICP group distance was significantly smaller when compared with other affected groups. .. 163

Figure 6.11 The width of the zygoma was significantly greater in the CLP group compared with the NC group (p<0.05). The ICP group was not significantly different compared to the other cleft groups. The width was significantly larger in males (M) than females (F). ... 163
Figure 6.12 Adjusted mean values and standard errors for the h Wormion to hamulus right height in CLP and NC groups. Values for the CLP groups were significantly greater than for the NC groups and the ICP group was significantly smaller when compared to other CLP groups. Males (M) were significantly larger than females (F). .. 164

Figure 6.13 Adjusted mean values and standard errors for the h Wormion to hamulus left height in CLP and NC groups. Values for the CLP groups were significantly greater than for the NC group and the ICP group was significant smaller when compared to other CLP groups. Males (M) were not significantly different from females (F). .. 164

CHAPTER 7 THE CRANIAL BASE IN INFANTS WITH CLEFT LIP AND PALATE .. 177

Figure 7.1 3D CT reconstruction of the sagittal view showing that the heights of the basi-sphenoid and basi-occipital of the left and right were measured from the superior points to the inferior points bordering the SOS .. 181

Figure 7.2 3D CT reconstruction of the sagittal view showing the measurement of the anterior cranial base length (sella to nasion) and the posterior cranial base length (basion to sella). 181

Figure 7.3 3D CT reconstruction of the sagittal view showing that total cranial base length was measured from the basion to sella. 181

Figure 7.4 3D CT reconstruction of the P-A view showing the distance of the sella to superior left and right of the basi-sphenoid 182
Figure 7.5 3D CT reconstruction of the sagittal view showing that clivus length was measured from the basion to the superior and inferior point of the basi-occipital bone bordering the SOS........ 183

Figure 7.6 3D CT reconstruction of the sagittal view showing that the cranial base angle was measured from basion-sella-nasion.......... 183

Figure 7.7 Adjusted mean values and standard errors for left sphenoid height. The CLP groups were significantly smaller than the NC group. The ICP group was significantly smaller when compared to the other cleft groups... 187

Figure 7.8 Adjusted mean values and standard errors for the height of the right sphenoid bone. The CLP groups were significantly smaller than the NC group. The ICP group was significantly smaller when compared to the other affected cleft groups. The height in females (F) was significantly larger than in males (M). 187

Figure 7.9 Adjusted mean values and standard errors for the height of the left basi-occipital bone. The CLP groups were significantly smaller than the NC group. The ICP group was not significantly different when compared to the other affected cleft groups... 188

Figure 7.10 Adjusted mean values and standard errors showing the height of the right basi-occipital bone. The CLP groups were significantly smaller than the NC group. The ICP group was not significantly different when compared to the other affected cleft groups... 188

Figure 7.11 Adjusted mean values and standard errors of the length of the anterior cranial base. The CLP groups were significantly smaller than the NC group. The ICP group was not significantly different when compared to the other affected cleft groups... 189
CHAPTER 8 THE SPHENO-OCCIPITAL SYNCHONDROSIS IN INFANTS WITH CLEFT LIP AND PALATE.......................... 199

Figure 8.1 3D CT reconstruction showing the width of the synchondrosis measured from the superior and inferior parts (sagittal view)....... 202

Figure 8.2 3D CT reconstruction in P-A view showing the width of SOS measured from the superior view... 202

Figure 8.3 Width of SOS measured from the inferior view 203

Figure 8.4 Adjusted mean values and standard errors showing the width of the inferior SOS. The CLP group was significantly wider than the NC group. The ICP group was not significantly different to the other cleft groups. There were no significant differences between males and females.. 205

Figure 8.5 Adjusted mean values and standard errors showing the width of superior synchondrosis. The CLP groups were not significantly different to the NC group. The ICP group was not significantly different to the other affected cleft groups. The width in males (M) was significantly larger than in females (F).. 206
DECLARATION

I declare that this thesis contains no material which has been accepted for the award of any other degree or diploma in any University and that, to the best of my knowledge and belief, the thesis contains no material previously published or written by another person, except where due reference is made in the text.

I give consent to this copy of my thesis being made available for photocopy and loan from the University of Adelaide Library.

Zainul Ahmad Rajion
ACKNOWLEDGEMENTS

It is with my sincere thanks that I acknowledge the encouragement, support and advice given by my supervisors, Professor Grant Townsend, Dr David Netherway, Dr Amanda Abbott and Associate Professor Ibrahim Lutfi Shuaib. Their ever-willing availability for discussion and guidance during the preparation of this thesis is very much appreciated.

I would like to acknowledge the diligent support I received from the staff of the Australian Craniofacial Unit, the Dental School University of Adelaide, the Dental School Universiti Sains Malaysia and the Radiology Department Hospital Universiti Sains Malaysia.

Professor Abdul Rani Samsuddin’s commitment to furthering the understanding of cleft lip and palate in order to provide the best possible care for children so affected in Malaysia has been my inspiration. His enthusiasm and focus kindled my initial interest in this field and his wisdom and encouragement guided me into and through my studies.

The author would like to thank Professor David David, Associate Professor Neil McLean, Dr. Peter Anderson, Dr. Peter Telfer, Dr Tim Cox and Dr Toby Hughes for their support towards this study. Thank you also to Dr Asilah Yusof for providing the control sample. My special thanks to Mrs. Louise Netherway for her kind support and her expertise in English and editing.

Thanks are due to Associate Prof. Ahmad Sukari Halim, Plastic and Reconstructive Surgeon, Hospital Universiti Sains Malaysia and Dr. Arif Kor Abdullah, Plastic and
Reconstructive Surgeon, Hospital Kota Bharu in allowing access to their patients for the study.

I wish to acknowledge with special gratitude the support given to me throughout the work by the members of my family, particularly my wife who has been my mainstay throughout the thesis and I pay highest tribute to her for her continual love, encouragement and assistance in so many ways.

Finally, I would like to express my thanks to Universiti Sains Malaysia for the award of an overseas post-graduate scholarship and Australian Dental Research Fund, the Australian Craniofacial Foundation and the University of Adelaide.
SUMMARY

This thesis describes the three-dimensional (3D) assessment of craniofacial structures in cleft lip and palate patients pre-operatively. The study subjects were 29 cleft lip and palate (CLP) infants of Malay origin aged between 0-12 months and 12 non-cleft (NC) infants matched for age. CT scans were obtained using a GE Lightspeed Plus Scanner. The cranio-cervical facial morphology of cleft lip and palate has been analysed using computer programs based on cephalometric landmark points in three-dimensions.

Analysis of selected craniofacial and cervical regions has included:

- Measurement of the position of the hyoid bone in relation to the cervical vertebrae and cranial base
- Measurement of the length of the cervical spine and intervertebral spaces
- Measurement of the nasopharyngeal complex
- Measurement of the cranial base
- Measurement of the width of sphenoid-occipital synchondrosis.

These findings have also been associated with related clinical problems, such as aspiration pneumonia.

A statistical comparison of individual cranio-cervical facial bones of cleft lip and palate infants with age-matched adjusted for the effect of sex non-cleft infants revealed areas of significant variation from normal. Very few of the study variables displayed significant differences between males and females in either the CLP or NC...
group. From the analyses of these areas, findings are documented and compared to those previously reported in the literature. Furthermore, previously unreported findings have been highlighted.

The anomalies noted include a lower position of the hyoid bone, located at the level of C3 or C4 in the cleft lip and palate infants, whereas in the non-cleft infants, it was positioned at the much higher level of C2 or C3. In addition, 5 patients in the cleft group had significant hyoid bone abnormalities such as absent body, greater horn or overall abnormal shape. These results could be associated with compromised function of the epiglottis in forming a seal with the larynx, thereby increasing the risk of aspiration pneumonia.

The findings of the cervical spine include the significantly smaller height of the vertebral bodies with larger intervertebral spaces in the cleft lip and palate infants compared with the non-cleft infants and fusion of the posterior arch of the cervical spine.

The results also showed an increased pharyngeal width in the cleft lip and palate infants compared with the non-cleft infants. These anatomical variations may be associated with disruptions in the dilatory mechanism of the eustachian tube thus leading to recurrent middle ear infection in the cleft children and subsequent loss of hearing.

Analysis of data on the cranial base showed a smaller cranial base that could be associated with the observed midface hypoplasia in cleft lip and palate infants that occurs with growth in these infants. Infants with cleft lip and palate had a wider sphenoid-occipital synchondrosis, in contrast to the narrower sphenoid-occipital synchondrosis reported previously with Crouzon syndrome and Apert syndrome. A
wider sphenoid basal synchondrosis could be associated with dysmorphic and compensatory growth changes in later life.

The observed morphological aberrations in early childhood reflect abnormalities that have developed in embryonic/foetal life. Interestingly, the isolated cleft palate group showed different results for several study variables from the other affected groups and this is consistent with its distinct aetiology.

The detailed analysis of the severity and extent of the deformities provided insight into the biological basis of cleft lip and palate. The investigation has highlighted the existence of a greater range of extracranial anomalies in cleft lip and palate than previously thought and should assist clinicians in the management of affected infants. The findings should also be of interest to craniofacial developmental biologists who are investigating the complex biological processes of human development. Furthermore, the thesis provides support for the concept that cleft lip and palate is part of a broader craniofacial anomaly, not just a localised defect.