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Figure 4.1 Cylinder showing primary sources, ring stiffener, piezoceramic stack control

actuators and error sensors.

CHAPTER 4. FEEDFORWARD ACTIVE CONTROL OF

FLEXURAL VIBRATION IN A CYLINDER USING

PIEZOCERAMIC ACTUATORS AND AN ANGLE

STIFFENER

4.1 INTRODUCTION

In this chapter, the active control of flexural vibration in cylindrical shells using as control

sources piezoceramic actuators placed between the flange of a ring stiffener and the shell surface

is investigated.  The classical equations of motion for the vibration of a shell developed by

Flügge (1960) are used to develop a theoretical model for the shell with primary point sources

and a ring stiffener and control actuators (Section 4.2).
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The effective control signal is a combination of the effects of the point forces at the base of the

actuators, and the reaction line force and line moment in a ring at the base of the stiffener

(Section 4.2.6).  The displacement at a point is the sum of the displacements due to each of the

primary source and control source forces and moments.  Optimal control is achieved by

minimising the total mean square displacement at the location of the ring of error sensors

downstream of the control sources.

The theoretical analysis considers two different sets of cylinder supports.  In both cases, the left

hand end is modelled as free.  In the first case, the right hand end is modelled as infinite and in

the second the right hand end is modelled as free.   The influence of the control source locations,

the location of the ring of error sensors and the excitation frequency on the control source

amplitude and achievable attenuation are investigated, and the physical reasons for each

observation are explained (Section 4.3).

A modal analysis of the cylinder is performed to show that the ring stiffener significantly affects

the vibration response of the cylinder.  Experimental verification of the theoretical model is

performed for the simply supported cylinder with and without active vibration control.  The

experimental methods are described in Section 4.4.  Experimental results are compared with

theoretical predictions for the vibration of the cylinder with and without active vibration control

(Section 4.5).
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4.2 THEORY

4.2.1 The differential equations of motion for a cylindrical shell and the general solution

The differential equations governing the vibration of a cylindrical shell are different from the

equations of motion for beams and plates, for two main reasons.  First, unlike the cases of the

equations of motion for beams and plates, there is no universally accepted version of the

equations of motion for the vibration of a cylindrical shell, and second, rather than there being

one equation for the transverse vibration of a beam or plate, there are three simultaneous

equations to be considered for the coupled vibrations in the radial, axial and tangential directions.

Because of the complex nature of the derivation of the equations of motion from stress-strain

relationships, different researchers have derived slightly different equations of motion for shells.

Leissa (1973a) lists and describes the derivation of the main theories.  The simplest form was

given by Donnell-Mushtari, and other versions include a variety of complicating terms.  Perhaps

the most popular version was that developed by Flügge (1960), but including inertia terms (see

Section 1.2.1.4).

The response of the cylindrical shell shown in Figure 4.2 to simple harmonic excitations q e ,x
j7t

q e  and q e  in the axial (x), tangential (�) and radial (r) directions respectively is considered.
�

j7t j7t
r

The end of the cylinder at x = 0 is modelled as simply supported. 
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Figure 4.2 Cylinder with excitation q at location (x ,� ).0 0

(4.1)

(4.2)

(4.3)

Following the sign conventions given in Figure 4.3, the Flügge equations of motion for the

response of the cylindrical shell shown in Figure 4.2 are 

and
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Figure 4.3 Sign conventions for forces and moments (conventions for forces and moments in

the �-plane are similar).

(4.4)

(4.5)

(4.6)

where R is the shell radius, h is the shell thickness, E is Young's modulus of elasticity,  is

Poisson's ratio,  is the shell density, ,  is the square of the modified

Laplacian operator , and u(x,�,t), v(x,�,t) and w(x,�,t) are the displacements in

the axial, tangential and radial directions respectively.

As the cylinder is closed, the following harmonic series solutions in � can be assumed for the

cylinder vibrational displacements in the x, y and z directions:

and
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(4.7)

(4.8)

(4.9)

where n is a mode number and 7 is the angular frequency.  Each of the eigenfunctions u (x),n

v (x) and w (x) can be expressed in terms of modal wavenumbers k  as follows (Forsberg,n n sn

1964):

and

where A , �  and �  are arbitrary constants.sn sn sn

4.2.2 Determining the wavenumbers k and constants � and �

Substitution of Equations (4.4) - (4.9) into the homogeneous forms of Equations (4.1) - (4.3)

yields

(4.10)
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(4.13)

(4.14)

(4.15)

(4.16)

(4.11)

and

(4.12)

For a non-trivial solution valid over the surface of the cylinder,  is not zero,

and Equations (4.10) - (4.12) can be re-written equivalently in the matrix form

where A = [� , � , 1]  (s = 1,8) and C contains the remainder of the coefficients.  Forsn sn
T

homogeneous boundary conditions, the determinant of C must be non-zero for each n, leading

to an eighth-order algebraic equation for k ;sn

where
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(4.17)

(4.18)

(4.19)

(4.20)

(4.21)

and

where , , , , ,

,  and .  As found by Forsberg

(1964), all solutions of Equation (4.14) are of the form

where a, b, c and d are real quantities.  This is different to the form of the solutions given by

Flügge, because the inertia terms have been included here.

The constants  and  can now be found from any two of Equations (4.10) - (4.12).

Rearranging Equations (4.11) and (4.12) gives, for n � 0,
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(4.22)

Figure 4.4 Circumferential modes of vibration.

(4.23)

and

The constants  and  depend only on , E, h and R.  Note also that  , as the

n = 0 mode is a purely transverse expansion-contraction mode (see Figure 4.4).

On each side of an applied force or moment at x = x , each eigenfunction is a different linear0

combination of the terms  (i = 1,4).  For x < x ,0
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(4.24)

(4.25)

(4.26)
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(4.28)

and

For x > x ,0

and

To solve for the sixteen unknowns A  and A , for s = 1,8, sixteen equations are required,1 2sn sn

comprising eight boundary conditions (four conditions at each end of the cylinder) and eight

equilibrium conditions at the point of application x  of the force or moment, for each0

circumferential mode n of the cylinder vibration.

4.2.3 Boundary conditions at the cylinder ends

For the purposes of this work, two sets of boundary conditions will be examined; those
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(4.29)

(4.30)

(4.31)

(4.32)

(4.33)

corresponding to a shell with simply supported ends, and those corresponding to a semi-infinite

shell with the end at x = 0 modelled as simply supported.

4.2.3.1 Simply supported end conditions

The four boundary conditions corresponding to a simple support are u = 0, v = 0, w = 0 and Mx

= 0 (Leissa 1973a), where M  is the  moment resultant in the x-plane and is given byx

In terms of the displacement unknowns, these boundary conditions for a simply supported end

at x = 0 are

and



M
8

s 
 1
�snA2sne

ksnLx

 0 ,

M
8

s 
 1
�snA2sne

ksnLx

 0 ,

M
8

s 
 1
A2sne

ksnLx

 0

M
8

s 
 1

�n

R2
(�sn� n) �

�sn

R
ksn	 k2

sn A2sne
ksnLx


 0 .

A21n 
 0 ,

A23n 
 0 ,

A25n 
 0

A27n 
 0 .

Chapter 4.  Control of vibrations in a stiffened cylinder

167

(4.34)

(4.35)

(4.36)

(4.37)

(4.38)
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(4.40)

(4.41)

The corresponding boundary conditions for a simply supported end at x = L  arex

and

4.2.3.2 Infinite end conditions

An infinite end produces no reflections, so the boundary conditions corresponding to an infinite

end at x = L  arex

and
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(4.42)

(4.43)

(4.44)

(4.45)

(4.46)

(4.47)

4.2.4 Equilibrium conditions at the point of application of a force or moment

Requiring that the displacement and gradient in each direction be continuous at any point in the

cylinder wall, the first six equilibrium conditions at x = x  which must be satisfied are 0

and

The form of the excitation q (x,�) will affect the higher order equilibrium conditions at x = x .r 0

In the following sections the response of the shell to a point force, a circumferential line force

and a circumferential line moment is discussed. 

4.2.4.1 Response of a shell to a radially acting point force

The response of the shell to a simple harmonic point force F  acting normal to the shell at0

position (x ,� ) is considered.  The excitation q (x,�) in Equation (4.3) is replaced by0 0 r

, where  is the Dirac delta function.  Replacing u, v and w by
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(4.48)

(4.49)

(4.50)

Equations (4.4) - (4.6), dividing by e  and multiplying by cos(n�), Equation (4.3) becomesj7t

The integral with respect to � around the circumference of the cylinder is taken, noting that

to find

Next, the integral with respect to x is taken between the limits x  -  and x  + , using the0 0
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and

(similarly for u (x) and v (x)) as , to findn n

or

Finally, the integral with respect to x is taken again between the limits x  -  and x  +  to find0 0

the second order equilibrium condition
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(4.57)

(4.58)

4.2.4.2 Response of a shell to a circumferentially distributed line force

Instead of a point force, the excitation represented by q (x,�) in Equation (4.3) is replaced by anr

array of N equally spaced point forces distributed along an arc parallel to the �-axis between �1

and � .  These forces act at locations (x , � , k = 1,N) and each has a magnitude of F /N, so2 0 0k

q (x,�) in Equation (4.3) is replaced by .  Following ther

method of Section (4.2.4.1), and using the relation

the second and third order equilibrium conditions at x = x  are0

and

(4.59)

4.2.4.3 Response of a shell to a circumferentially distributed line moment

The excitation represented by q (x,�) in Equation (4.3) is replaced by a distributed line momentr

M  per unit length acting along an arc parallel to the �-axis between �  and � .  The excitation0 1 2

q (x,�) is replaced by , where h is ther
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(4.60)

(4.61)

(4.63)

unit step function.  Following the method of Section (4.2.4.1), and using the relation

Equation (4.50) becomes

Next, the integral with respect to x is taken between the limits x  -  and x  +  to find0 0
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The integral with respect to x is taken again between the limits x  -  and x  +  to find the0 0

second order equilibrium condition
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(4.64)

(4.65)

Differentiation gives

Taking four boundary conditions at each end of the shell from Equations (4.30) - (4.41), the six

equilibrium condition Equations (4.42) - (4.47), and two further equilibrium conditions from

Equations (4.55), (4.56), (4.58), (4.59), (4.64) and (4.65), sixteen equations in the sixteen

unknowns A  and A  for s = 1,8 are obtained.  These can be written in the form .1 2sn sn

The solution vectors  X = [A  A  A  . . . A  A  A  . . . A ]    can be used11 12 13 18 21 22 28n n n n n n n
T

to characterise the response of a cylindrical shell to simple harmonic excitation by a single point

force, a circumferentially distributed line force or a circumferentially distributed line moment.

4.2.5 Modelling the effects of the angle stiffener

The mass and stiffness of the angle stiffener may be significant.  Given a cylindrical shell with

some excitation q  at axial position x = x  and an angle stiffener extending around ther 0

circumference of the cylinder at axial position x = x , as shown in Figure 4.5, three eigenfunction1

solutions of Equations (4.1) - (4.3) are now required.
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Figure 4.5 Semi-infinite cylinder with an excitation q  and an angle stiffener.r
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For x < x0

for x  < x < x ,0 1

and for x > x ,1

and similarly for u  and v  (i = 1,3).  These eigenfunctions allow for reflection at the stiffenerin in
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(4.69)
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(4.75)

location.  Twenty four equations in the twenty four unknowns A ; i = 1,3; s = 1,8 are nowisn

required.  In addition to the eight equilibrium conditions at x = x  which depend on the form of0

the excitation q , and the boundary conditions at each end of the shell, the equilibrium conditionsr

which must be satisfied at the stiffener location x = x  are1

and

(4.76)
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(4.77)

(4.78)

where K  is the stiffness and m  the mass per unit length of the stiffener.  If the angle stiffenera a

is very rigid compared to the cylinder, Equations (4.73) and (4.76) can be replaced by the

following two conditions:

and

4.2.6 Minimising vibration using piezoceramic actuators and an angle stiffener

For any force or moment excitation, the twenty four equations in twenty four unknowns can be

written in the form �X = B, where X = [A  A  A  . . . A  A  A  . . . A  A  A11 12 13 18 21 22 28 31 32n n n n n n n n n

. . . A ] , and B is a column vector.  When the excitation position is to the left of the stiffener38n
T

location, i.e. x  < x , B has a non zero excitation term in the fifteenth row for excitation by a line0 1

moment about an arc parallel to the �-axis or the sixteenth row otherwise. For a simply supported

cylindrical shell with the end at x = 0 free, � is given by Equation (4.79), except in the case of

a distributed moment excitation when row sixteen is replaced by Equation (4.65).  If the

excitation position is to the right of the stiffener location, i.e. x  > x , then a similar analysis is0 1

followed, resulting in an excitation vector B with the non zero term in the twenty third row for

excitation by a line moment about an arc parallel to the �-axis or the twenty fourth row

otherwise, and � is given by Equation (4.80), except in the case of a distributed moment

excitation when row twenty four is replaced by Equation (4.65).  For the cylinder with the right

hand end modelled as infinite, the equations corresponding to rows 5-8 of the matrix � are

replaced by Equations (4.38) - (4.41).  For both sets of boundary conditions, the matrix equation
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�X = B can be solved for X for any type of excitation and the result can be used with Equations

(4.4) - (4.9) and (4.66) - (4.68) to calculate the corresponding cylinder response.

Figure 4.6 shows the semi-infinite shell with primary forces F  and F  located at x = x , � =p p p1 2

�  and � = � , control actuators at x = x  and a line of error sensors at x = x .  Figure 4.7 showsp p c e1 2

the resultant forces and moments applied to the cylinder by the control actuators.  Control forces

F , i =1,6 act at (x , � , i = 1,6), with the distributed force F  and distributed moment M  actingci c ci c c2

about the circumference parallel to the �-axis at (x , � = 0 to � = 2%).c1
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Figure 4.6 Semi-infinite cylinder showing primary forces, control actuators, angle stiffener and

ring of error sensors.

Figure 4.7 Part-stiffener and control actuator showing control forces and moment.
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(4.79)
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(4.80)
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(4.81)

(4.82)

(4.83)

(4.84)

(4.85)

(4.86)

(4.87)

The cylinder response at any location (x,�) to a particular excitation located at x , with a ring0

stiffener located at x  is (omitting the time dependent terms )1

and

where X  = � X  and  X  = � X  for i = 1,8, and for x < x  and x < x ,� � 0 1i i i i

for x  < x < x  or x  < x < x ,0 1 1 0

and for x > x  and x > x ,0 1

By summation of the displacements corresponding to each force and moment, the total radial

displacement is found to be
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(4.89)

(4.90)

where the subscripts F , F , F  and M  on w and X refer to the corresponding excitation forcepi ci c c

or moment.

As the excitation vector B has a non-zero element in one row only, the solution vector X 

can be written in terms of a single column of the inverse :

(4.88)

where (� )  is the k  element in the i  column of the inverse of � and B  is the i  element (the-1 th th th
k,i i

non-zero element) of B.  The value taken by i depends on the form and location of the excitation,

as discussed previously.

4.2.6.1 Control sources driven by the same signal

If the three control actuators are driven by the same signal, then F  = -F , say, for i = 1,6.  Theci s

i  actuator also generates a distributed force of total magnitude F  and a distributed moment ofth
s

total magnitude x F , acting along an arc between (�  + � )/2 and (�  + � )/2 where x  is thea s i i i i a-1 +1

width of the stiffener flange.  Additionally, if the primary shakers are driven by the same signal,

then F  = F  (i = 1,2) = F , say.  Definingp i p i p1 2
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(4.91)

(4.92)

(4.94)

(4.95)

and

Substituting Equations (4.89)-(4.92) into Equation (4.87) and rearranging gives

(4.93)

or

where

and

(4.96)
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(4.97)

(4.98)

(4.99)

(4.100)

(4.101)

The radial acceleration around the ring at x = x  is to be minimised.  The mean square of thee

displacement defined in Equation (4.94) is integrated around the circumference of the cylinder:

Noting that  (where  is the complex conjugate of z), and writing F  = F  + jF ,s sr sj

The partial derivatives of Equation (4.98) with respect to the real and imaginary components of

the control force are taken and set equal to zero to find

and

Adding Equations (4.99) and (4.100) gives
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(4.102)

(4.103)

The optimal control force F  required to minimise normal acceleration at the ring of error sensorss

can thus be calculated by

4.2.6.2 Control sources driven independently

If the six control actuators are driven independently, then a similar analysis is followed; however,

six equations instead of one result from integrating the mean square of the displacement defined

in Equation (4.94) and setting the partial derivatives of the integration with respect to the real and

imaginary components of each control force equal to zero.  The optimal control forces F , i =si

1,6 required to minimise acceleration at the ring of error sensors can be calculated by

4.2.6.3 Discrete error sensors

If the sum of the squares of the vibration amplitude measured at Q discrete points (x ,� ), q =e qe

1,Q is used as the error signal instead of the integral around the circumference of the cylinder at

location x , Equation (4.103) becomese
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(4.104)

(4.105)

(4.106)

(4.107)

where

4.2.7 Natural frequencies

Leissa (1973a) gives the characteristic equation for the free vibration frequencies of a cylinder

derived from the Flügge equations of motion:

where , n is the circumferential mode number, m is the axial mode number, and the

frequency parameter 6 is given by

The natural frequencies 7 can be obtained from Equation (4.107) by substitution of the real,

positive solutions 6 from Equation (4.106).
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4.3 NUMERICAL RESULTS

The theoretical model developed in the previous section was programmed in Fortran.  The

coefficient matrices � (see Equations (4.79) and (4.80)) were close to singular.  To obtain an

accurate solution, 16-bit data types were required.  The program consisted of about 3000 lines

and, for a typical set of results, took 2 days C.P.U. time to run on a SPARC-20 computer.

The discussion that follows examines the effect of varying forcing frequency, control source

location and error sensor location on the active control of vibration in cylinders with two sets of

boundary conditions.  In both models the end at x = 0 was modelled as simply supported.  In one

model, the end at x = L  was also modelled as simply supported and in the second model thex

cylinder was modelled as semi-infinite in the x-direction.  The cylinder parameters (including

location of the control source, primary source and error sensor) are listed in Table 4.1, and the

excitation frequency was 132 Hz.  These values are adhered to unless otherwise stated.  The

stiffener was assumed to be very stiff in comparison to the cylinder.

4.3.1 Acceleration distributions for controlled and uncontrolled cases

Figures 4.8 and 4.9 show the uncontrolled radial acceleration amplitude distribution in dB for the

semi-infinite and finite cylinders.  The cylinder has been "unrolled" in the figures so that the

acceleration distribution can be seen more easily.  The shape of the curves is very similar for the

two cases, apart from near the end x = 2.0m where the acceleration of the finite cylinder is zero.

It can be seen from the nature of the response that the near field effects become insignificant

within a few centimetres of the points of discontinuity.



Chapter 4.  Control of vibrations in a stiffened cylinder

190

Table 4.1

Cylinder Parameters for Numerical and Experimental Results

Parameter Value

Cylinder length L 2.0 mx

Cylinder radius R 0.25 m

Cylinder thickness h 0.003 m

Young's modulus E 210 GPa

Primary source location x 0.025 mp

Primary source locations � , �  %/6 rad, 3%/4 radp p1 2

Control source location x 0.5 m1

Control source locations � , � , � , � , � , � %/6, 3%/4, 29%/24, 19%/12,c c c c c c1 2 3 4 5 6
15%/8, 0 rad

Stiffener flange length a 0.05 m

Error sensor location x 1.0 me

Excitation frequency f 132 Hz

Unlike the corresponding plate and beam cases, there is no clear evidence of the existence of

standing wave fields either upstream or downstream of the stiffener location on the finite or

infinite cylinders.  This is because the nodes that occur in the standing wave on a cylinder occur

at large separations.
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(4.108)

(4.109)

Let x  be the separation between axial nodes in a standing wave.  For a beam, x  = � /2 where �s s b b

is the flexural wavelength of vibration in a beam given by Equation (2.50), because vibration in

a beam is one-dimensional. The path length corresponding to a mode is simply the length of the

beam.  In the case of a plate, the total path length corresponding to a mode may consist of a

combination of plate widths and lengths, and similarly for a cylinder the path length may consist

of a combination of cylinder circumferences and lengths.  Generally, for plates and cylinders, xs

g � /2, where the flexural wavelength of vibration in a plate is given by Equation (3.59) and inb

a cylinder is given by Pan and Hansen (1995b):

In the far field of vibration, the eigenfunction describing the dependence of the displacement of

a cylinder, plate or beam on axial coordinate x is given by, for each across-plate mode or

circumferential cylinder mode n,

Equation (4.109) is similar to Equations (2.2), (3.3) and (4.25), but retaining only the terms with

no real (decaying) exponential part.  The total displacement w (x) is the sum of the displacementn

contributed by each mode n.  Axial nodes in the displacement amplitude occur when w (x) is atn

a minimum.  Dropping the coefficients A  and  A , differentiating Equation (4.109) and setting3 4

the result equal to zero gives
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(4.110)

(4.111)

(4.112)

Minima in Equation (4.109) occur when

Nodes in the standing wave in the axial direction are thus separated by intervals

where n represents the number of the cross-plate mode on plate structures and circumferential

mode on cylindrical structures.  The mode number n has no significance on beams.

Considering the fixed beam described in Section 2.2, the finite plate described in Section 3.2 and

the finite cylinder described in Section 4.2, the following table can be established comparing the

distance between axial nodes.  It can be seen from Table 4.2 that a cylinder of similar radius and

thickness to those considered in this chapter would need to be about 25m long before a standing

wave node could be observed.  The distance between axial nodes on cylinders is typically much

larger than for beams or plates.
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Table 4.2

Comparison of Axial Node Separation in Beams, Plates and Cylinders

Mode
n

Beam Plate Cylinder

(� /2 = 0.2412m) (� /2 = 0.1793m) (� /2 = 0.9501m)b
x  (m) x  (m) x  (m)sn

b

sn

b

sn

1 0.2412 0.1921 23.09

2 0.2412 0.2573 26.85

3 0.2412 0.4521 27.93

4 0.2412 0.1744 28.29

5 0.2412 0.1205 28.29

6 0.2412 0.0941 28.29

7 0.2412 0.0779 28.29

8 0.2412 0.0667 28.29

Close examination of Figure 4.9 reveals a slight decrease in acceleration amplitude between the

stiffener location and the right hand end.  This is due to the standing wave effect; the acceleration

level begins to curve towards a minimum that would occur a half-wavelength away were the

cylinder long enough.  There is no decrease in acceleration level to the right of the stiffener

location in Figure 4.8 as no standing wave exists downstream of the stiffener on the semi-infinite

cylinder.
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Figure 4.8 Uncontrolled semi-infinite cylinder radial acceleration distribution.  The end at x =

0 is modelled as simply supported.

Figure 4.9 Uncontrolled finite cylinder radial acceleration distribution. The ends at x = 0 and

x = 2.0 are modelled as simply supported.
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Figures 4.10 and 4.11 show the controlled acceleration amplitude distributions for the semi-

infinite and finite cylinders with the six control sources driven by the same signal.  The

acceleration level is only marginally reduced.  The calculated reduction in acceleration amplitude

downstream of the ring of error sensors is only about 3 dB.  Several higher-order circumferential

modes contribute significantly to the vibration response of the cylinder so control sources driven

by a common signal are not capable of significantly reducing the overall vibration level.

Figures 4.12 and 4.13 show the controlled acceleration amplitude distributions for the semi-

infinite and finite cylinders with the six control sources driven independently.  The acceleration

level is at a minimum at the error sensor location (x  = 1.0m).  The calculated reduction ine

acceleration amplitude downstream of the error sensor is a little over 40 dB for the semi infinite

cylinder and a little under 40 dB for the finite cylinder.

Figures 4.14 - 4.21 show the axial and tangential acceleration distributions corresponding to the

radial acceleration distributions given in Figures 4.8, 4.9, 4.12 and 4.13.  Only radial vibration

at the ring of error sensors is optimally reduced in the controlled cases.  The figures show that

controlling radial vibration also results in significant reduction of vibration in the axial and

tangential directions (between 30 and  40 dB attenuation).  Axial acceleration levels are of a

similar order as radial acceleration levels, while tangential acceleration is generally a few dB less.

In theory, tangential acceleration modes are out of phase with radial and axial acceleration

modes, and this can also been seen on the figures. 
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Figure 4.10 Controlled semi-infinite cylinder radial acceleration distribution - control

sources driven by the same signal.

Figure 4.11 Controlled finite cylinder radial acceleration distribution - control sources driven

by the same signal.
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Figure 4.12 Controlled semi-infinite cylinder radial acceleration distribution - control

sources driven independently.

Figure 4.13 Controlled finite cylinder radial acceleration distribution - control sources driven

independently.
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Figure 4.14 Uncontrolled semi-finite cylinder axial acceleration distribution.

Figure 4.15 Uncontrolled finite cylinder axial acceleration distribution.
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Figure 4.16 Controlled semi-finite cylinder axial acceleration distribution - control sources

driven independently.

Figure 4.17 Controlled finite cylinder axial acceleration distribution - control sources driven

independently.
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Figure 4.18 Uncontrolled semi-finite cylinder tangential acceleration distribution.

Figure 4.19 Uncontrolled finite cylinder tangential acceleration distribution.
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Figure 4.20 Controlled semi-finite cylinder tangential acceleration distribution - control

sources driven independently.

Figure 4.21 Controlled finite cylinder tangential acceleration distribution - control sources

driven independently.
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4.3.2 Effect of variations in forcing frequency, control source location and error sensor

location on the control forces

Figure 4.22 shows the effect of varying the forcing frequency on the magnitude of the control

force(s) required to minimise the radial cylinder vibration at the line of error sensors.  The mean

control source amplitudes for the cases where control sources are driven by the same signal are

low and do not vary significantly with frequency.  For the cases with control sources driven

independently, the mean control source amplitude is larger, and varies a little with frequency,

particularly for the finite cylinder case.  The corresponding results for beam and plate structures

show large maxima in the control source amplitudes that are a result of the control source

location corresponding to a standing wave node; this situation does not arise for the cylinder

structures where the bending wavelength greatly exceeds the cylinder length.

Figures 4.23 and 4.24 show the effect of the locations of the ring of control sources and the line

of error sensors on the control source amplitude required for optimal control.  There are

fluctuations in the control effort required with different axial locations of control sources and

error sensors, again particularly for the finite cylinder, but no large maxima in control effort

occur.

These results show that, unlike for the equivalent beam and plate cases, there are no frequencies

or axial locations of control sources and error sensors that result in an unrealistically high control

effort required to optimally control the vibration at the ring of error sensors.
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Figure 4.22 Mean control source amplitude for optimal control as a function of frequency.

Six control sources and two primary sources were used.
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Figure 4.23 Mean control source amplitude for optimal control as a function of control

source - primary source separation.  Six control sources and two primary sources

were used.
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Figure 4.24 Mean control source amplitude for optimal control as a function of error sensor -

control source separation.  Six control sources and two primary sources were

used.
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Figure 4.25 shows the dependence of control source amplitude required for optimal control on

circumferential control source location.

Figure 4.25(a) shows the amplitude of the second control source required for optimal control,

assuming only two control sources are used, and the first is located at �  = %/6 radians.  If thec1

second control source is located near to the first, the control source amplitude required for

optimal control tends toward infinity.  This also occurs when the second control source is located

near �  = 2% - �  = 11%/6.c c2 1

Figure 4.25(b) shows the amplitude of the third control source required for optimal control,

assuming three control sources are used.  The first is located at �  = %/6 and the second at �c c1 2

= 3%/4 radians.  If the third control source is located near to either of the first two, the control

source amplitude required for optimal control becomes large.  This also occurs when the third

control source is located near �  = 2% - �  = 11%/6 or 2% - �  = 5%/4.c c c3 1 2

Figure 4.25(c) shows the amplitude of the fourth control source required for optimal control,

assuming three control sources are used.  The first is located at �  = %/6, the second at �  =c c1 2

3%/4 and the third at �  = 35%/24 radians.  If the fourth control source is located near to eitherc3

of the first three, the control source amplitude required for optimal control becomes large.  This

also occurs when the fourth control source is located near �  = 2% - �  = 11%/6, 2% - �  =c c c4 1 2

5%/4 or 2% - �  = 13%/24.c3
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Figure 4.25 Control source amplitude for optimal control as a function of circumferential control source
location.
(a) Amplitude of the second of two control sources; the first control source was located at

�  = %/6 radians.c1
(b) Amplitude of the third of three control sources; the first control source was located at

�  = %/6 and the second at.�  = 3%/4 radians.c1 c2
(c) Amplitude of the fourth of four control sources; the first control source was located at

�  = %/6, the second at �  = 3%/4 and the third at �  = 35%/24 radians.c1 c2 c3
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If the circumferential location of an additional control source is �  and there are i controli+1

sources already in place at locations � , then the amplitude of control source i+1 will be largei

when cos(� ) = cos(� ), because at these locations, control source i+1 contributes to the samei i+1

modes as one of the other control sources.

4.3.3 Effect of variations in forcing frequency, control source location and error sensor

location on the attenuation of acceleration level

Figure 4.26 shows the variation in the mean attenuation of radial, axial and tangential

acceleration level downstream of the ring of error sensors as a function of frequency for the cases

with control sources driven independently.  There is some variation, particularly for the semi-

infinite cylinder below 200 Hz, but overall the amount of attenuation of acceleration in each

direction is not greatly dependent on the excitation frequency.  Radial acceleration is attenuated

slightly more than axial and tangential acceleration, and axial acceleration is also attenuated

slightly more than tangential acceleration.

Figure 4.27 shows that little attenuation can be achieved using control sources driven by a

common signal.  This is because there are many circumferential modes contributing significantly

to the vibration of the cylinder, even at low frequencies.  The level of attenuation achieved is not

greatly dependent on the separation between control sources and primary sources, as indicated

by Figure 4.28.  Figure 4.29 shows that attenuation of acceleration level increases with increasing

separation between control sources and error sensors.  Very little attenuation is achieved with the

error sensors located close to the control sources.
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Figure 4.26 Mean attenuation downstream of the line of error sensors as a function of

frequency, with the control actuators driven independently.
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Figure 4.27 Mean attenuation downstream of the line of error sensors as a function of

frequency, with the control actuators driven by the same signal.
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Figure 4.28 Mean attenuation downstream of the line of error sensors as a function of control

source - primary source separation.
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Figure 4.29 Mean attenuation downstream of the line of error sensors as a function of error

sensor - control source separation.
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4.3.4 Number of control sources required for optimal control

Table 4.3 shows the amount of attenuation of acceleration level achieved downstream of the error

sensors with various numbers of control sources.  The control sources are located at a single axial

location.  The locations of primary sources, control sources and error sensors and the cylinder

dimensions used were those given in Table 4.1.  The results given are for the simply supported

cylinder.

Table 4.3

Effect of the Number of Control Sources on Mean Attenuation of Radial Acceleration

Number of Mean
Control Attenuation
Sources (dB)

1 2.8225

2 10.883

3 35.902

4 36.976

5 36.976

6 36.976

4.3.5 Number of error sensors required for optimal control

Table 4.4 shows the control source amplitude and amount of attenuation of acceleration level

achieved downstream of the error sensors with various numbers of error sensors.  The error

sensors were located at axial location x  = 1.0m and unevenly spaced circumferential locations.e

The other locations of primary sources and control sources and the cylinder dimensions used

were those given in Table 4.1.  The results given are for the simply-supported cylinder.
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Table 4.4

Effect of the Number of Error Sensors on Control

Source Amplitude and Mean Attenuation

Number of Mean Control Mean Mean Mean
Error Sensors Source Attenuation of Attenuation of Attenuation of

Amplitude Radial Axial Tangential*

Acceleration Acceleration Acceleration
(dB) (dB) (dB)

1 0.14538 -0.62607 -0.93307 -082318

2 0.34850 8.0704 7.4881 6.8480

3 0.23683 36.035 32.944 32.050

4 0.24036 36.618 33.699 32.132

5 0.24036 36.619 33.700 32.131

6 0.24036 36.622 33.710 32.134

7 0.24036 36.626 33.713 32.137

8 0.24036 36.635 33.714 32.139

9 0.24036 36.644 33.721 32.141

10 0.24036 36.654 33.727 32.144

� 0.24082 36.976 34.925 32.616

Mean control source amplitude is expressed relative to the primary source amplitude.*

Six control sources and two primary sources were used.

4.3.6 Natural frequencies

Table 4.5 lists the natural frequencies of the cylinder described in Table 4.1, except that the

effects of the ring stiffener have not been included.  The experimental results of Section 4.5.1

indicate that the ring stiffener increases the natural frequencies of each mode by a small amount.
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Table 4.5

Natural Frequencies of the Unstiffened Cylinder

Natural Frequency Axial Mode Number
(Hz)

1 2 3 4 5

Circumferential
Mode Number

0 1331 1602 2408 3177 3252

1 321 890 1480 1982 2363

2 114 392 756 1133 1485

3 106 222 429 680 946

4 179 216 318 471 656

5 284 299 342 425 540

6 415 424 446 488 556

7 571 578 592 618 659

8 751 757 768 787 816
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Figure 4.30 Experimental arrangement for the modal analysis of the cylinder.

4.4 EXPERIMENTAL PROCEDURE

4.4.1 Modal analysis

A modal analysis was performed on the cylinder to be used in the vibration control experiment.

The software package "PC Modal",   a Brüel and Kjær type 8202 impact hammer and type 2032

signal analyser were used in the modal analysis.  The modal analysis experimental arrangement

is illustrated in Figure 4.30.   The dimensions of the cylinder were the same as those given in

Section 4.3 (see Table 4.1).  The cylinder model consisted of 45 nodes dividing the cylinder into

a line of 21 nodes parallel to the x-axis and a ring of 25 nodes parallel to the �-axis.  The analysis

was performed for the two cases with and without the angle stiffener attached to the cylinder.
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4.4.2 Active vibration control

A steel stiffener was bolted tightly to a cylinder described by the dimensions given in Table 4.1.

Six piezoceramic actuators were placed between the stiffener flange and the cylinder wall.  The

actuators were attached only at one end to ensure that no external tensile force were applied to

them, as the type of actuator used is weak in tension.  The primary source, control source and

error sensor locations and the excitation frequency are given in Table 4.1.

The complete experimental arrangement is shown in Figure 4.31.  The primary signal was

produced by a signal analyser and amplified to drive the electrodynamic shakers (Figure 4.32).

The shakers acted on the shell through force transducers, and the magnitudes of the primary

forces were recorded using an oscilloscope.

The error signals from the ring of eight accelerometers (Figure 4.33) were passed to an EZ-ANC

controller.  The controller determined the control signals to drive the piezoceramic actuators,

optimally minimising the acceleration measured by the error sensors.  The control signals were

also monitored on an oscilloscope.

The acceleration was measured at 10 or 15 cm intervals along the cylinder in four lines at

locations � = 0, %/6, %/4 and %/2 (Figure 4.34).  The accelerometer signals were read in turn

through a 40 channel multiplexer connected to a Hewlett-Packard type 35665A signal analyser,

in which the frequency response function was used to analyse the data.  The magnitude and phase

of the acceleration were recorded on a personal computer, which was also used to switch the
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Figure 4.31 Experimental arrangement for the active control of vibration in the cylinder.
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Figure 4.32 Primary system.

recorded channel on the multiplexer.  The acceleration output of the force transducer at one of

the primary source locations was used as the reference signal for the frequency response analysis.

Accelerometer readings were taken initially once the error sensor signals had been optimally

reduced, and again with the control amplifiers switched off (the uncontrolled case).  The
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Figure 4.33 Control system.

experiment was repeated with the six control actuators driven by a common control signal.
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Figure 4.34 Acceleration measurement.  Not all of the accelerometer - multiplexer

connections are shown.
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Figure 4.35 Experimental equipment for the active vibration control of cylinder vibration.

Figures 4.35 - 4.38 show the photographs of the experimental equipment.  In Figure 4.35, the

cylinder is shown with the signal generating and recording equipment around it.  The cylinder

is simply supported at each end.  The two electromagnetic shaker primary sources can be seen.

The accelerometers mounted on the cylinder are shown in Figure 4.36.  The ring stiffener can be

seen through the open end of the cylinder in Figure 4.37, which also shows the EZ-ANC

controllers.  The piezoceramic stack actuators are shown in Figure 4.38, mounted at various

angles � as described earlier in this section.
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Figure 4.36 Accelerometers mounted on the cylinder.

Figure 4.37 EZ-ANC controllers and control source amplifiers

(foreground) with cylinder showing ring stiffener.
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Figure 4.38 Piezoceramic stack actuators and the ring

stiffener.
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4.5 EXPERIMENTAL RESULTS

4.5.1 Modal analysis

The following figures show the modal analysis results.  Each figure represents one ring around

the circumference of the cylinder (located at x = 0.2m) and one line along the cylinder.

Figures 4.39 and 4.40 show the n,1 (n = 2,3,4,5) modes of vibration of the cylinder without the

angle stiffener.  These modes were significant on the unstiffened cylinder, but were not found

to be significant modes for the cylinder with the ring-stiffener in place.  Figures 4.41 - 4.43

compare the 5,2, 6,2 and 7,3 modes for the unstiffened and stiffened cylinder.  The presence of

the ring-stiffener greatly reduced the vibration amplitude of these modes also.  However, the

presence of the ring-stiffener did not significantly affect the n,4 modes (Figures 4.44 and 4.45),

presumably because the stiffener was located at ¼ the length of the cylinder from one end, which

is the location of a node in an n,4 vibration mode.  The assumption that the cylinder displacement

was limited at the stiffener location is borne out by these results.

It is also of interest that the higher order circumferential modes (n,5, n,6, n,7) are a significant

part of the vibration response of the cylinder, as predicted by the theoretical model.  The natural

frequencies of the unstiffened cylinder also agree closely with the theoretical predictions (see

Section 4.3.6).
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Figure 4.39 The 2,1 and 3,1 modes for the unstiffened cylinder.

Figure 4.40 The 4,1 and 5,1 modes for the unstiffened cylinder.

Figure 4.41 The 5,2 mode for the unstiffened and stiffened cylinder.
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Figure 4.42 The 6,2 mode for the unstiffened and stiffened cylinder.

Figure 4.43 The 7,3 mode for the unstiffened and stiffened cylinder.

Figure 4.44 The 5,4 mode for the unstiffened and stiffened cylinder.
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Figure 4.45 The 7,4 mode for the unstiffened and stiffened cylinder.

4.5.2 Active vibration control

Figure 4.46 shows the theoretical and experimental acceleration distributions for each of the four

lines where accelerometers were placed in the experiment.  For both the uncontrolled case and

the controlled case with control actuators driven by the same signal, the experimental results and

theoretical curves are in close agreement.  For the controlled case with independently driven

control sources, the theoretical analysis predicts greater reduction in acceleration level than was

achieved experimentally.  An error analysis showed that a very small error (0.12%) in the control

signal would produce a decrease in attenuation corresponding to the difference between the

experimental and theoretical data.

Table 4.6 compares the acceleration levels of radial, axial and tangential acceleration measured

at four points on the cylinder both without and with active vibration control.  The measurements

were made using tri-axial accelerometers.  The table shows that axial and tangential acceleration
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Figure 4.46 Experimental acceleration distributions.
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Table 4.6

Acceleration Levels of Radial, Axial and Tangential Acceleration

Measurement Radial Axial Tangential
Location Acceleration Acceleration Acceleration

Level Level Level
(dB) (dB) (dB)x �

(m) (rad)

Uncontrolled 0.2 %/6 -0.8 -1.2 -6.8

0.2 %/3 1.1 0.4 -1.1

1.8 %/6 -7.2 -7.7 -13.4

1.8 %/3 -6.8 -7.4 -7.7

Controlled 0.2 %/6 -0.9 0.2 -4.2* * *

0.2 %/3 -0.7 -0.3 -2.6* * *

1.8 %/6 -20.6 -20.6 -22.5

1.8 %/3 -21.9 -22.4 -23.7

These values are measurements from upstream of the control location.*

are significantly reduced by minimising radial acceleration at the ring of error sensors.

The measurements taken at � = %/6 radians support the theoretical finding that nodes in the

tangential vibration occur at opposite circumferential locations to nodes in axial and radial

vibration.  At � = %/6, the tangential acceleration level is several dB less than the levels recorded

for axial and radial acceleration, while the levels are similar at the other circumferential location

recorded.
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4.6 SUMMARY

A theoretical model has been developed to describe the vibration response of a ring-stiffened

cylinder to a range of excitation types, and in particular to describe the vibration response of ring-

stiffened cylinders to point force primary excitation sources and angle stiffener and piezoceramic

stack control sources.  The numerical results indicate that flexural vibrations in cylinders can be

actively controlled using piezoceramic stack actuators placed between the flange of an angle

stiffener and the cylinder surface.  Numerical results also indicate:

(1) Vibration in the axial, tangential and radial directions is coupled, and vibration

amplitudes in each direction are of a similar order of magnitude for the cylinders

considered.

(2) Circumferential modes in the axial and radial vibration standing waves occur at the same

circumferential locations on the cylinder while modes of tangential vibration are located

out-of-phase relative to the axial and radial modes.

(3) Optimally controlling radial vibration also significantly reduces axial and tangential

vibration levels.

 

(4) The mean amplitude of the control forces required for optimal control is not greatly

dependent on frequency, axial control source location or axial error sensor location.

There are minor fluctuations, particularly for the finite cylinder, but no pattern or
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increasing or decreasing trends.

(5) The optimum control forces are either in phase or 180  out of phase with the primaryo

sources.  This is true for the semi-infinite cylinder as well as the finite cylinder, because

a standing wave is generated by the vibration reflections from the finite end and the angle

stiffener.

(6) Increasing the separation between the primary and control sources does not greatly affect

the mean  attenuation of acceleration level downstream of the ring of error sensors.

(7) Increasing the separation between the error sensors and the control sources significantly

improves the mean attenuation of acceleration level downstream of the ring of error

sensors.

(8) Because of the distance between nodes in axial standing waves in the cylinders

considered, there are no axial locations of control sources and error sensors that give

maxima in control source amplitude or minima in attenuation.

(9) Little or no reduction is achieved with control sources driven by a common control

signal, because higher order circumferential modes of vibration contribute significantly

to the vibration response of the cylinder even at low frequencies.



Chapter 4.  Control of vibrations in a stiffened cylinder

233

(10) The circumferential location of the control sources is significant.  Generally, for every

control source, there are two locations at which placement of an additional control source

will require excessive control source amplitudes for optimal control.

(11) For the cylinder and frequency considered, optimal attenuation can be achieved with four

control sources and four error sensors.  Attenuation is only a little less with three control

sources and three error sensors, but very little control is achieved with two or less control

sources and error sensors.

The theoretical model outlined was verified experimentally for the cylinder with simply

supported ends.  A modal analysis of the cylinder indicated that the angle stiffener made a

significant difference to the vibration response of the cylinder and that higher order

circumferential modes contributed significantly to the overall response.  Comparison between

experimental results and theoretical predictions for the vibration of the cylinder with and without

active vibration control showed that:

(1) The theoretical model accurately predicted the vibration response of the cylinder for the

uncontrolled case and the case with control sources driven by the same signal.

(2) The theoretical model predicted more attenuation than could be achieved experimentally

for the case with independently driven control sources.  An error analysis indicated that

an error in the control source signal of 0.12% would produce a decrease in attenuation
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corresponding to the difference between the theoretical prediction and the experimental

result.  Nevertheless, around 18 dB attenuation was achieved experimentally for the case

with independently driven control sources.

(3) Experimental measurements of axial and tangential vibration were of similar order to

measurements of radial vibration, as predicted by the theoretical model.  Axial and

tangential vibration was significantly reduced as well as radial vibration when radial

vibration was used as the error function.


