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CHAPTER 1. INTRODUCTION AND L ITERATURE REVIEW

1.1 INTRODUCTION

In this thesis, the feedforward active control of harmonic flexural vibration in three types of

stiffened structures using as control sources piezoceramic actuators placed between the

stiffener flange and the structure surface is investigated.  The first structure considered is a

beam of rectangular cross-section with a mock stiffener mounted across the larger cross-

sectional dimension.  The analysis of vibration in the beam is treated as a one-dimensional

problem.  The second structure considered is a rectangular plate with a stiffener mounted

across the width of the plate.  The transverse vibration of the plate is treated as a two-

dimensional problem.  Finally, a ring-stiffened cylindrical structure is analysed.  Vibration in

each of the radial, axial and tangential directions is considered.  The thesis is presented in

three main chapters, each considering one type of structure, but the study of the more

complicated structures makes use of results from the simpler cases.

The control of flexural vibrations in a simple beam is considered in Chapter 2, where the

classical one-dimensional equation of motion for flexural vibration is used to develop a

theoretical model for the vibration of a beam with a primary point source, an angle stiffener

and a control actuator.  The effective control signal is a combination of the effects of the point

force at the base of the actuator, and the reaction force and moment at the base of the

stiffener.
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Figure 1.1 Beam showing primary source, angle stiffener, piezoceramic stack control source

and error sensor.

The displacement at a point is the sum of the displacements due to each of the primary source

and control source forces and moments.  Optimal control is achieved by minimising the total

mean square displacement at the location of a single error sensor downstream of the control

source.

The theoretical analysis considers four different sets of classical beam supports; infinite, free,

simply supported and fixed.   The influences of the control source location, the error sensor

location and the excitation frequency on the control source amplitude and achievable

attenuation are investigated, and the physical reasons for each observation are explained.  The

effects of introducing a second control source and angle stiffener and a second error sensor

are also examined.

Experimental verification of the beam model is undertaken for four different sets of beam

terminations; infinite, free, simply supported and vibration isolated.  The impedance
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Figure 1.2 Plate showing primary sources, angle stiffener, piezoceramic stack control

actuators and error sensors.

corresponding to each type of termination is first measured from the experimental apparatus.

Experimental results are compared with theoretical predictions for the four cases.

The control of flexural vibrations in a plate is considered in Chapter 3, where the classical

two-dimensional equation of motion for flexural vibration is used to develop a theoretical

model for the vibration of a plate with one or more primary point sources, an angle stiffener

and one or more control actuators.  A modal analysis of the plate with and without a stiffener

attached shows that the stiffener makes a significant difference to the vibration response of

the plate, so the theoretical model is modified to include the effects of the stiffener.  The

effective control signal is a combination of the effects of the point force at the base of each

actuator, and the line force and line moment at the base of the stiffener.
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The displacement at a point is the sum of the displacements due to each of the primary source

and control source forces and moments.  Optimal control is achieved by minimising the total

mean square displacement at a line of error sensors across the plate downstream of the control

sources.  Consideration is given to the results achieved with control sources driven by the

same signal and with control sources driven independently.

The theoretical analysis considers two different sets of plate supports.  In both cases, the

edges of the plate are simply supported and the end upstream of the primary sources is

modelled as free.  In the first case, the end downstream of the error sensors is modelled as

infinite, and in the second case the downstream end is modelled as free.  The influences of the

location of the control sources, the location of the line of error sensors and the excitation

frequency on the control source amplitude and achievable attenuation are investigated, and

the physical reasons for each observation are explained.  The effect of introducing a second

angle stiffener and additional control sources is also examined.

Experimental verification of the plate model is performed for the case with the upstream end

modelled as free and the downstream end modelled as infinite.

Finally, the more complicated case of control of flexural vibrations in a ring-stiffened

cylinder is considered in Chapter 4.  The three equations of motion for vibration of a cylinder

in the radial, tangential and axial directions are used to develop a theoretical model for the

vibration of a cylinder with one or more primary point sources, a ring stiffener and one or
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Figure 1.3 Cylinder showing primary sources, ring stiffener, piezoceramic stack control

actuators and error sensors.

more control actuators.  The effective control signal is a combination of the effects of the

point force at the base of each actuator, and the line force and line moment around the

circumference of the cylinder at the base of the ring stiffener.

The displacement at a point is the sum of the displacements due to each of the primary source

and control source forces and moments.  Optimal control is achieved by minimising the total

mean square displacement at a ring of error sensors around the cylinder circumference

downstream of the control sources.  Consideration is given to the results achieved with

control sources driven by the same signal and with control sources driven independently.
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The theoretical analysis considers two different sets of cylinder supports.  In both cases, the

end upstream of the primary sources is modelled as simply supported.  In the first case, the

end downstream of the error sensors is modelled as infinite, and in the second case the

downstream end is modelled as simply supported.  The influences of the location of the

control sources, the location of the ring of error sensors and the excitation frequency on the

control source amplitude and achievable attenuation are investigated, and the physical reasons

for each observation are explained.

Experimental verification of the cylinder model is performed for the simply supported

cylinder.

In Chapter 5 the results of each structural model are reviewed.  The similarities between the

three cases are described and the trends established from one model to the next are

summarised.  The difficulties in controlling vibration in the three types of structure are

described, and the implications for controlling vibration in real stiffened structures are

presented.
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1.2 LITERATURE REVIEW

1.2.1 Analysis of vibration in continuous structures

1.2.1.1 The differential equations of motion

The differential equations of motion for the displacement of simple continuous structures and

their basic solutions have been known for a long time.  The solutions to the equations of

motion for a beam and plate are discussed in various well-known texts (Morse, 1948; Wang,

1953; Timoshenko, 1959; Cremer, Heckl and Ungar, 1973; Graff, 1975, Meirovitch, 1975).

Vibration in cylindrical shells is also discussed briefly in the texts by Graff and Cremer,

Heckl and Ungar, and in more detail by Timoshenko.  Flügge (1960) developed one version

of the three-dimensional equations of motion for the vibration of shells and gave solutions for

a variety of shell types.

Leissa's famous monographs Vibration of Plates (1969) and Vibration of Shells (1973a) are

comprehensive summaries of the analyses of plate and shell vibration to that time.  Leissa's

works present results for the free vibration frequencies and modes shapes for plates and shells

with a wide array of geometries and boundary conditions.

Noiseux (1970) presented a significant work introducing the concepts of near and far fields of

vibrational intensity, using the solutions to the beam and plate equations.  The near field

exists in the region of a discontinuity, boundary or actuator, and contains reactive and active

components.  In the far field the reactive component is insignificant.  Pavie (1976)

determined a method of measuring structural intensity using an array of vibration sensors.
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The concepts of near and far fields of vibrational intensity are important in understanding

some of the mechanisms involved in active vibration control, particularly when selecting

control source and error sensor locations (Sections 2.3, 3.3 and 4.3).

The vibration of beams is a relatively simple problem, and will not be discussed in any great

detail in this review.  The analysis of vibration in plates and cylinders has received more

attention, and is discussed in more detail in Sections 1.2.1.3 and 1.2.1.4 respectively.

1.2.1.2 Treatment of termination impedances in theoretical analysis

The effect on the vibration response of the types of supports used to mount a beam, plate or

shell is significant.  In any theoretical analysis, the impedances of the structure supports must

be modelled.  Traditionally, assumptions corresponding to one of a set of classical

impedances have been used to model simply supported structures, free structures, fixed

structures and semi-infinite structures.

In 1977, Seybert and Ross developed a method for measuring the acoustic impedance of a

duct termination, using two microphones placed in a tube with the system under investigation

at one end.  The method showed that the incident- and reflected-wave spectra and the phase

angle between incident and reflected waves, could be determined from measurement of the

auto- and cross-spectra of the two microphone signals.  Expressions for the normal specific

acoustic impedance and reflection coefficient of the impedance material were then developed.

H1jbjerg (1991) improved the design of the microphones to be used in the impedance tube.
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Until recently, there has been no equivalent method for measuring beam impedances.  In

1990, Trolle and Luzzato examined the problem, developing a simple method for identifying

the four coefficients in the solution for beam displacement from a minimum of four

acceleration measurements.  They did not apply their work to the measurement of termination

impedances.  Fuller et al (1990) used a similar analysis to find the displacement equation

coefficients.  With the solution for displacement, they calculated the force and moment

impedances of a blocking mass on a beam.  They ignored the coupling impedances associated

with a termination discussed by Cremer, Heckl and Ungar (1973).

Taylor (1990) presented an alternative method using a measurement of structural intensity to

identify the impedance of a beam termination, as well as the related reflection coefficients.

While reducing the number of acceleration measurements to three, the method for measuring

structural intensity and then calculating impedances is significantly more complicated than

the method described by Fuller et al.  More recent investigations have attempted to improve

the accuracy of structural intensity measurements (Halkyard and Mace, 1993; Gibbs and

Fuller, 1993; Linjama and Lahti, 1993).

In Section 2.4.1, this thesis examines measurement of the impedance of real beam

terminations in order to better compare the experimental and theoretical results for active

vibration control.  The method used is based on the simple method developed by Fuller et al

(1990), but here an attempt is made to include the force and moment coupling impedances in

the analysis, rather than ignoring them as did Fuller et al.  The termination impedances of
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wire supported, pinned and anechoically terminated beams are measured and compared with

the corresponding classical approximations.  The number of accelerometers required to give

reasonable results using this method is also examined.

When discussing the vibration of plates and cylinders, classical impedance approximations

have been used.  Development of a method for measuring the impedance of a plate or

cylinder support would be far more complicated than that for a beam, and is outside the scope

of this work.  It is acknowledged that some of the observed differences between theoretical

results and experimental data may be due to the inaccuracy of the classical support

approximations.

1.2.1.3 Analysis of vibration in rectangular plates

There basics of free vibration in plates are discussed in texts by Timoshenko (1959), Cremer

et al. (1973), Graff (1975) and others.  Early work was concerned exclusively with

determining the natural frequencies of plates with a variety of supports and geometries, as can

been seen in Leissa's extensive 1969 summary of works to that time.  Leissa (1973b) also

gave a broad analytical study of free vibration in rectangular plates, using the Ritz method to

examine the natural frequencies of plates with a variety of classical edge conditions.  These

analyses utilised the two-dimensional displacement equation with various boundary

conditions corresponding to each of the edge constraints.  Different forms of the general

solution to the displacement equation were used to satisfy the boundary conditions in each

case, and the characteristic equation solved for the natural frequencies.
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Mukhopadhyay (1978, 1979) developed a new numerical method for determining the natural

frequencies of rectangular plates with different degrees of elastic edge restraints, again

beginning with the two dimensional displacement equation.  The general solution satisfying a

given set of boundary conditions was transformed, reduced to an ordinary differential

equation, and expressed in finite difference form.  The solution of the resulting eigenvalue

problem yielded the plate free vibration natural frequencies.  Numerical results were

presented for some cases, and these results agreed closely with results given in previous work

(such as Leissa's).

Other researchers have examined vibration in plates with stiffeners attached using a wide

variety of approximate methods.  Kirk (1970) used the Ritz method to determine the natural

frequencies of a plate with a single stiffener placed on a centre line, and the results compared

closely with the exact solution obtained from the plate equation.  Wu and Liu (1988) also

examined vibration in plates with intermediate stiffening using the Rayleigh-Ritz method.

They calculated the first four natural frequencies for some examples, and the results agreed

closely with those of Leissa (1973a).  Aksu and Ali (1976) used the finite difference method

for the free vibration analysis of a rectangular plate with a single stiffener.  Cheng and Dade

(1990) used bicubic B-splines as coordinate functions to formulate problems based on energy

principles, using the technique of piecewise Guass integration collocation.  This method

could be used with non-uniform thicknesses of plates.  Yet another method, utilising Poynting

vector formulation, has been used in structural intensity analysis of plates, by Romano et al.

(1990).
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The most widely used approximate method is the finite element method, applied to plates

with discrete stiffeners by Olson and Hazell (1977) and Gupta et al (1986).    Mead, Zhu and

Bardell (1988) examined vibration in a flat plate with an orthogonal array of rectangular

stiffeners using this method.  Koko and Olson (1992) used super plate and beam finite

elements which were constructed so that only a single element per bay or span was required,

resulting in an economic model of the orthogonally stiffened structure.

These approximate methods have been developed largely because the exact solution of the

plate differential equation is cumbersome, particularly when stiffeners are attached (Koko and

Olson, 1992).  While these approximate methods were useful in analysing the free vibration

of plates with or without attached stiffeners, they have not generally been used to develop

models for active vibration control.  Some researchers in recent years, particularly those

interested in developing a theoretical model for the active feedforward vibration control of

plates, have returned to the exact solution of the plate equation; however, none have included

stiffeners in their analysis (Section 1.2.2.6).
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1.2.1.4 Analysis of vibration in cylindrical shells

There has been much discussion in the literature regarding the equations of motion for

cylindrical shells.  Unlike the classical equations of motion for the beam and plate, there is no

universally accepted set of equations for the cylinder.  Because of the complexity of

vibrations in cylinders, a large number of assumptions must be made when deriving the

equations of motion from the basic strain displacement relationships.  Different authors have

made distinct assumptions at various points in their derivation, arriving at slightly different

equations of motion.

Leissa (1973a) gave an extensive summary of the equations derived by the better known

authors.  He showed that, with a few exceptions, all the theories were very similar and

produced results consistent to within a few percent in most cases.  In his discussion, Leissa

demonstrated that, of all the theories, Flügge's (1934, 1960) work was the most referred to by

other researchers, such as Yu (1955), Hoppmann (1957), Forsberg (1964, 1966), Reismann

(1968), Reismann and Pawlik (1968), Smith and Haft (1968) and Warburton (1969).  Recent

researchers have also used the equations of motion developed by Flügge (e.g. Fuller, 1981;

Haung, 1991; Païdoussis et al, 1992). 

The main criticism of Flügge's version of the equations of motion for a cylinder has been his

omission of inertia terms.  Leissa (1973a) showed that the omission of these terms can cause

inaccurate results, and most researchers include the inertia terms in their analyses.
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The early work described using the Flügge equations has been directed towards calculation of

the natural frequencies of a variety of cylinders.  More recent authors include complicating

effects in their analyses, such as the effect of wall disconitinuities on the propagation of

waves (Fuller, 1981) and the coupled vibrations of shells containing liquids (Haung, 1991 and

Païdoussis et al, 1992).  No author has previously developed and presented quantitative

solutions for the acceleration (or velocity or displacement) amplitude distribution over a

cylinder in response to a specific form of vibration excitation, from the Flügge equations or

any other of the similar equations of motion for cylinders.   In Section 4.2 of this thesis, the

Flügge equations, with the inertia terms included, are used to develop a model for the

vibration of a cylinder in response to the application of a point force, a line force and a line

moment.

Wah and Hu (1968) examined the free vibration of ring-stiffened cylinders using a highly

simplified set of the equations of motion for shells.   They divided the ring-stiffened cylinder

into bays and considered the effect of the stiffener on the boundary conditions at the junction

of two bays.  In this thesis the effects of ring-stiffeners on the vibration response of a cylinder

are included in the solution to the full set of Flügge equations, without dividing the cylinder

into bays (Section 4.2).

A variety of approximate methods have also been used in the analysis of vibration of stiffened

shells.  Galletly (1954), Mikulas and M Elman (1965) and Patel and Neubert (1970) usedc

energy methods in their determinations of the natural frequencies of stiffened shells.  More
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recently, Mead and Bardell (1986, 1987) presented a computational method of determining

the natural frequencies of shells from propagation constants.  Cheng and Jian-Guo (1987)

applied B spline functions to flat shells, and Cheng and Dade (1990) extended this method to

include stiffened shells and plates.  Romano et al (1990) applied their Poynting vector

method to the analysis of structural intensity in shells as well as plates.  

Finite element analysis has also been used in the analysis of shell vibration  (e.g. Bogner et al,

1967; Cantin and Clough, 1968; Henschell, Neale and Warburton, 1971 and Orris and Petyt,

1974).  Recently, Mustafa and Ali (1987) applied structural symmetry techniques to the

prediction of the natural frequencies of stiffened and unstiffened shells and developed

boundary conditions for the analysis of part-shells.  Mecitoglu and Dökmeci (1991) used a

finite element analysis including smeared stringers and frames.  Langley (1992) took

stiffeners to be smeared over the surface of an element, with a view to analysing complex

aircraft structures using only a few elements.  Sinha and Mukhopadhyay (1994) used high

precision curved triangular elements in their analysis, allowing greater flexibility in

placement of stiffeners in the shell model.

As was the case with the analysis of vibrations in plates, the approximate methods used for

the investigation of vibration in cylinders have been developed because the exact solution of

the differential equations of motion is unwieldy.  While these approximate methods have

been useful in analysing the free vibration of cylindrical shells, they have not been used to

develop models for active vibration control.
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1.2.2 Active vibration control

1.2.2.1 The origins of active noise and vibration control

The fields of active noise control and active vibration control have much in common. Active

noise control can be traced back to Lueg's work in the nineteen thirties, although his ideas

were far in advance of the technology required for practical noise control systems (Guicking,

1990).  Nearly twenty years later, Olson (1953, 1956) experimented with an "electronic sound

absorber".  His arrangement consisted of a microphone mounted in close proximity to the face

of a loudspeaker cone.  The loudspeaker was driven to null the sound pressure at the

microphone, creating a quiet area around it.  His results were promising, but the electronics

technology of his time was still not sufficiently advanced to enable implementation in useful

applications.  Conover's 1956 application of loudspeakers arranged around a noisy

transformer was another early attempt at noise control.  However, it was not until the late

nineteen sixties and early seventies that electronics technology became advanced enough to

make implementation of basic noise control systems practical (Snyder, 1990).

Despite this early investigation into the active control of noise, and discussion of active

control of structural damping in the late seventies (Section 1.2.2.2), it wasn't until the eighties

that advances in vibration actuator technology made active vibration control a feasible

alternative in practical situations.  The introduction of the piezoelectric actuator to vibration

control by Bailey and Hubbard (1985) marked a new era in active vibration control (Section

1.2.2.3).
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1.2.2.2 Development of feedback vibration control methods

Most early active vibration control theory considered modal feedback control of large

structures.  Balas and Canavin (1977) discussed feedback damping control of large spacecraft

structures.  Balas (1978) applied theoretical modal control using velocity feedback to a simple

beam.  Meirovitch and Öz (1980), with later work by Meirovitch and others (Meirovitch,

Baruh and Öz, 1983; Meirovitch and Norris, 1984; Zhu and Bardell, 1985; Meirovitch and

Bennighof, 1986), expanded the modal control method, with Meirovitch and Bennighof

arriving at a method they described as Independent Modal-Space Control (IMSC), where a

coordinate transformation was used to decouple a complicated system into a set of

independent second order systems in terms of modal coordinates.  Baz and Poh (1988) made

modifications to the IMSC method to minimise the effect of control spillover into unmodelled

modes and also into modelled modes when the number of modelled modes exceeded the

number of control sources used. 

In 1986 von Flotow presented another feedback control solution which considered

modification of the disturbance propagation characteristics of the structure.  The discussion

indicated that the amount of control achieved using this method would be limited at low

frequencies. The results were later compared with the velocity feedback method and with

experiments on a beam (von Flotow and Schäfer, 1986).

Feedback control methods like those discussed are suited to the control of vibrations in very

large structures with many structural members and in situations where it is difficult to obtain
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a suitable reference signal.  In feedback systems, design of the control system is dependent to

a large degree on the physical analysis of the structure.  In the design of feedforward control

systems, the physical analysis of the structure can be separated from the design of the

electronic controller.  In recent years, a significant amount of research effort has been

concerned with feedforward control.  In this thesis, the emphasis is on analysis of the physical

mechanisms behind the feedforward active control of harmonic vibration in structures

consisting of relatively few fundamental elements, in structures where reference signals can

be obtained.  However, the results relating to the performance of the piezoceramic stack

control actuators are still relevant to feedback control systems.

1.2.2.3 Actuators for active vibration control

Electromagnetic shakers were used as control actuators in much of the early experimental

work on active vibration control (Noiseux, 1970).   While electromagnetic shakers are useful

tools in experimental work, their usefulness in practical applications is severely limited by

their size and mass.

Bailey and Hubbard (1985) introduced piezoelectric actuators to active vibration control.

They used the actuators bonded to the surface of a cantilever beam in their feedback vibration

damping design.  Crawley and de Luis (1987) presented an analytical and experimental

development of piezoelectric actuators as vibration exciters.  Using the models they

developed from stress/strain relationships, Crawley and de Luis were able to predict the

displacement of three real cantilevered beam and piezoelectric actuator arrangements under
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steady-state resonance vibration conditions.  Their work demonstrated several important

results regarding the stress/strain behaviour of piezoelectric actuators, including the effect of

stiffer and thinner bonding layers.

Dimitriadis et al (1991) and performed a two-dimensional extension of Crawley and de Luis'

work, applying pairs of laminated piezoelectric actuators to a plate.  They demonstrated that

the location and shape of the actuator dramatically affected the vibration response of the

plate.  Kim and Jones (1991) performed another study into the use of laminated piezoelectric

actuators, following a similar analytical method to that used by Crawley and de Luis (1987)

and Dimitriadis et al (1991).  They calculated the optimal thickness of piezoelectric actuators,

and investigated the influence of the thickness and material properties of the bonding layer

and piezoelectric actuators on the effective moment generated and the optimal actuator

thickness.

Clark et al (1991) performed tests on a simply supported beam excited by pairs of

piezoelectric actuators bonded to either side.  They compared test results with theoretical

predictions made using the one-dimensional beam equation altered to include the effects of

the piezoelectric crystals.  They discussed the idea of modelling a piezoelectric element by

two pairs of line moments acting along the edges of the element.  Their test results agreed to

within 25% of the theoretical predictions.  The paper concluded that discrepancies between

experiment and theory were the result of some of the assumptions they made in modelling the

piezoelectric elements and the beam using the one-dimensional beam theory.  The
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assumptions ignored the increase in beam stiffness due to strain in the normal direction to the

vibration and the fact that the piezoelectric elements were not as wide as the beam.  The

authors suggested that a finite element analysis may be required to predict the beam response

more accurately, but for the purposes of choosing optimal actuator locations and relative

structural responses, the one-dimensional model was sufficient.

Lester and Lefebvre (1993) extended to a cylinder the theoretical models of Dimitriadis et al

(1991) applying piezoelectric actuators to plates.  They developed two models; in the first the

actuator acted on the cylinder through line moments along the actuator edges, and in the

second through in-plane forces along the actuator edges.  They used a modal amplitude

analysis to show that the in-plane force model predicted better coupling between the actuator

and lower order modes than the bending model, and suggested that the in-plane force model

may be more suitable in the development of a model for the use of distributed piezoelectric

actuators as vibration control actuators.  Rivory et al (1994) reviewed and extended previous

models of beam - laminated actuator systems and compared theoretical results with

experimental data to show that the models did not predict accurately the response of the beam

to excitation by laminated actuators at frequencies away from the beam resonances.

The purpose of this thesis is to investigate the use of a piezoceramic stack actuator placed

between the flange of a stiffener and the surface of a structure to control vibration in the

structure.  In this thesis, it is the one-dimensional model that is used to describe the response

of the beam to the piezoceramic stack actuators (Section 2.2.3).  Since these actuators act
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essentially at a point, not over an area like laminated piezoelectric actuators, some of the

problems experienced by Clark et al, Rivory et al and others will not be important.

Many other researchers have used piezoelectric actuators in active vibration control

experiments.  Fansen and Chen (1986) and Baz and Poh (1988, 1990) presented results for

active control of beams using piezoelectric actuators, showing again the potential of

piezoelectric actuators as control actuators in vibration control where low forces are required.

Tzou and Gadre (1989) developed a theoretical model for the active feedback control of a

multi-layered shell with distributed piezoelectric control actuators using Love's theory.  Their

analysis included a detailed examination of the stresses and strains between layers.  Other

investigators to examine the use of laminated piezoelectric actuators in vibration excitation

and control include Wang et al (1991), Liao and Sung (1991), Pan et al (1992), Tzou and Fu

(1994a and 1994b) and Clark and Fuller (1994).  Clearly there is a perceived need for a

vibration actuator that can be used in practical situations, where the large reaction mass of an

electromagnetic shaker is unsuitable (Rivory, 1992).  The laminated piezoelectric actuator has

become the popular alternative, but this type of actuator is fragile and is not capable of

generating great amounts of force.  This thesis examines the suitability of another type of

actuator, the piezoceramic stack actuator, which is capable of producing much higher forces

for vibration excitation or vibration control than the thin laminated actuators.

The application of piezoceramic stack actuators to control of vibrations in rotating machinery

was considered in a paper by Palazzolo et al in 1989.  Their experimental results indicated
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that significant reductions in the vibration of rotating machinery could be achieved using two

of these actuators in the support structure of the rotating shaft.  To the author's knowledge, no

research has been performed considering the use of the stack actuator to control vibrations in

any other type of structure, such as the structures considered in this thesis.

1.2.2.4 Error sensors for active vibration control

Traditionally, accelerometers have been used for vibration measurement and as error sensors

for active control of vibration.  Along with the introduction of piezoelectric materials for

vibration excitation, the use of piezoelectrics such as polyvinylidene fluoride (PVDF) for

vibration sensing has developed (Bailey and Hubbard, 1985; Burke and Hubbard, 1988; Clark

and Fuller, 1992).  Cox and Lindner (1991)  discussed optical fibre sensors for vibration

control.  Distributed vibration sensors such as the piezoelectric and optical fibre sensors can

be shaped and placed to generate suitable error signals when only certain modes of vibration

are to be controlled; for example, when reducing the far field noise emitted from a plate

(Clark and Fuller, 1992).

Thomas et al used minimisation of vibrational kinetic energy (1993a) and acoustic potential

energy (1993b) as the cost functions for the feedforward active control of harmonic vibration.

Clark and Fuller (1994) presented the results of experimental work dealing with the control of

harmonic vibrations in an enclosed cylinder using between three and six piezoelectric patches

as control sources and microphones or polyvinylidene fluoride vibration sensors as cost
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functions.  Both investigations showed that simple vibration error sensors generally give poor

results for the attenuation of transmitted or radiated sound in comparison to acoustic sensors,

because use of vibration sensors does not necessarily lead to minimisation of the modes that

contribute most to the radiated or transmitted sound power.

The aim in this thesis is to minimise the total vibratory power transmission downstream of the

control sources.  Pan and Hansen (1993a,1995a) demonstrated that simple acceleration

measurements can be used to optimally reduce total vibration transmission provided the error

sensors are not located in the vibratory near field produced by the control sources.

Accelerometer measurements are used here as the cost functions for active vibration control.
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1.2.2.5 Feedforward active control of vibration in beams

Much of the research in recent years has focussed on feedforward control of harmonic

flexural vibration in simple structures.

Redman-White et al (1987) used feedforward control in their experimental work.  They used

two closely-spaced point force control actuators to control harmonic flexural vibration in a

beam excited by a single point source primary excitation.  They showed that minimising

vibration at the location of the control source is not sufficient for reducing power

transmission downstream; rather, velocity should be minimised at a point far downstream of

the control sources.  Xia Pan and Hansen (1993a) showed that minimisation of velocity at a

point and minimisation of flexural wave power give identical results provided the error sensor

is located in the far field of the primary and control sources.  Minimisation of power

transmission gives better results when the error sensor is in the near field of the control

source.  In this thesis work, minimisation of velocity (acceleration) at a point is used, with the

error sensor generally in the far field of the primary and control sources.

Mace (1987) examined theoretically the active control of harmonic flexural vibration in

beams.  He discussed the excitation and control of vibration from two types of actuator; point

force and point moment.  Mace treated the point force and point moment as discontinuities in

the shear force and bending moment in the beam with resulting discontinuities in the

displacement solution for the beam equation at the point of application of the force or

moment.  This analysis is followed in this thesis for the treatment of vibration in beams



Chapter 1.  Introduction

25

(Section 2.2.3) and extended to include line moments and line forces on plates and cylinders

(Sections 3.2.3 and 4.2.4).

Gonidou (1988) used a similar analysis in his treatment of beam vibration control.  He

concluded that good feedforward control can be achieved with a single control source if

power transmission is used as the cost function.  As already mentioned, Xia Pan and Hansen

(1993a) showed that minimising velocity was equivalent to minimising power transmission

provided the error sensor was located outside of the control source near field.  In the current

work, a single control source is considered and acceleration at a point is used as the cost

function.  The dependence of attenuation on control source - error sensor separation is

examined in Section 2.3.3.

In 1990 Gibbs and Fuller controlled harmonic flexural vibration in experiments on a thin

beam using laminated piezoelectric actuators and an adaptive feedforward least squares

controller, achieving 30 dB or more attenuation for beams with a variety of termination types.

Jie Pan and Hansen (1990a) performed some similar experiments on beams, but used a single

point force as the control source.  Both papers demonstrated that reducing harmonic power

transmission using a secondary source had the effect of reducing the power input from the

primary source.  This idea is consistent with the analogous case for ducts (Snyder, 1990) and

is widely accepted.

Xia Pan and Hansen (1993b) solved the one-dimensional beam displacement equation,
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treating the point of application of the primary and control point sources as discontinuities in

the beam displacement in a similar manner to Mace (1987).  Their analysis discussed some of

the effects of variations in control source location, error sensor location, beam termination

type and frequency on the attenuation of vibration level, but without attempting to explain the

physical reasons for the observations.  In Section 2.3 this thesis examines the effect of control

source location, error sensor location, frequency and type of termination on the magnitude of

the control signal and the achievable attenuation, offering explanations for all observations.

The aim is to develop a full understanding of the physical behaviour of a beam vibration

control system.  This work will aid in understanding the behaviour of the more complicated

stiffened plate and stiffened cylinder vibration control systems in later chapters.

Recent work by Petersson (1993a) discussed the significance of the moment in a combined

moment and force excitation of a beam.  Numerical results indicate that moments must be

taken into account at all frequencies.  When a piezoceramic actuator is placed between the

flange of a stiffener and the beam surface, there is a moment reaction as well as a force

reaction at the base of the stiffener.  Petersson's work indicates that the moment may be a

significant part of the effective control signal.  In Section 2.2.3.2 of this thesis, the one-

dimensional displacement equation is solved for a point moment excitation, treating the

moment as a discontinuity in the beam displacement, following the analysis of Xia Pan and

Hansen (1993b) for a point force, and Mace (1987).  In Section 2.2.5, the effective control

signal is analysed in terms of the point forces and the point moment developed by the

piezoceramic actuator and angle stiffener combination.
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Fuller et al (1990), Jie Pan and Hansen (1990a) and Xia Pan and Hansen (1993a) have made

limited comparisons between theoretical results and experimental data for active feedforward

control of vibration in beams.  In Section 2.5 of this thesis, direct comparison is made

between the numerical results and experimental data for vibration of beams both with and

without active vibration control for an aluminium beam with four types of termination.

1.2.2.6 Feedforward active control of vibration in plates

Dimitriadis et al (1991) used the two dimensional plate displacement equation in their study

of the application of piezoelectric actuators in control of harmonic flexural vibration in

unstiffened plates.  The displacement equation was solved for the vibration responses to line

moments parallel to the x- and y-axes.  The results of their work showed that control of

vibrations in plates using bonded piezoelectric actuators was possible, and that the location of

the actuators and the excitation frequency are important factors in the effectiveness of the

control achieved.  They did not investigate in any depth the dependency of control

effectiveness on actuator location and frequency.

In a two-part presentation, Fuller (1990) and Metcalf et al (1992) investigated analytically and

experimentally the effectiveness of active feedforward control of sound transmission and

radiation from a plate using one and two point force control sources and acoustic error

sensors.    Metcalf et al showed that use of acoustic sensors gives greater attenuation of

radiated sound than vibration sensors. The purpose of this thesis is to investigate control of

vibration, not control of radiated sound, and accordingly vibration sensors are used rather
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than acoustic sensors.

Recent work by Pan and Hansen (1994) used a classical plate equation solution to compare

piezoelectric crystal with point force excitation of beams and plates.  An "equivalence ratio"

was derived, which could be used to determine the magnitude of a point force which would

give the same root mean square displacement amplitude as a piezoelectric actuator at some

position downstream of the actuator.  Pan and Hansen (1995a) used a similar analysis to

investigate active control of power transmission along a semi-infinite plate with a variety of

piezoelectric actuator configurations.  It was found that the effectiveness of the vibration

control depended greatly on location of the control actuator and excitation frequency.  In this

thesis, the dependence of attenuation and control source amplitude and phase on frequency,

control source location and error sensor location are investigated for the control of vibration

in plates using three piezoceramic stack control actuators and an angle stiffener (Section 3.3).

In analysing the effectiveness of piezoceramic stack control of a stiffened plate, the plate

displacement equation is solved directly to develop models for the plate excited by point

forces and line moments parallel to the y-axis, following the work of Dimitriadis et al (1991)

and Pan and Hansen (1994).  In addition, a new solution is developed for the application of

line forces parallel to the y-axis (Section 3.2).  The effect of attached stiffeners on the

vibration response of the plate is included in the classical model for the first time.

Fuller et al (1989) were the first to demonstrate the potential effectiveness of piezoelectric
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actuator control of sound radiated from plates in experimental work.  Their results show

global reductions in sound radiated from a panel of the order of 30 dB.  To this author's

knowledge, there have been few experimental works dealing with feedforward active control

of vibration in plates and none directly comparing experimental data with theoretical

predictions for the acceleration distribution over a plate with vibration control.  In Section 3.5

of this thesis, direct comparison is made between theoretical predictions and experimental

data for the vibration response of a stiffened plate with and without active vibration control.

1.2.2.7 Feedforward active control of vibration in cylinders

The feedforward active control of vibration in cylinders and aircraft fuselages has gained

increasing attention in recent years, but largely in the interests of reducing the sound radiated

from a vibrating shell or transmitted through it rather than reducing the vibration transmitted

along the cylinder.

Fuller and Jones (1987) performed an experimental investigation into the control of acoustic

pressure inside a closed cylinder using an external acoustic monopole primary source, a single

point force vibration control source and microphone sensors mounted on a traverse inside the

cylinder.  This work was extended later to include more control sources (Jones and Fuller;

1989).  Significant global attenuation was achieved for harmonic excitation.  Elliott et al

(1989) have performed successful experiments on the control of aircraft noise in-flight, but

using acoustic rather than vibration control sources. Thomas et al (1993a,1993b) and Clark

and Fuller (1994) investigated the effect of using different acoustic and vibration error
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sensors in the active vibration control of cylinders (discussed briefly in Section 1.2.2.4).

The work done by researchers such as Fuller with Jones and Clark, and Thomas et al shows

that active vibration control of aircraft noise is an application of vibration control that has

great potential for implementation in real systems in the near future.  The purpose of this

thesis is to investigate the feasibility of using piezoceramic stack actuators as control sources

in real active vibration control situations to reduce vibration transmission along large

cylinders such as those found in large aircraft and submarines.  The aim of this work can be

met by demonstrating that piezoceramic stack actuators can be used as control sources to

significantly reduce vibration in cylinders (Chapter 4).  Investigation of the effects of

excitation frequency, number of control sources, control source location and error sensor

location on the amount of control achieved is included (Section 4.3) to establish trends that

may be significant when taking the next step to practical implementation.

There has been little work done on the feedforward active control of vibrations in cylinders.

To the author's knowledge, none has directly compared theoretical results with experimental

data.  In this thesis, the theoretical model developed to examine the use of the stack actuators

in cylinder vibration control is verified experimentally (Section 4.5).
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1.3 SUMMARY OF THE MAIN GAPS IN CURRENT KNOWLEDGE

ADDRESSED BY THIS THESIS

The primary aim of this thesis is to investigate the potential of the piezoceramic stack actuator

in feedforward active control of harmonic vibration.  The actuator is suitable specifically for

use in stiffened structures (or structures with stiffeners added).  This application of

piezoceramic stack actuators is new.  A theoretical model is developed to describe the

response of beams, plates and cylinders to excitation by the stack actuator.  The solutions of

the classical equations of motion for plate and cylinder structures including the effects of

stiffening, and the analysis of the forces and moments applied to all three structure types by

the stack actuator and angle stiffener control source are new.  The solution of the three

dimensional equations of motion for a cylinder to determine the vibration response to force

and moment excitations is original.

For each type of structure, the physical reasons for the given results are discussed, particularly

in relation to the variation of control effort and attenuation as functions of control location,

error sensor location and frequency.  Some of this discussion represents an extension of

previous work and much of it is new.

Prior to this work, there has been some work published directly comparing theoretical results

and experimental data for active vibration control of beams, but almost none for the active

vibration control of plates or cylinders.   Here direct comparison is made between the

theoretical models and experimental data for vibration in beams, plates and cylinders, for a

variety of cases with and without active vibration control.
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Figure 2.1 Beam showing primary source, angle stiffener, piezoceramic stack control source

and error sensor.

CHAPTER 2. FEEDFORWARD ACTIVE CONTROL OF

FLEXURAL VIBRATION IN A BEAM USING A

PIEZOCERAMIC ACTUATOR AND AN ANGLE

STIFFENER

2.1 INTRODUCTION

In this chapter, the active control of flexural vibration in beams using as a control source a

piezoceramic actuator placed between a stiffener flange and the beam surface is investigated.

The beam is of rectangular cross-section with a mock stiffener mounted across the larger

cross-sectional dimension.  The analysis of vibration in the beam is treated as a one-

dimensional problem.  The classical one-dimensional equation of motion for the flexural

vibration of a beam is used to develop a theoretical model for the beam with a primary point

source and an angle stiffener and control actuator (Section 2.2).  The effective control signal

is a combination of the effects of the point force at the base of the actuator, and the reaction

force and moment at the base of the stiffener (Section 2.2.5).  
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The displacement at a point is the sum of the displacements due to each of the primary source

and control source forces and moments.  Optimal control is achieved by minimising the total

mean square displacement at the location of a single error sensor downstream of the control

source.

The theoretical analysis considers four different sets of classical beam supports; infinite, free,

simply supported and fixed.   The influence of the control source location, the error sensor

location and the excitation frequency on the control source amplitude and achievable

attenuation are investigated, and the physical reasons for each observation are explained

(Section 2.3).  The effect of introducing a second control source and angle stiffener is also

examined (Section 2.3.4).

Experimental verification of the beam model is performed for four different sets of beam

terminations; infinite, free, simply supported and vibration isolated (Section 2.4).  The

impedance corresponding to each type of termination is first measured from the experimental

apparatus (Section 2.4.1).  Finally, experimental results are compared with theoretical

predictions (Section 2.5).
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Figure 2.2 Beam with an excitation q at location x .0

(2.1)

(2.2)

2.2 THEORY

2.2.1 Response of a beam to a harmonic excitation

In this section the response of an arbitrarily terminated beam to a simple harmonic excitation

 applied at x = x  as shown in Figure 2.2 is considered.  Left and right boundary0

conditions are specified as impedance matrices Z  and Z .L R

Following the sign conventions shown in Figure 2.3, the equation of motion for the flexural

vibration of the beam shown in Figure 2.2 is

where E is Young's modulus of elasticity, I  is the second moment of area of the beam cross-yy

section, S is the cross-sectional area,  is the density and w is the displacement of the beam in

the z-direction. The general solution to Equation (2.1) is of the form 
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Figure 2.3 Sign conventions for forces and moments.

(2.3)

(2.4)

(2.5)

(2.6)

On each side of the applied excitation at x = x , a separate solution of Equation (2.1) is0

required.  For x < x  (on the left hand side of the applied excitation),0

and for x > x  (on the right hand side of the applied excitation), the solution is0

To find the flexural wave number k , the homogeneous form of Equation (2.1) is solved tob

give the characteristic equation

so
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(2.7)

(2.8)

To solve for the eight unknowns A , B , C , D , A , B , C  and D , eight equations are1 1 1 1 2 2 2 2

required, comprising of four boundary condition equations (force and moment conditions at

each end of the beam) and four equilibrium equations at the point of application x  of the0

force or moment.

2.2.2 Boundary conditions at the beam ends

2.2.2.1 Beam boundary impedance

A boundary impedance for a beam may be defined in terms of force and moment impedances

because the boundary acts like an external force and moment generator, effectively applying

external forces and moments to the beam which are equal to the internal shear force F and

moment M at the ends of the beam.  If a moment and force act simultaneously on any part of

a beam, coupling will exist between the moment and force impedances.  This is because the

moment will result in a lateral displacement as well as a rotation and the lateral force will

result in a rotation as well as a lateral displacement.  Thus, the local lateral velocity and

angular velocity generated at the end of a beam as a result of the end conditions may be

written respectively as (Cremer et. al., 1973)

and
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(2.9)

(2.10)

(2.11)

where Z  and Z  are the coupling impedances and Z  and Z  are the force and momentmf fm f m

impedances respectively.  For harmonic signals  and , where the prime

indicates differentiation with respect to the x-coordinate.  Rearranging Equations (2.7) and

(2.8) gives

or

where

The matrix Z describes the dependence of the shear force and moment at the boundary on the

motion of a beam in simple flexure.  The relationships between standard support types and

corresponding boundary impedances are given in Table 2.1, with cross terms  and  

zero for the standard support types shown.
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Table 2.1

Impedances Corresponding to Standard Terminations

End Condition Representation Boundary Condition Impedance

Simply Supported

Fixed

Free

Deflected Spring

Torsion Spring

Mass

Dashpot



w(x) 
 Be
	kbx

� De
	 jkbx

�w(x) 
 j7Be
	kbx

� j7De
	 jkbx

��(x) 
 j7kbBe
	kbx

	 7kbDe
	 jkbx ,

�w(x)

��(x)



j7 j7

j7kb 	7kb

Be
	kbx

De
	 jkbx

.

Be
	kbx

De
	 jkbx




	
(1� j)

27
(1	 j)
27kb

(1	 j)
27

	
(1	 j)
27kb

�w(x)

��(x)
.

w �� w ��� M 
 	EIyy w ��

F 
 EIyy w ���

Chapter 2.  Control of vibrations in a stiffened beam

39

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

2.2.2.2 Equivalent boundary impedance of an infinite beam

The displacement amplitude function for a right travelling wave in an infinite beam can be

written as

so that

and

where k  is the flexural wave number of the beam and B and D are constants.  Equationsb

(2.13) and (2.14) can be written in matrix form as

Inversion gives

Differentiating Equation (2.12) to eliminate  and  from  and

 respectively, the following matrix equation can be established;
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(2.17)

(2.18)

(2.19)

(2.20)

Combining with Equation (2.16) gives

where

is the impedance matrix corresponding to an infinite end at the right hand end of the beam

(Pan and Hansen, 1993b).  Similarly, the wave impedance matrix corresponding to an infinite

end at the left hand end of the beam is
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(2.21)

(2.22)

(2.23)

2.2.2.3 Impedance equations

From Equation (2.9) the left hand boundary condition of the beam at x = x  can be written asL

Replacing the bending moment and shear force with a derivative of the displacement

function, the following is obtained,

Similarly, for the right hand end of the beam (x = x ),R

Equations (2.3) and (2.4) may be differentiated to produce expressions for  

  and , which can be substituted into Equations (2.22)

and (2.23) to produce four boundary condition equations.
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(2.24)

(2.25)

2.2.3 Equilibrium conditions at the point of application (x = x ) of a force or moment0

Requiring that the displacement and gradient be continuous at any point along the beam, the

first two equilibrium conditions which must be satisfied at x = x  are0

and

The form of the excitation q(x) will affect the higher order equilibrium conditions at x = x .0

In the following sections the equilibrium conditions corresponding to the beam excited by a

point force and a concentrated moment acting about an axis parallel to the y-axis are

discussed.  These two types of excitation are induced by an actuator placed between a

stiffener flange and the beam.

2.2.3.1 Response of a beam to a point force

To begin, q(x) in Equation (2.1) is replaced by , where F  is the amplitude0

of a simple harmonic point force acting perpendicular to the beam at position x  and  is the0

Dirac delta function.  The first two boundary conditions at x = x  are given by Equations0

(2.24) and (2.25).  The second and third order boundary conditions are obtained by twice

integrating Equation (2.1) with respect to x between the limits (x  - x ) and (x + x ):0 0
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(2.26)

(2.27)

(2.28)

(2.29)

and

2.2.3.2 Response of a beam to a concentrated moment

The excitation represented by q(x) in Equation (2.1) is replaced by a concentrated moment M0

acting at locations x .  The excitation q(x) is replaced by .  The second0

and third order boundary conditions at x = x  are0

and

Taking two boundary conditions at each end of the beam from Equations (2.22) and (2.23),

the two equilibrium condition Equations (2.24) and (2.25), and two further equilibrium

conditions from (2.26) - (2.29), there are eight equations in the eight unknowns A , B , C ,1 1 1
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Figure 2.4 Beam with an excitation q and an angle stiffener.

D , A , B , C  and D .  These can be written in the form .  The solution vectors X =1 2 2 2 2

[A  B  C  D  A  B  C  D ]   can be used to characterise the response of a beam to1 1 1 1 2 2 2 2
T

simple harmonic excitation by a point force or a concentrated moment.

2.2.4 Mass loading of the angle stiffener

The mass of the angle stiffener could be significant and may be taken into account as follows.

Given a beam with an arbitrary excitation q at location x = x  and an angle stiffener at0

location x = x , as shown in Figure 2.4, three eigenfunction solutions of Equation (2.1) would1

be required; one applying over the range x < x , the second for x  < x < x , and the third0 0 1

applying when x > x .1



0
2w1

0x2



0
2w2

0x2

0
3w1

0x3
	

0
3w2

0x3



	 ma

EIyy

0
2w

0t 2
.

B 
 F 
 0, 0, 0, 0, 0, 0, 0,
	F0

EIyyk
3
b

T

�X 
 B

Chapter 2.  Control of vibrations in a stiffened beam

45

(2.30)

(2.31)

(2.32)

At the stiffener location x = x , the first two equilibrium conditions would be similar to1

Equations (2.24) and (2.25).  The second and third order equilibrium equations would be

and

The beam used in experiments for this work was quite thick, and the mass loading of the

stiffener made no measurable difference to the vibration response of the beam (see Section

2.4).  The mass loading of the stiffener has therefore not been taken into account in this

chapter; however, the effects of both the mass and the stiffness of the angle stiffener are

considered in the chapters dealing with plates and cylinders (Chapters 3 and 4).

2.2.5 Minimising vibration using piezoceramic actuators and angle stiffeners

2.2.5.1 One control source and one angle stiffener

For any force or moment excitation, the eight boundary and equilibrium equations in eight

unknowns can be written in the form , where
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(2.33)

Figure 2.5 Forces and moment applied to the beam by a point force primary source and a

piezoceramic stack and angle stiffener control source.

for a force excitation and

for a moment excitation.  The coefficient matrix  is given by Equation (2.34), where

, , , , , ,  and

.

Figure 2.5 shows the resultant forces and moments applied to the beam by the angle stiffener

and piezoceramic stack (shown in Figure 2.1), with a primary force F  at x = x .  Controlp p

forces F  and F  act at x = x  and x = x  respectively, with the concentrated moment M  also1 2 1 2 1

acting at x = x .  An error sensor is located at axial location x = x .1 e
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(2.34)
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(2.35)

(2.36)

(2.37)

(2.38)

(2.39)

(2.40)

The equation in the displacement unknowns for the primary (excitation) point force is

or

where F  is defined by Equation (2.32) with F  = F ,  is the matrix of boundary conditionp 0 p

coefficients for the primary force and  is the boundary eigenvector for the primary force.

Similarly

and

where  and  are the boundary eigenvectors for the two control forces.  In addition,

where  is the boundary eigenvector for the control moment and M is defined by Equation

(2.33).  At the error sensor (x = x ), the displacement due to each force and the moment ise

given by, for z = p, 1, 2 and m,
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(2.41)

(2.42)

where X  indicates the transpose of the matrix X andT

By summation of the displacement equations (Equation (2.40)), the total displacement

resulting from the primary and control excitations is

Substituting Equations (2.36) - (2.39) into (2.42),

(2.43)

Defining the transpose of the eighth column of the inverse of  as  (and

similarly for ,  , and  is the transpose of the seventh



	 AE (xe)F1 	 BE (xe)F2 � kbCE(xe)M1 
 PE(xe)Fp .

�m
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(2.44)

Figure 2.6 Control forces and moment in terms of piezoceramic stack force F .s

column of the inverse of ), and setting w(x ) = 0 to find the optimal control force,e

Equation (2.43) can be re-written as

Analysis of the forces applied by the stack and angle stiffener gives F  = -F  = F  and M  = -1 2 1s

aF , where F  is the force applied by the piezoceramic stack (Figure 2.6) and is positive ass s

shown.

Substituting these quantities into Equation (2.44), the optimal control force F  can be writtens
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(2.45)

(2.46)

(2.48)

as

or

2.2.5.2 Two control sources and two angle stiffeners

If a second control source and angle stiffener are introduced at some location  downstream  

from the first, Equation (2.42) becomes

(2.47)

where the prime refers to the values associated with the second control source.  The control

signal for the second source required to minimise vibration at the same error sensor location

x  can be calculated bye

In this way, the magnitude of the first control source signal can be limited to some arbitrary

maximum value, and the second control source used to maintain optimal control.
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(2.49)

2.2.5.3 Two error sensors

If a second error sensor is introduced at some location  downstream from the first, and a

single control source driven in an attempt to optimally reduce vibration at both locations,

Equation (2.42) becomes

This has the effect of shifting the effective error sensor location to some location between xe

and .  No improvement in overall attenuation is achieved.

An alternative method of utilising a second error sensor would be to introduce the second

sensor only when control using the first error sensor was ineffective (see Section 2.3.3).

However, this would be a difficult method to implement in practice.  Unlike the case where

the control source is badly located (see Section 2.3.2), there is no effect on the control source

amplitude required to give optimal control when the error sensor is badly located.  The only

observed effect is a decrease in the attenuation achieved.  To use a second error sensor when

the frequency of excitation resulted in the first error sensor location being unsuitable would

require some method of measuring the reduction in acceleration level achieved downstream

from the first error sensor.  When the reduction was less than some expected level, the
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controller would be switched to use the second error sensor.  This method is not useful

because it requires the addition of even more sensors, and there is no more practical way of

determining when a second error sensor should be used in preference to the first.  Use of a

second error sensor downstream from the first would yield no practical benefit.



�b 


2%
kb

.

Chapter 2.  Control of vibrations in a stiffened beam

54

(2.50)

2.3 NUMERICAL RESULTS

The theoretical model developed in the previous section was programmed in Fortran.  The

program consisted of about 1000 lines and, for a typical set of results, took two or three hours

C.P.U. time to run on a DEC 5000/240 computer.

The discussion that follows examines the effect of varying forcing frequency, control source

location (which is defined here as the location of the angle-beam joint), error sensor location,

and stiffener flange length on the active control of vibration in beams with four sets of end

conditions; infinite, fixed, free and simply supported.  The beam parameters (including

location of the control source, primary source and error sensor) are listed in Table 2.2.  These

values are adhered to unless otherwise stated.  The results obtained are consistent with

previous work done by Pan and Hansen (1993a) for the case of a single point force

harmonically applied to a beam and the analogous case of active noise control of ducts

(Snyder 1990). 

Control forces are expressed as a multiple of the primary force, and the acceleration

amplitude dB scale reference level is the far field uncontrolled infinite beam acceleration

produced by the primary force.  In all cases, the control force is assumed to be optimally

adjusted to minimise the acceleration at the error sensor location.  The flexural wavelength of

vibration in a beam is given by 
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Table 2.2

Beam Parameters for Numerical Results

Parameter Value

Beam length L 10.0 mx

Beam width L 0.05 my

Beam height L 0.025 mz

Young's modulus E 71.1 GPa

Primary force location x 0.0 mp

Control location x 1.0 m   (2.07� )1 b
*

Stiffener flange length a 0.05 m

Error sensor location x 2.0 m   (4.14� )  e b
*

Frequency f 1000 Hz

Wavelength � 0.4824 mb
*

* - Applies only when f = 1000 Hz. 

2.3.1 Acceleration distributions for controlled and uncontrolled cases

Figure 2.7 shows the acceleration amplitude distribution in dB for the uncontrolled beams.

The shape of the curve for the infinite beam represents a travelling wave field with an

additional decaying evanescent field close to the source.  For the beams not terminated

anechoically, waves reflected from the ends of the beam cause a standing wave field to exist.

It can be seen from the nature of the response that the near field effects become insignificant

at less than one wavelength from the point of application of the primary force.  Figure 2.8

shows the acceleration amplitude distribution for controlled cases, using the control, primary
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Figure 2.7 Acceleration distributions for the uncontrolled cases.

and error sensor locations given in Table 2.2.  These locations are marked x , x  and xp c e

respectively on the infinite beam curve.  As expected, the curves for the controlled cases

(Figure 2.8) dip to a minimum at the error sensor location (x  = 4.14� ) where acceleratione b

has been minimised.  In all cases, the calculated reduction in acceleration amplitude

downstream of the error sensor is over 100 dB.  The reduction or increase in acceleration

amplitude upstream of the primary force depends on the control source location, as discussed

below.
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Figure 2.8 Acceleration distributions for the controlled cases.

2.3.2 Effect of variations in forcing frequency, stiffener flange length and control

source location on the control force

Figure 2.9 shows the effect of varying the forcing frequency on the magnitude of the control

force required to minimise the beam vibration at the error sensor location.  The control source

is located 1 metre from the primary source and the error sensor 2 metres from the primary

source (Table 2.2).

The minima on the curves for fixed, free and simply supported beams occur at resonance

frequencies, when control is easier (Pan at al, 1992).  At these frequencies the control force

amplitude becomes small but not zero.  The maxima in Figure 2.9 occur when the relative

spacing between primary and control sources is given by x = (c +  n� /2)  for integer n andb
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Figure 2.9 Control force amplitude for optimal control as a function of frequency.

constant c.  This effect is illustrated by Figure 2.10 which shows the control force amplitude

as a function of separation between primary and control sources, with a constant error sensor

location - control source separation of 1 metre (2.07� ).b

The maxima occur because of the difficulty in controlling the flexural vibration when the

effective control source location is at a node of the standing wave caused by reflection from

the terminations.  The constant c represents the distance (in wavelengths) between the

primary source and the first node in the standing wave in the direction of the control source.

This constant changes with frequency and termination type.  For the fixed and free support

beams, at f = 1000 Hz, c is approximately zero.  Note that the effective control location is

somewhere between the beam-angle connection and the actuator, and represents the location
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Figure 2.10 Control force amplitude for optimal control as a function of control location.

of the combined effect of the two forces and the moment as discussed.

Figure 2.11 shows the phase of the control source relative to the primary source as a function

of frequency, again using the control, primary and error sensor locations given in Table 2.2.

Apart from the infinite beam case, the control source is either in phase or 180  out of phaseo

with the primary source, and this holds for all locations of control source, error sensor and all

angle sizes.  In the case of the infinite beam, the phase cycles through 180  with increasingo

frequency.  The difference is due to the formation of standing waves on beams with end

conditions other than infinite.  When a standing wave is formed because of the reflection

from the beam termination, the vibration, and hence the required control force, is in phase
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Figure 2.11 Control force phase for optimal control as a function of control location.

with the excitation.

Figure 2.12 shows the control force amplitude plotted as a function of increasing stiffener

flange length in wavelengths a/�  (see Figure 2.6 for definition of stiffener flange length).b

The exponential decrease in control force magnitude with increasing stiffener flange length

can be attributed to the increasing size of the angle relative to the flexural wavelength.  When

the wavelength is large compared to the stiffener flange length, the two control forces

operating in opposite directions tend to cancel.  The exponential decrease in control force

amplitude with increasing stiffener flange length can also be seen in Figure 2.9 where the

relative control force amplitude is plotted as a function of frequency.  As the excitation

frequency increases, the stiffener flange length relative to the flexural wavelength increases,
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Figure 2.12 Control force amplitude for optimal control as a function of flange length.

and the control force amplitude decreases.  It is difficult to see this effect on the fixed, free

and simply supported case figures because of the super-position of the peaks and troughs, but

at the frequencies where the peaks and troughs almost coincide (e.g. at 1150 Hz on the free

beam figure) some flattening out of the curve is seen.  The effect is much clearer on the

infinite beam curve where the peaks and troughs are absent.
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2.3.3 Effect of variations in forcing frequency, control source location and error

sensor location on the attenuation of acceleration level

Figure 2.13 shows the variation in the mean attenuation of acceleration level upstream of the

primary source for each beam as a function of the excitation frequency, and Figure 2.14 gives

the corresponding results for mean attenuation of acceleration level downstream of the error

sensor.  

Figure 2.15 shows the variation in the mean attenuation of acceleration level upstream of the

primary source for each beam as a function of separation between the primary and control

sources.  The separation between the error sensor location and the control source location is

constant (2.07� ).  The minima in the attenuation curve for the free, fixed and simplyb

supported beams correspond to control source locations where maxima in the control force

curve occur (Figure 2.10).  Maximum attenuation is achieved in all cases with a control

source - primary source separation of (0.23 + n� /2).  This value is independent of the beamb

length and the excitation frequency. Noting also that the maxima occur for the infinite beam

as well as the finite beams, it may be concluded that the maxima are a result of the standing

wave field established between the primary and control sources only.  This standing wave is

present for the infinite beam case as well as the other terminations (see Figure 2.8).  The

effective control location is to the right of the defined control source location (which is the

position of the stiffener-beam joint), so the effective control source-primary source separation

giving these maxima is about (0.25 + n� /2).  This result is consistent with analogous cases;b

for a beam excited by point forces only (Pan and Hansen, 1993a), and also for sound fields in

ducts (Snyder, 1990).
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Figure 2.14 Mean attenuation downstream of the error sensor as a function of frequency.

Figure 2.13 Mean attenuation upstream of the primary source as a function of frequency.
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Figure 2.15 Mean attenuation upstream of the primary source as a function of control

source - primary source separation.

Figure 2.16 shows the mean attenuation of acceleration level downstream of the error sensor

as a function of separation between primary and control sources.  The control source locations

giving the best results upstream of the primary source also give high attenuation downstream

of the error sensor.  Every second minimum occurs at a location corresponding to a maximum

in the control force curve (see Figure 2.10), and again these are separated by half a

wavelength.  Thus it may be concluded that the best attenuation is achieved when the control

effort is a minimum.  The additional minima occur at control source-primary source

separations of (d + n� /2), where d is a constant dependent on frequency and terminationb

type.



Chapter 2.  Control of vibrations in a stiffened beam

65

Figure 2.16 Mean attenuation downstream of the error sensor as a function of control

source - primary source separation.

Figures 2.17 and 2.18 show the mean attenuation upstream of the primary source and

downstream of the error sensor respectively as a function of the separation between the

control source and error sensor.  There is no change in the attenuation upstream of the control

source with changing error sensor location outside of the control source near field (i.e. for

separations between the control source and error sensor of over 0.75� ).  Downstream of theb

error sensor, mean attenuation increases with increasing separation between the error sensor

and control source location at the rate of around 50 dB per wavelength separation.  The

minima in the curves for fixed, free and simply supported beams correspond to separations in

the error sensor and control source location of (d+n� /2), where d is the constant dependentb

on frequency and termination type previously defined.  The dips in the curves are represented

correctly in the figures; finer frequency resolution would not cause them to be significantly

lower.
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Figure 2.17 Mean attenuation upstream of the primary source as a function of error sensor

- control source separation.

Figure 2.18 Mean attenuation downstream of the error sensor as a function of error sensor

- control source separation.
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Figure 2.19 Control source amplitudes for one and two control sources as a function of

control source - primary source separation for the beam with fixed ends.

2.3.4 Effect of a second angle stiffener and control source on the attenuation of

acceleration level.

The results given in Section 2.3.3 indicate that there are some control source locations where

significantly less attenuation can be achieved.  Figure 2.19 shows the variation in amplitudes

of two control sources driven to optimally control vibration at a single error sensor, as a

function of control source location, at an excitation frequency of 1000 Hz.  The first control

source amplitude is limited to 1.5 times the primary source amplitude, and the second control

source amplitude and phase calculated by the method given in Section 2.2.5.2.   The second

control source is located 0.15m downstream from the first, and the error sensor is located

1.0m downstream from the first control source.  The control source amplitude for a single

control source is also shown on Figure 2.19 for comparison.  At this frequency, there are no

control source locations at which control using the two control sources requires large control

signals.
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Figure 2.20 Control source amplitudes for two control sources as a function of frequency

for the beam with fixed ends for the beam with fixed ends.

Figure 2.20 gives the control source amplitudes for two control sources as a function of

frequency.  It can be seen that there are some lower frequencies where the amplitude of the

second control source required for optimal control is high.  This can be overcome by using a

different spacing between the first and second control sources.

Figure 2.21 shows that the minima in attenuation upstream of the primary sources observed at

half-wavelength intervals in control source - primary source separation using one control

source only are eliminated by the introduction of the second control source.  When the

location of a single control source is such that a large control signal is required to control

vibration at the error sensor, the vibration level upstream of the primary source is increased

severely.  As these large control signals are not required when two control sources are used

(Figure 2.19), this problem is overcome.  The corresponding minima in attenuation

downstream of the error sensors are also eliminated by the introduction of the second control
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Figure 2.21 Mean attenuation upstream of the primary source as a function of control

location for the beam with fixed ends.

Figure 2.22 Mean attenuation downstream of the error sensor as a function of control

location for the beam with fixed ends.

source (Figure 2.22).  The minima that remain when using two control sources (at control

source - primary source separations given by (d + n� /2), where d is the constant defined inb

Section 2.3.3, are a consequence of the error sensor location and cannot be overcome simply.

The difficulties involved in effectively introducing a second error sensor downstream from

the first are discussed in Section 2.2.5.3.
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(2.51)

(2.52)

2.4 EXPERIMENTAL PROCEDURE

2.4.1 Impedance of an experimental termination

Before experimental results and theoretical calculations can be compared, it is necessary to

know the impedance of the beam termination used in the experiment.  Traditionally, classical

terminations (such as the "free end") have been used in theoretical work, and modelled

experimentally (e.g. by wire supports).  For greater accuracy, the impedances used in the

theoretical results that follow were calculated using a method similar to that developed by

Fuller et al (1990), except that coupling impedances are initially included in the analysis.

Beam end conditions may be characterised by impedance matrices Z  and Z  correspondingL R

respectively to the left and right ends of the beam (see Section 2.2.2.1);

and

These impedances are used in the theoretical analysis which characterises the response X of

an arbitrarily terminated beam to an applied force or moment applied at some position x0

(Section 2.2).  The impedance terms become part of the coefficient matrix  in Equation
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(2.53)

(2.34).  In the analysis that follows Equation (2.34), the matrix  is inverted and multiplied

by a vector F or M.  Both column vectors consist of seven zero elements and one non-zero

force or moment term, which occurs in either the seventh or eight position.  The only columns

of importance in the inverse matrix   are the seventh and eight columns, as all other

columns will be multiplied by a zero element in the vector F or M.  The practical implication

of this result is that only the larger elements of the first four rows of the  matrix will affect

the solution vector .  The result is that the accuracy of the solution vector  can be exactly

maintained with the off-diagonal coupling elements  and  of the impedance matrix set

to zero.  This simplification is justified by examples rather than by formal proof, as inverting

the complex matrix  symbolically is not practical.

Once the impedance matrix has been approximated by the equivalent matrix with just two

unknowns, determining the unknown equivalent impedance of a given beam termination from

experimental data is possible.  Beginning with the beam shown in Figure 2.1, the unknown

termination at the left hand end may be described by the equivalent impedance matrix
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(2.54)

(2.55)

(2.56)

(2.57)

(2.58)

The right hand termination may be such that the impedance values are known, or it may be

the same unknown termination used on the left hand end, in which case (following the  sign

conventions given in Figure 2.3) the equivalent impedance matrix Z  is given byR

The method that follows will be the same regardless of whether a known or unknown

termination is used at the right hand end.  Setting the coupling terms in Equations (2.7) and

(2.8) to zero for our equivalent case, substituting for Z  and Z  and rearranging,L1 L2

and

For harmonic signals  and .  Replacing the bending moment and shear

force with derivatives of the displacement function gives

and
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(2.59)

(2.60)

(2.61)

All that remains is to find the displacement and derivatives required in Equations (2.57) and

(2.58).  The accelerations a , a , a , . . . , a  (relative to an arbitrary reference signal) are1 2 3 n

measured at n positions x , x , x , . . . , x  such that x  < x  < x .  For i = 1 to n,1 2 3 0n L i

where the subscript e denotes experimentally obtained values.  Writing in matrix form,

where  and .  Rearranging gives
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where the inversion operator represents the generalised inverse or pseudo-inverse.  Equation

(2.61) represents a system of n equations in four unknowns.  If n = 4, the system is

determined, but the solution (A ,B ,C ,D ) is extremely sensitive to errors in the measured1 1 1 1e e e e

accelerations.  The error is significantly reduced if an overdetermined system is used (n > 4),

as will be shown.

Table 2.3

Beam Parameters for Impedance Accuracy Calculations

Parameter Value

Beam length L 10.0 mx

Beam width L 0.05 my

Beam height L 0.025 mz

Young's modulus E 71.1 GPa

Excitation force location x 0.0 m0

Excitation frequency f 1000 Hz

Wavelength � 0.4824 mb

Let w  be the displacement calculated from the constants A , B , C  and D .  For the beame e e e e1 1 1 1

described by the parameters of Table 2.3 with end conditions modelled as infinite, the error

induced in the displacement w , given an initial error in the real and imaginary parts of thee

accelerations (a , i = 1,n) of 10%, is plotted as a function of the number of accelerationi

measurements n in Figure 2.23.  For the two frequencies shown, n � 10 provides a reasonable

accuracy.  The higher the frequency, the greater the number of acceleration measurements that

will be required.  Measurements do not need to be made simultaneously, so a couple of

accelerometers can be used and placed at each of the measurement positions in turn.



w1e(xL), w �

1e(xL), w ��

1e(xL) w ���

1e (xL)
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Figure 2.23 Error in displacement calculated using "measured" impedances with a mean

experimental error of 10%.

Once calculated, A , B , C  and D  are substituted into Equation (2.3) and differentiation1 1 1e 1e e e

is carried out to find  and .  Equations (2.57) and (2.58) can

then be used to find the equivalent impedances Z  and Z .L L1 2

It should be noted that use of the "equivalent" impedance matrix obtained by eliminating the

off-diagonal elements from the impedance matrix is only valid for analyses similar to that

followed in this chapter.  It is not claimed that the resulting impedance matrix closely

approximates the real impedance values of the termination in general circumstances.

However, the numerical answers for all derivatives of displacement (and hence acceleration

etc.), calculated at any point along the beam, are correct to the accuracy of the calculating
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program (eight figures in the work done for this chapter) when compared to the corresponding

derivatives obtained by using the "exact" impedance matrix.  Furthermore, it is found that the

most significant elements of the equivalent impedance matrix so approximated are at least

similar if not precisely the same as the corresponding elements of the exact impedance

matrix.

The accuracy of this method has been tested with a variety of cases.  The "exact" impedance

matrices and the corresponding approximations calculated using the method described are

given in Table 2.4.  All of these examples utilise a right hand impedance corresponding to an

ideally infinite beam, and approximations are made for the various test cases at the left hand

end of the beam.  The parameters characterising the beam are given in Table 2.3.  For all the

examples, all derivatives of displacement calculated using the "exact" and equivalent

impedance matrices are either identical, or are insignificantly small.

It would be expected that the simplification might fail when the original matrix had large

elements on the off-diagonal, but this is not the case, as shown by the first two examples in

Table 2.4. The third example shows an approximation for an impedance matrix with four

complex elements.  Examples 4, 5 and 6 show the exact and equivalent matrices for the ideal

infinite, free and fixed beam impedances respectively.



0 	10100
	 10100j

10100
� 10100j 0

	1.61×1019
	 9.30×1018j 0

0 2.44×1015
	 5.00×1016j

0 	10100

10100 0

	2.07×1019
	 1.27×1018j 0

0 1.01×1017
	 4.28×1016j

5� 6j 7� 8j

1� 2j 3� 4j

222.4� 10.89j 0

0 4.963� 6.101j

	1628	1628j 	125.0

125.0 9.596	 9.596j

	1628.0 0

0 9.596

0 0

0 0

5.6×10	14
	 1.3×10	13j 0

0 	1.5×10	15
	 2.8×10	16j

10100 0

0 10100

	1.38×1019
	 8.48×1017j 0

0 5.00×1015
	 8.13×1016j
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Table 2.4

Impedance Matrices and Corresponding Equivalent Matrices

E.g. "Exact" Matrix Z Corresponding Equivalent Matrix 
No. (with zero off-diagonal elements)

L

1

2

3

4

5

6

Four different beam terminations were used in the experimental verification of the beam

model.  For the simple support, the wire support and the anechoic termination, classical

impedances are given in Table 2.5 (with the wire support modelled as a free end and the

anechoic termination modelled as an infinite end).  The fourth termination used was a simply

supported termination mounted on vibration isolators, for which a theoretical impedance is



0 0

0 0

	109� 124j 0

0 3.25� 6.30j

� 0

0 0

3961� 522j 0

0 8.32� 8.21j

	834	 834j 125.0

	125.0 18.7	 18.7j

1440	 1061j 0

0 5.46� 7.36j

	539	 834j 0

0 6.75� 7.71j
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not easily calculated.  Using the method outlined, new impedance matrices were calculated

from the experimentally measured uncontrolled acceleration distribution for each end

condition.  These matrices are also listed in Table 2.5, and differ considerably from the

classical theoretical impedances for the three modelled terminations.

Table 2.5

Classical and Calculated Impedance Matrices

Termination Classical Impedance Calculated Impedance
Matrix Z Matrix ZL L

Wire
Supported
("Free")

Simply
Supported

Anechoic
("Infinite")

Vibration
Isolated None

2.4.2 Relating control signal and control force

To relate experimental results to theoretical calculations, it is necessary to determine the input

voltage required to drive the piezoceramic stack actuator to produce a unit output force F .s

To begin, the stiffness of the stiffener is approximated by modelling the stiffener (Figure

2.24) as two beams (Figure 2.25).
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Figure 2.24 Stiffener showing dimensions.

Figure 2.25 Stiffener flanges modelled as beams;  (a) horizontal stiffener flange, and  (b)

vertical stiffener flange.
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(2.62)

(2.63)

(2.64)

(2.65)

The first beam is characterised by a length x , with a load F  at one end and a rigid support ata s

the other.  The support provides a vertical reaction R = F  and moment reaction M  = aF  ass s1

shown.  Taking the origin of coordinates to be the support end, the equation for the bending

moment in this beam is

where w (x) is deflection at position x, E is Young's modulus and I  is the second moment ofa yy

area about the y-axis.  Integrating twice and using the boundary conditions   and

,

Denoting the deflection of the beam of length b in Figure 2.25(b) by w (x), and using theb

reaction M = aF  as shown, the bending moment equation iss

Integrating and using the boundary condition ,
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Figure 2.26 Displaced angle stiffener.

(2.66)

(2.67)

The vertical total deflection of the stiffener at the position of the actuator force F  iss

approximately  (Figure 2.26).  Thus

Stiffness is defined as force per unit displacement, so the equivalent stiffness of the stiffener

is

Now the piezoceramic stack voltage required to produce a resultant force F  is calculated.s

The maximum force F  generated by the actuator with an input voltage V  ismax 0
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(2.68)

(2.69)

(2.70)

where  is the nominal expansion of the actuator, k  is the spring constant of the actuatora

and k  is the spring constant of the stiffener.  The applied potential difference V to achieve as

resultant force F  is given bys

or

Equation (2.67) can be used to find k , which can then be substituted into Equation (2.70)s

along with data for a stack actuator to find the required potential difference input for a unit

force output; alternatively, Equation (2.70) can be rearranged to find the force resulting from

a given input potential.

2.4.3 Test procedure

A steel stiffener was bolted tightly to an aluminium beam described by the dimensions given

in Table 2.6.  The piezoceramic actuator with the characteristics listed in Table 2.7 was

placed between the stiffener flange and the beam.



µ

� µ
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Table 2.6

Beam Parameters for Experimental Results

Parameter Value

Beam length L 3.9 mx

Beam width L 0.05 my

Beam height L 0.025 mz

Young's modulus E 71.1 GPa

Primary force location x 0.0 mp

Control location x 0.5 m (=0.53� )1 b

Error sensor location x 1.0 m (= 1.06� )e b

Excitation frequency f 263 Hz

Wavelength �  0.94 mb

Table 2.7

Angle and Actuator Parameters for Experimental Results

Parameter Value

Stiffener flange length a 0.05 m

Angle height b 0.05 m

Angle width d 0.05 m

Angle thickness t 0.01 m

Young's modulus E 210 GPa

Physik Instrumente Translator No. P244.20

Actuator spring constant k 38 N/ mT

Nominal expansion of actuator L 20 m0

Nominal voltage V -1000 V0
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Figure 2.27 Experimental arrangement for the active control of vibration in a beam.

The actuator was attached only at one end to ensure that no external tensile force was applied

to it, as the type of actuator used is weak in tension.  The primary source, control source and

error sensor locations and the excitation frequency are also given in Table 2.6.  The beam was

mounted with the larger width dimension in the vertical plane, and excited in the horizontal

plane.
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Figure 2.28 Primary system.

The complete experimental arrangement is given in Figure 2.27.  The primary signal was

produced by a signal analyser and amplified to drive the electrodynamic shaker (Figure 2.28).

The shaker acted on the beam through a force transducer, and the magnitude of the primary

force was recorded using an oscilloscope.
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Figure 2.29 Control system.

The error signal from the accelerometer (Figure 2.29) was passed to another oscilloscope.

The amplitude and phase of the primary signal were adjusted using an instrumentation

amplifier and a phase shifter to produce the control signal, which drove the piezoceramic

actuator.  The control signal was adjusted to optimally minimise the acceleration measured by

the error sensor accelerometer.  The control signal was also recorded using an oscilloscope.
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Figure 2.30 Acceleration measurement.

The acceleration was measured at 5 cm intervals along the beam (Figure 2.30).  The

accelerometer signals were read in turn through a 40 channel multiplexer and passed to a

Hewlett-Packard type 35665A signal analyser.  The frequency response function was used to

analyse the data.  The magnitude and phase of the acceleration were recorded on a personal

computer, which was also used to switch the recorded channel on the multiplexer.  The

acceleration output of the force transducer at the primary location was used as the reference

signal for the frequency response analysis.  Accelerometer readings were taken initially once

the error sensor signal had been optimally reduced, and again with the control amplifier

switched off (the uncontrolled case).
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Figure 2.31 Experimental equipment for the active control of beam vibration.

Figures 2.31 - 2.33 show photographs of the experimental equipment.  In Figure

2.31, the beam is located in front of the signal generating and recording

equipment. The electromagnetic shaker primary source, angle stiffener and

accelerometers can be seen connected to the beam.  The piezoceramic stack actuator

and angle stiffener are shown close-up in Figure 2.32, and one end of the beam

supported by the wire termination is shown in Figure 2.33.
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Figure 2.32 Piezoceramic stack actuator mounted between the beam and the flange

of the angle stiffener.

Figure 2.33   Beam termination with wire support.
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2.5 EXPERIMENTAL RESULTS

To verify the theoretical model, the experiment described in Section 2.4 was repeated for four

different terminations.  For the simple support, the wire support and the anechoic termination,

classical impedances are given in Table 2.5 (with the wire support modelled as a free end and

the anechoic termination modelled as an infinite end).  The fourth termination used was a

simply supported termination mounted on vibration isolators, for which there is no classical

theoretical impedance.  Using the method described in Section 2.4.1, new impedance matrices

were calculated from the experimental acceleration distribution for each end condition.  These

matrices are also listed in Table 2.5, and differ considerably from the classical theoretical

impedances for the three modelled terminations.

Figure 2.34 shows the controlled and uncontrolled acceleration distributions corresponding to

the classical impedance, as well as the corresponding curves for the calculated impedances

with the experimental results overlaid, for the anechoic termination.  Figures 2.35 and 2.36

show similar results for the wire supported and simply supported beams.  These figures show

that agreement is far closer between the experimental results and the theoretical results

obtained with the calculated impedances than between the experiment and the theoretical

results obtained using the classical impedance values.  The classical impedance matrices do

not model accurately the real supports used in this experiment.
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Figure 2.34 Acceleration distributions for the anechoically terminated beam.

Figure 2.35 Acceleration distributions for the wire supported beam.

Figure 2.36 Acceleration distributions for the simply supported beam.
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Figure 2.37 Acceleration distributions for the vibration isolated beam.

Figure 2.37 shows the calculated impedance curves with experimental data for the vibration

isolated beam, but no classical impedance curves are given for this case as there is no known

classical impedance for this arrangement.  The theoretical curves corresponding to calculated

impedances shown in the figures for the uncontrolled and controlled cases and for all end

conditions show very good agreement with the experimental data.

The main area of difference between the calculated impedance theoretical acceleration curves

and the experimental data is the location of the first minima to the right of the primary force.

In the uncontrolled cases, the first minima in the theoretical curve occurs slightly to the left of

the experimental minima (except in the anechoic termination case).  In the controlled cases,

the first minima in the theoretical curves are slightly to the right of the experimental results. 
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All of these minima occur within half a wavelength of the primary source (and in the

controlled cases, also of the control source), and this may indicate that the theory is limited in

approximating the effect of the near field.

Table 2.8 compares the theoretical and experimental control force relative to the primary

force for each end condition.  The primary force was measured using a force transducer

placed between the primary shaker and the beam.  The control force magnitude was estimated

by the procedure outlined above, using Equations (2.60) and (2.63).  Again, agreement is

good, although it should be said that the control force calculation is dependent on a number of

assumptions and should only be used as an order of magnitude calculation.

Table 2.8

Comparison Between Experimental and Theoretical Control Forces

End Condition Theoretical Experimental Theoretical Experimental
Amplitude Amplitude Phase Phase* * * *

Wire Support 5.20 4.93 0 or 180 0 or 180

Simple Support 1.69 1.72 0 or 180 0 or 180

Anechoic 2.43 2.53 0 or 180 0 or 180

Vibration Isolated 2.32 2.38 0 or 180 0 or 180

Control force amplitude and phase are expressed relative to the primary force.*
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2.6 SUMMARY

A theoretical model has been developed to describe the vibration response of an arbitrarily

terminated beam to a range of excitation types, and in particular to describe the vibration

response of beams to a point force primary excitation source and angle stiffener and

piezoceramic stack control source.  The numerical results indicate that flexural vibrations in

beams can be actively controlled using the piezoceramic stack actuator and angle stiffener

control source.  Numerical results also indicate:

(1) The magnitude of the control source required for optimal control generally decreases

with increasing stiffener flange length (see Figure 2.6 for definition of stiffener flange

length) and increasing frequency.

(2) The control source amplitude required for optimal control is less when the beam is

excited at a resonance frequency.

(3) When there is reflection from the beam terminations, the optimum control force is

either in phase or 180  out of phase with the primary source.  When there is noo

reflection from beam terminations (the infinite beam case), the control source phase

cycles through 180  as the excitation frequency is increased.o
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(4) For all but the infinite beam, maxima occur in the control source amplitude required

for optimal control when the separation between control and primary sources is given

by  where n is an integer and c is a constant dependent on frequency

and termination type.  These maxima occur when the control source is located at a

node in the standing wave generated by reflection from the beam terminations.

Minima in the mean attenuation of acceleration level downstream of the error sensor

occur when the control source is located at a node in the standing wave.

(5) Increasing the separation between the primary and control source does not improve

attenuation.

(6) The amount of attenuation achieved downstream of the error sensor increases with

increasing separation between the error sensor and the control source.

(7) When the error sensor is located at a node in the standing wave that exists in finite

beams, the attenuation achieved is less than that achieved with the error sensor located

away from a node.  Locating the error sensor at a node does not affect the control

source required for optimal control.

(8) It is possible to achieve reductions in acceleration level upstream of the primary
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source as well as the desired reduction downstream of the error sensor.  The

maximum mean attenuation in acceleration level upstream of the primary source is

theoretically achieved with the separation between primary and effective control

source locations given by  for n = 1,2,3...

(9) For error sensor locations outside the control source near field, the mean attenuation

of acceleration level upstream of the primary source does not depend on error sensor

location.

(10) A second control source can be used to overcome the difficulty in controlling

vibration when the first control source is located at a node in a standing wave.  The

magnitude of the first control source can be arbitrarily limited and the second control

source used when the limit is reached.  The maxima in control source amplitude and

the minima in attenuation that occur when the first control source is located at a

standing wave node are eliminated in this way.

(11) There is no practical method of using a second error sensor to eliminate the minima in

attenuation that occur when the first error sensor is located at a standing wave node.

The theoretical model outlined was verified experimentally for the four end conditions tested



Chapter 2.  Control of vibrations in a stiffened beam

97

in this paper.  The impedance corresponding to each termination was first calculated from

experimental data.  Comparison between experimental results and theoretical predictions

showed that:

(1) The accuracy of the theoretical model when compared to the experimental results is

very high, both in predicting the control source amplitude and phase required relative

to the primary source, and in determining the acceleration distribution occurring along

the beam.

(2) The impedances calculated from experimental measurements give more accurate

results than the "classical" impedances corresponding to each termination.

(3) The theoretical model accurately predicts the amount of attenuation that can be

achieved experimentally.


