ACTIVE CONTROL OF VIBRATION
IN STIFFENED STRUCTURES

ANDREW J. YOUNG

DEPARTMENT OF MECHANICAL ENGINEERING
THE UNIVERSITY OF ADELAIDE
SOUTH AUSTRALIA 5005

Submitted for the degree of Doctor of Philosophy on the 25th of August, 1995; awarded 7th November 1995.
ACTIVE CONTROL OF VIBRATION
IN STIFFENED STRUCTURES

CONTENTS

Abstract x
Statement of originality xiii
Acknowledgments xiv

CHAPTER 1. INTRODUCTION AND LITERATURE REVIEW 1

1.1 Introduction 1

1.2 Literature review 7

1.2.1 Analysis of vibration in continuous structures 7

1.2.1.1 The differential equations of motion 7

1.2.1.2 Treatment of termination impedences in theoretical analysis 8

1.2.1.3 Analysis of vibration in rectangular plates 10

1.2.1.4 Analysis of vibration in cylindrical shells 13

1.2.2 Active vibration control 16

1.2.2.1 The origins of active noise and vibration control 16

1.2.2.2 Development of feedback vibration control methods 17

1.2.2.3 Actuators for active vibration control 18
Contents

1.2.2.4 Error sensors for active vibration control 22
1.2.2.5 Feedforward active control of vibration in beams 23
1.2.2.6 Feedforward active control of vibration in plates 27
1.2.2.7 Feedforward active control of vibration in cylinders 29

1.3 Summary of the main gaps in current knowledge addressed by this thesis 31

Chapter 2. Feedforward Active Control of Flexural Vibration in a Beam Using a Piezoceramic Actuator and an Angle Stiffener 32

2.1 Introduction 32

2.2 Theory 34

2.2.1 Response of a beam to a harmonic excitation 34
2.2.2 Boundary conditions at the beam ends 36

2.2.2.1 Beam boundary impedance 36
2.2.2.2 Equivalent boundary impedance of an infinite beam 39
2.2.2.3 Impedance equations 41

2.2.3 Equilibrium conditions at the point of application \(x = x_0 \) of a force or moment 42

2.2.3.1 Response of a beam to a point force 42
2.2.3.2 Response of a beam to a concentrated moment 43

2.2.4 Mass loading of the angle stiffener 44
2.2.5 Minimising vibration using piezoceramic actuators and angle stiffeners

2.2.5.1 One control source and one angle stiffener 45

2.2.5.2 Two control sources and two angle stiffeners 51

2.2.5.3 Two error sensors 52

2.3 Numerical results 54

2.3.1 Acceleration distributions for controlled and uncontrolled cases 55

2.3.2 Effect of variations in forcing frequency, stiffener flange length and control source location on the control force 57

2.3.3 Effect of variations in forcing frequency, control source location and error sensor location attenuation of acceleration level 62

2.3.4 Effect of a second angle stiffener and control source on the attenuation of acceleration level 67

2.4 Experimental procedure 70

2.4.1 Impedance of an experimental termination 70

2.4.2 Relating control signal and control force 78

2.4.3 Test procedure 82

2.5 Experimental results 90

2.6 Summary 94
CHAPTER 3. FEEDFORWARD ACTIVE CONTROL OF FLEXURAL VIBRATION IN A PLATE USING PIEZOCERAMIC ACTUATORS AND AN ANGLE STIFFENER

3.1 Introduction 98

3.2 Theory 100

3.2.1 Response of a plate to a harmonic excitation 100

3.2.2 Boundary conditions at the plate ends 103

3.2.2.1 Free end conditions 103

3.2.2.2 Infinite end conditions 104

3.2.3 Equilibrium conditions at the point of application \((x = x_0)\) of a force or moment 105

3.2.3.1 Response of a plate to a point force 105

3.2.3.2 Response of a plate to a distributed line force parallel to the \(y\)-axis 106

3.2.3.3 Response of a plate to a distributed line moment parallel to the \(y\)-axis 106

3.2.4 Modelling the effects of the angle stiffener 107

3.2.5 Minimising vibration using piezoceramic actuators and an angle stiffener 109

3.2.5.1 Control sources driven by the same signal 115

3.2.5.2 Control sources driven independently 118

3.2.5.3 Two angle stiffeners and two sets of control sources 119
3.2.5.4 Discrete error sensors 119

3.3 Numerical results 121

3.3.1 Acceleration distributions for controlled and uncontrolled cases 122

3.3.2 Effect of variations in forcing frequency, control source location and error sensor location on the control forces 127

3.3.3 Effect of variations in forcing frequency, control source location and error sensor location on the attenuation of acceleration level 130

3.3.4 Number of control sources required for optimal control 136

3.3.5 Effect of a second angle stiffener and set of control sources on the attenuation of acceleration level 136

3.3.6 Number of error sensors required for optimal control 139

3.4 Experimental procedure 140

3.4.1 Modal analysis 140

3.4.2 Active vibration control 141

3.5 Experimental results 148

3.5.1 Modal analysis 148

3.5.2 Active vibration control 150

3.6 Summary 152
CHAPTER 4. FEEDFORWARD ACTIVE CONTROL OF FLEXURAL VIBRATION IN A CYLINDER USING PIEZOCERAMIC ACTUATORS AND AN ANGLE STIFFENER

4.1 Introduction 156

4.2 Theory 158

4.2.1 The differential equations of motion for a cylindrical shell and the general solution 158

4.2.2 Determining the wavenumbers k and constants β and γ 161

4.2.3 Boundary conditions at the cylinder ends 165

4.2.3.1 Simply supported end conditions 166

4.2.3.2 Infinite end conditions 167

4.2.4 Equilibrium conditions at the point of application ($x = x_0$) of a force or moment 168

4.2.4.1 Response of a shell to a radially acting point force 168

4.2.4.2 Response of a shell to a circumferentially distributed line force 171

4.2.4.3 Response of a shell to a circumferentially distributed line moment 171

4.2.5 Modelling the effects of the angle stiffener 173

4.2.6 Minimising vibration using piezoceramic actuators and an angle stiffener 176

4.2.6.1 Control sources driven by the same signal 184
4.2.6.2 Control sources driven independently 187
4.2.6.3 Discrete error sensors 187
4.2.7 Natural frequencies 188

4.3 Numerical results 189
4.3.1 Acceleration distributions for controlled and uncontrolled cases 189
4.3.2 Effect of variations in forcing frequency, control source location and error sensor location on the control forces 202
4.3.3 Effect of variations in forcing frequency, control source location and error sensor location on the attenuation of acceleration level 208
4.3.4 Number of control sources required for optimal control 213
4.3.5 Number of error sensors required for optimal control 213
4.3.6 Natural frequencies 214

4.4 Experimental procedure 216
4.4.1 Modal analysis 216
4.4.2 Active vibration control 217

4.5 Experimental results 225
4.5.1 Modal analysis 225
4.5.2 Active vibration control 228

4.6 Summary 231
Contents

CHAPTER 5. SUMMARY AND CONCLUSIONS

5.1 Summary of numerical analysis
5.2 Summary of experimental results
5.3 Conclusions

References

Publications originating from thesis work
ABSTRACT

Active control of vibration in structures has been investigated by an increasing number of researchers in recent years. There has been a great deal of theoretical work and some experiment examining the use of point forces for vibration control, and more recently, the use of thin piezoelectric crystals laminated to the surfaces of structures. However, control by point forces is impractical, requiring large reaction masses, and the forces generated by laminated piezoelectric crystals are not sufficient to control vibration in large and heavy structures.

The control of flexural vibrations in stiffened structures using piezoceramic stack actuators placed between stiffener flanges and the structure is examined theoretically and experimentally in this thesis. Used in this way, piezoceramic actuators are capable of developing much higher forces than laminated piezoelectric crystals, and no reaction mass is required. This thesis aims to show the feasibility of active vibration control using piezoceramic actuators and angle stiffeners in a variety of fundamental structures.

The work is divided into three parts. In the first, the simple case of a single actuator used to control vibration in a beam is examined. In the second, vibration in stiffened plates is
Abstract

controlled using multiple actuators, and in the third, the control of vibration in a ring-stiffened cylinder is investigated.

In each section, the classical equations of motion are used to develop theoretical models describing the vibration of the structures with and without active vibration control. The effects of the angle stiffener(s) are included in the analysis. The models are used to establish the quantitative effects of variation in frequency, the location of control source(s) and the location of the error sensor(s) on the achievable attenuation and the control forces required for optimal control. Comparison is also made between the results for the cases with multiple control sources driven by the same signal and with multiple independently driven control sources. Both finite and semi-finite structures are examined to enable comparison between the results for travelling waves and standing waves in each of the three structure types.

This thesis attempts to provide physical explanations for all the observed variations in achievable attenuation and control force(s) with varied frequency, control source location and error sensor location. The analysis of the simpler cases aids in interpreting the results for the more complicated cases.

Experimental results are given to demonstrate the accuracy of the theoretical models in each section. Trials are performed on a stiffened beam with a single control source and a single error sensor, a stiffened plate with three control sources and a line of error sensors and a ring-stiffened cylinder with six control sources and a ring of error sensors. The experimental
Abstract

results are compared with theory for each structure for the two cases with and without active vibration control.
STATEMENT OF ORIGINALITY

To the best of my knowledge and belief all of the material presented in this thesis, except where otherwise referenced, is my own original work, and has not been presented previously for the award of any other degree or diploma in any University. If accepted for the award of the degree of Doctor of Philosophy, I consent that this thesis be made available for loan and photocopying.

Andrew J. Young
Acknowledgments

ACKNOWLEDGMENTS

The work presented in this thesis would not have been possible without the support and encouragement of many people. Firstly, thanks to my parents, Malcolm and Althea Young, for motivating and encouraging me in all my pursuits, academic and otherwise.

Thanks to all the staff in the Mechanical Engineering Department who contributed in some way to this work. In particular, my thanks to Herwig Bode and the Instrumentation section, and the Electronics and Engineering workshops for their excellent technical support and advice.

My thanks to the postgraduate students and research officers who were a part of the Active Noise and Vibration Control Group during my time at the University, for their questions and suggestions. Particular thanks to my supervisor, Dr Colin Hansen, for attracting my interest in the field, for his advice and guidance, and for always making sure everything I needed was available.

Support for this research from the Australian Research Council and the Sir Ross and Sir Keith Smith fund is also gratefully acknowledged.

Finally, I would like to thank Kym Burgemeister and Mark Davies for sharing my office, my frustrations and my successes, for helping with motivation and ideas, and for being my friends.