ACTIVE CONTROL OF VIBRATION IN STIFFENED STRUCTURES

ANDREW J. YOUNG

DEPARTMENT OF MECHANICAL ENGINEERING THE UNIVERSITY OF ADELAIDE SOUTH AUSTRALIA 5005

Submitted for the degree of Doctor of Philosophy on the 25th of August, 1995; awarded 7th November 1995.

ACTIVE CONTROL OF VIBRATION IN STIFFENED STRUCTURES

CONTENTS

Abstract			Х
Statement of originality			xiii
Acknowledg	ments		xiv
CHAPTER 1.	INTRO	DDUCTION AND LITERATURE REVIEW	1
1.1	Intro	duction	1
1.2	Literature review		
	1.2.1	Analysis of vibration in continuous structures	7
		1.2.1.1 The differential equations of motion	7
		1.2.1.2 Treatment of termination impedences in theoretical	
		analysis	8
		1.2.1.3 Analysis of vibration in rectangular plates	10
		1.2.1.4 Analysis of vibration in cylindrical shells	13
	1.2.2	Active vibration control	16
		1.2.2.1 The origins of active noise and vibration control	16
		1.2.2.2 Development of feedback vibration control methods	17
		1.2.2.3 Actuators for active vibration control	18

	1.2.2.4 Error sensors for active vibration control			
		1.2.2.5 Feedfor	ward active control of vibration in beams	23
		1.2.2.6 Feedfor	ward active control of vibration in plates	27
		1.2.2.7 Feedfor	ward active control of vibration in cylinders	29
1.3	Sumn	ary of the main	a gaps in current knowledge addressed by this	
	thesis			31
CHAPTER 2.	FEEDI	ORWARD ACTIV	VE CONTROL OF FLEXURAL VIBRATION IN A	
	BEAM	USING A PIEZO	CERAMIC ACTUATOR AND AN ANGLE	
	STIFF	NER		32
2.1	Introduction			32
2.2	Theory			34
	2.2.1	Response of a l	beam to a harmonic excitation	34
	2.2.2	Boundary cond	itions at the beam ends	36
		2.2.2.1 Beam b	oundary impedance	36
		2.2.2.2 Equival	ent boundary impedance of an infinite beam	39
		2.2.2.3 Impeda	nce equations	41
	2.2.3	Equilibrium co	nditions at the point of application $(x = x_0)$ of a	
		force or momen	nt	42
		2.2.3.1 Resp	onse of a beam to a point force	42
		2.2.3.2 Resp	onse of a beam to a concentrated moment	43
	2.2.4	Mass loading o	f the angle stiffener	44

	2.2.5	Minimising vibration using piezoceramic actuators and angle	
		stiffeners	45
		2.2.5.1 One control source and one angle stiffener	45
		2.2.5.2 Two control sources and two angle stiffeners	51
		2.2.5.3 Two error sensors	52
2.3	Nume	erical results	54
	2.3.1	Acceleration distributions for controlled and uncontrolled cases	55
	2.3.2	Effect of variations in forcing frequency, stiffener flange length	
		and control source location on the control force	57
	2.3.3	Effect of variations in forcing frequency, control source	
		location and error sensor location attenuation of acceleration	
		level	62
	2.3.4	Effect of a second angle stiffener and control source on the	
		attenuation of acceleration level	67
2.4	Expe	rimental procedure	70
	2.4.1	Impedance of an experimental termination	70
	2.4.2	Relating control signal and control force	78
	2.4.3	Test procedure	82
2.5	Expe	rimental results	90
2.6	Sumn	nary	94

CHAPTER 3.	FEEDFORWARD ACTIVE CONTROL OF FLEXURAL VIBRATION IN A					
	PLATE USING PIEZOCERAMIC ACTUATORS AND AN ANGLE					
	Stiffener					
3.1	Introduction					
3.2	Theory			100		
	3.2.1	Response	e of a plate to a harmonic excitation	100		
	3.2.2	Boundary	y conditions at the plate ends	103		
		3.2.2.1	Free end conditions	103		
		3.2.2.2	Infinite end conditions	104		
	3.2.3	Equilibri	um conditions at the point of application $(x = x_0)$ of a			
		force or 1	noment	105		
		3.2.3.1	Response of a plate to a point force	105		
		3.2.3.2	Response of a plate to a distributed line force parallel			
			to the <i>y</i> -axis	106		
		3.2.3.3	Response of a plate to a distributed line moment			
			parallel to the <i>y</i> -axis	106		
	3.2.4	Modellin	g the effects of the angle stiffener	107		
	3.2.5	Minimisi	ng vibration using piezoceramic actuators and an			
		angle stif	fener	109		
		3.2.5.1 C	ontrol sources driven by the same signal	115		
		3.2.5.2 C	ontrol sources driven independently	118		
	3.2.5.3 Two angle stiffeners and two sets of control sources 11					

		3.2.5.4 Discrete error sensors	119			
3.3	Nume	rical results				
	3.3.1	Acceleration distributions for controlled and uncontrolled cases	122			
	3.3.2	Effect of variations in forcing frequency, control source				
		location and error sensor location on the control forces	127			
	3.3.3	Effect of variations in forcing frequency, control source				
		location and error sensor location on the attenuation of				
		acceleration level	130			
	3.3.4	Number of control sources required for optimal control	136			
	3.3.5	Effect of a second angle stiffener and set of control sources on				
		the attenuation of acceleration level	136			
	3.3.6	Number of error sensors required for optimal control	139			
3.4	Expe	rimental procedure	140			
	3.4.1	Modal analysis	140			
	3.4.2	Active vibration control	141			
3.5	Expe	rimental results	148			
	3.5.1	Modal analysis	148			
	3.5.2	Active vibration control	150			
3.6	Sumn	nary	152			

CHAPTER 4.	. FEEDFORWARD ACTIVE CONTROL OF FLEXURAL VIBRATION IN A				
	CYLINDER USING PIEZOCERAMIC ACTUATORS AND AN ANGLE				
	STIFFENER				
4.1	Intro	Introduction			
4.2	Theor	ory			
	4.2.1	The diffe	erential equations of motion for a cylindrical shell and		
		the gener	al solution	158	
	4.2.2	Determin	ing the wavenumbers k and constants β and γ	161	
	4.2.3	Boundar	y conditions at the cylinder ends	165	
		4.2.3.1	Simply supported end conditions	166	
		4.2.3.2	Infinite end conditions	167	
	4.2.4	Equilibri	um conditions at the point of application ($x = x_0$) of a		
		force or 1	noment	168	
		4.2.4.1	Response of a shell to a radially acting point force	168	
		4.2.4.2	Response of a shell to a circumferentially distributed		
			line force	171	
		4.2.4.3	Response of a shell to a circumferentially distributed		
			line moment	171	
	4.2.5	Modellin	g the effects of the angle stiffener	173	
	4.2.6	5 Minimising vibration using piezoceramic actuators and an			
		angle stif	fener	176	
	4.2.6.1 Control sources driven by the same signal				

		4.2.6.2 Control sources driven independently	187
		4.2.6.3 Discrete error sensors	187
	4.2.7	Natural frequencies	188
4.3	Nume	erical results	189
	4.3.1	Acceleration distributions for controlled and uncontrolled cases	189
	4.3.2	Effect of variations in forcing frequency, control source	
		location and error sensor location on the control forces	202
	4.3.3	Effect of variations in forcing frequency, control source	
		location and error sensor location on the attenuation of	
		acceleration level	208
	4.3.4	Number of control sources required for optimal control	213
	4.3.5	Number of error sensors required for optimal control	213
	4.3.6	Natural frequencies	214
4.4	Exper	rimental procedure	216
	4.4.1	Modal analysis	216
	4.4.2	Active vibration control	217
4.5	Exper	rimental results	225
	4.5.1	Modal analysis	225
	4.5.2	Active vibration control	228
4.6	Sumn	nary	231

Chapter 5.	SUMMARY AND CONCLUSIONS	235
5.1	Summary of numerical analysis	235
5.2	Summary of experimental results	243
5.3	Conclusions	246
References		248

Publications originating from thesis work	266
i ubileutions of ginuting if one theory work	200

ACTIVE CONTROL OF VIBRATION IN STIFFENED STRUCTURES

ABSTRACT

Active control of vibration in structures has been investigated by an increasing number of researchers in recent years. There has been a great deal of theoretical work and some experiment examining the use of point forces for vibration control, and more recently, the use of thin piezoelectric crystals laminated to the surfaces of structures. However, control by point forces is impractical, requiring large reaction masses, and the forces generated by laminated piezoelectric crystals are not sufficient to control vibration in large and heavy structures.

The control of flexural vibrations in stiffened structures using piezoceramic stack actuators placed between stiffener flanges and the structure is examined theoretically and experimentally in this thesis. Used in this way, piezoceramic actuators are capable of developing much higher forces than laminated piezoelectric crystals, and no reaction mass is required. This thesis aims to show the feasibility of active vibration control using piezoceramic actuators and angle stiffeners in a variety of fundamental structures.

The work is divided into three parts. In the first, the simple case of a single actuator used to control vibration in a beam is examined. In the second, vibration in stiffened plates is

Abstract

controlled using multiple actuators, and in the third, the control of vibration in a ring-stiffened cylinder is investigated.

In each section, the classical equations of motion are used to develop theoretical models describing the vibration of the structures with and without active vibration control. The effects of the angle stiffener(s) are included in the analysis. The models are used to establish the quantitative effects of variation in frequency, the location of control source(s) and the location of the error sensor(s) on the achievable attenuation and the control forces required for optimal control. Comparison is also made between the results for the cases with multiple control sources driven by the same signal and with multiple independently driven control sources. Both finite and semi-finite structures are examined to enable comparison between the results for travelling waves and standing waves in each of the three structure types.

This thesis attempts to provide physical explanations for all the observed variations in achievable attenuation and control force(s) with varied frequency, control source location and error sensor location. The analysis of the simpler cases aids in interpreting the results for the more complicated cases.

Experimental results are given to demonstrate the accuracy of the theoretical models in each section. Trials are performed on a stiffened beam with a single control source and a single error sensor, a stiffened plate with three control sources and a line of error sensors and a ring-stiffened cylinder with six control sources and a ring of error sensors. The experimental

Abstract

results are compared with theory for each structure for the two cases with and without active vibration control.

Statement of originality

STATEMENT OF ORIGINALITY

To the best of my knowledge and belief all of the material presented in this thesis, except where otherwise referenced, is my own original work, and has not been presented previously for the award of any other degree or diploma in any University. If accepted for the award of the degree of Doctor of Philosophy, I consent that this thesis be made available for loan and photocopying.

Andrew J. Young

ACKNOWLEDGMENTS

The work presented in this thesis would not have been possible without the support and encouragement of many people. Firstly, thanks to my parents, Malcolm and Althea Young, for motivating and encouraging me in all my pursuits, academic and otherwise.

Thanks to all the staff in the Mechanical Engineering Department who contributed in some way to this work. In particular, my thanks to Herwig Bode and the Instrumentation section, and the Electronics and Engineering workshops for their excellent technical support and advice.

My thanks to the postgraduate students and research officers who were a part of the Active Noise and Vibration Control Group during my time at the University, for their questions and suggestions. Particular thanks to my supervisor, Dr Colin Hansen, for attracting my interest in the field, for his advice and guidance, and for always making sure everything I needed was available.

Support for this research from the Australian Research Council and the Sir Ross and Sir Keith Smith fund is also gratefully acknowledged.

Finally, I would like to thank Kym Burgemeister and Mark Davies for sharing my office, my frustrations and my successes, for helping with motivation and ideas, and for being my friends.