REFERENCES:

WEBSITE REFERENCES (2004):

<http://www.geolsoc.org.uk/template.cfm?name=dust>

<http://www.weedscience.org/in.asp>
APPENDICES

Appendix A: Chromatography (High Performance Thin Layer (HPTLC), Gas Chromatography Mass Spectrometry (GCMS) and High Performance Liquid Chromatography (HPLC)), Kovats Analysis and Fourier Transform Infrared Spectrometry (FTIR).

Appendix B: Size Fractionation of Dried Soils of the Yorke Peninsula.
Appendix A

High performance thin layer chromatography (HPTLC)

Figure A1: High performance thin layer chromatography of glutamic acid (glu), 2,4-dichlorophenoxyacetic acid (2,4-D) and the conjugate of 2,4-D and glu (2,4-D-glu). The dashed line represents the solvent front.
Figure A2: High performance thin layer chromatography of aspartic acid (asp), 2,4-dichlorophenoxyacetic acid (2,4-D) and the conjugate of 2,4-D and asp (2,4-D-asp). The dashed line represents the solvent front.
Figure A3: High performance thin layer chromatography of aspartic acid (asp), glutamic acid (glu) and three soil extracts (S1, S2 and S3). The dashed line represents the solvent front.
Figure A4 (a): Mass spectral profile of an analyte obtained from soil extracts that eluted at the solvent front in HPTLC preparations.

Figure A4 (b): Isotopic ratio analysis of analytes obtained from soil extracts that eluted at the solvent front in HPTLC preparations (m/z 133, 135 and 137).

Figure A4: Isotope ratio analysis of soil extracts.
Figure A4 (b) continued: Isotopic ratio analysis of analytes obtained from soil extracts that eluted at the solvent front in HPTLC preparations (m/z 145, 147, 149 and 161, 163, 165).
Figure A5: Pyrolysis products and mass spectra of the triazine moiety (a) and the non-triazine moiety (b) of chlorsulfuron (a sulfonylurea herbicide).
Figure A6: The mass spectra of 9,Octadecenoic acid methyl ester (a) and Oleoyl alcohol (b)
Figure A7: GCMS analysis of twelve aliphatic esters of 2,4-D.
2,4-D methyl ester

2,4-D ethyl ester

2,4-D propyl ester

Figure A7: (continued)
Figure A7: (continued).
Average of 11.861 to 11.868 min.: 07GFEB15.D

2,4-D butyl ester

Average of 13.305 to 13.312 min.: 07GFEB17.D

2,4-D hexyl ester

Average of 15.181 to 15.202 min.: 07GFEB19.D

2,4-D octyl ester

Figure A7: (continued).
Figure A7: (continued).
Average of 16.144 to 16.151 min.: 09GFEB21.D

(2,4-D) cis-3-nonenyl ester

Average of 18.687 to 18.701 min.: 07GFEB25.D

(2,4-D) 10-undecenyl ester

Average of 18.675 to 18.696 min.: 07GFEB27.D

(2,4-D) undecanyl

Figure A7: (continued).
Figure A7: (continued).
Figure A7: (continued).
Figure A8: Isotope ratio analysis of the nonenyl ester of 2,4-D prepared by the method of Sanchez et al. (1991).
Figure A8: (continued).
Figure A9: Isotope ratio analysis of whole soil #91
Figure A9: (continued).
Figure A10: GCMS analysis of dust (fraction 5) obtained from soil #47

Note: m/z = 220 was not detected. A high quality control (HQC) mixture of herbicides and a dust ‘blank’, containing no herbicide, also showed no response other than for the internal standard emphasizing the specificity of the methodology for 2,4-D and 2,4-D like compounds.
Eight fatty acid methyl esters were analysed: tetradecanoic acid methyl ester (14:0); pentadecanoic acid methyl ester (15:0); hexadecanoic acid methyl ester (16:0); 9,12 octadecadienoic acid methyl ester (18:2); 9 octadecenoic acid methyl ester (18:1); octadecanoic acid methyl ester (18:0); 11-eicosenoic acid methyl ester (20:1); eicosanoic acid methyl ester (20:0).

Twelve aliphatic esters of 2,4-D were analysed: 2,4-D methyl ester; 2,4-D ethyl ester; 2,4-D propyl ester; 2,4-D butyl ester; 2,4-D hexyl ester; 2,4-D octyl ester; (2,4-D) cis-3-nonenyl ester; (2,4-D) 10-undecenyl ester; (2,4-D) undecanyl; (2,4-D) dodecanyl; (2,4-D) hexadecanyl and (2,4-D) oleoyl ester.

Figure A11: Kovats analysis of retention time data.
Kovats analysis of 2,4-D like chemicals

\[y = 0.005x + 1.3613 \]

\[R^2 = 0.95 \]

Figure A11: (continued).
(a) Scan of an extract of whole soil #58 (no treatment) showing an acid-labile analyte (arrow).

(b) Scan of an extract of whole soil #58 (extracted ion m/z =145) after an acid hydrolysis treatment

Figure A12: Scans of acid and alkali treatments of soil extracts.
(c) Scan of an extract of whole soil #58 (extracted ion m/z =145) after sequential treatments with acid then alkali.

Figure A12 (continued): Scans of acid and alkali treatments of soil extracts.
Figure A13: FTIR of isolated 2,4-dichlorophenoxyacetic acid

Figure A14: FTIR of an amino acid conjugate (2,4-D-asp) of 2,4-D.
Figure A14 (continued): FTIR of an amino acid conjugate (2,4-D-glu) of 2,4-D.
Figure A15: (a) The oleoyl ester of 2,4-dichlorophenoxyacetic acid

Figure A15: (b) Soil extract

Figure A15: FTIR of the oleoyl ester of 2,4-dichlorophenoxyacetic acid and a soil extract.
Figure A16: Sulfonylurea analysis of whole soils by HPLC
Appendix B

SIZE FRACTIONATION OF DRIED SOILS OF THE YORKE PENINSULA.
Figure B1: Size fractionation of dried soils of the Yorke Peninsula.
Figure B1 (continued): Size fractionation of dried soils of the Yorke Peninsula.
Figure B1 (continued): Size fractionation of dried soils of the Yorke Peninsula.
Table 1: Size fractionation of dried soils of the Yorke Peninsula.

<table>
<thead>
<tr>
<th>Soil ID#</th>
<th>x > 2 mm</th>
<th>1 mm < x < 2 mm</th>
<th>0.5 mm < x < 1 mm</th>
<th>0.25 mm < x < 0.5 mm</th>
<th>x < 0.25 mm</th>
<th>x > 2 mm</th>
<th>1 mm < x < 2 mm</th>
<th>0.5 mm < x < 1 mm</th>
<th>0.25 mm < x < 0.5 mm</th>
<th>x < 0.25 mm</th>
<th>Fraction 1</th>
<th>Fraction 2</th>
<th>Fraction 3</th>
<th>Fraction 4</th>
<th>Fraction 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>39</td>
<td>0</td>
<td>1</td>
<td>8</td>
<td>46</td>
<td>45</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>21</td>
<td>47</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>44</td>
<td>15</td>
<td>11</td>
<td>11</td>
<td>19</td>
<td>8</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>25</td>
<td>15</td>
<td>13</td>
<td>16</td>
<td>31</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>42</td>
<td>56</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>18</td>
<td>11</td>
<td>12</td>
<td>20</td>
<td>38</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>19</td>
<td>15</td>
<td>14</td>
<td>17</td>
<td>35</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>57</td>
<td>19</td>
<td>10</td>
<td>6</td>
<td>8</td>
<td>7</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>9</td>
<td>10</td>
<td>15</td>
<td>29</td>
<td>38</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>15</td>
<td>16</td>
<td>14</td>
<td>18</td>
<td>36</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>30</td>
<td>14</td>
<td>12</td>
<td>14</td>
<td>31</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>32</td>
<td>13</td>
<td>11</td>
<td>14</td>
<td>30</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>13</td>
<td>15</td>
<td>16</td>
<td>18</td>
<td>38</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>18</td>
<td>81</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>30</td>
<td>13</td>
<td>12</td>
<td>16</td>
<td>29</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>33</td>
<td>19</td>
<td>14</td>
<td>15</td>
<td>19</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>89</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>41</td>
<td>49</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>28</td>
<td>21</td>
<td>19</td>
<td>15</td>
<td>17</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>32</td>
<td>17</td>
<td>14</td>
<td>12</td>
<td>24</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>29</td>
<td>17</td>
<td>14</td>
<td>13</td>
<td>26</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>97</td>
<td>31</td>
<td>17</td>
<td>14</td>
<td>13</td>
<td>25</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>98</td>
<td>25</td>
<td>12</td>
<td>11</td>
<td>16</td>
<td>37</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil ID#</td>
<td>x > 2 mm</td>
<td>1 mm < x < 2 mm</td>
<td>0.5 mm < x < 1 mm</td>
<td>0.25 mm < x < 0.5 mm</td>
<td>x < 0.25 mm</td>
<td>x > 2 mm</td>
<td>1 mm < x < 2 mm</td>
<td>0.5 mm < x < 1 mm</td>
<td>0.25 mm < x < 0.5 mm</td>
<td>x < 0.25 mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------------------</td>
<td>------------</td>
<td>----------</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------------------</td>
<td>------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fraction 1</td>
<td>Fraction 2</td>
<td>Fraction 3</td>
<td>Fraction 4</td>
<td>Fraction 5</td>
<td>Fraction 1</td>
<td>Fraction 2</td>
<td>Fraction 3</td>
<td>Fraction 4</td>
<td>Fraction 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>15</td>
<td>14</td>
<td>17</td>
<td>24</td>
<td>28</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>51</td>
<td>41</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>29</td>
<td>25</td>
<td>19</td>
<td>13</td>
<td>13</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>9</td>
<td>10</td>
<td>14</td>
<td>25</td>
<td>42</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>13</td>
<td>12</td>
<td>12</td>
<td>19</td>
<td>44</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>4</td>
<td>8</td>
<td>12</td>
<td>26</td>
<td>50</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>99</td>
<td>39</td>
<td>22</td>
<td>17</td>
<td>11</td>
<td>9</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>26</td>
<td>21</td>
<td>18</td>
<td>18</td>
<td>16</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1 (continued): Size fractionation of dried soils of the Yorke Peninsula.