GENETIC STUDIES ON THE TOLERANCE OF WHEAT TO
HIGH CONCENTRATIONS OF BORON

by

Jeffrey Gordon Paull

B. Ag. Sci. (Hons)

University of Adelaide, South Australia

Thesis submitted for the degree of Doctor of Philosophy

Department of Agronomy
Waite Agricultural Research Institute
Glen Osmond, South Australia
March, 1990
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>i</td>
</tr>
<tr>
<td>Statement of originality and consent to photocopy or loan</td>
<td>iv</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>v</td>
</tr>
<tr>
<td>Chapter 1</td>
<td></td>
</tr>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Chapter 2</td>
<td></td>
</tr>
<tr>
<td>Review of literature - Response of plants to boron</td>
<td>5</td>
</tr>
<tr>
<td>2.1 Introduction</td>
<td>5</td>
</tr>
<tr>
<td>2.2 Chemistry</td>
<td>8</td>
</tr>
<tr>
<td>2.3 The role of boron in plant metabolism</td>
<td>9</td>
</tr>
<tr>
<td>2.3.1 Cell division and differentiation</td>
<td>12</td>
</tr>
<tr>
<td>2.3.2 Cellular membranes</td>
<td>13</td>
</tr>
<tr>
<td>2.3.3 DNA, RNA and proteins</td>
<td>14</td>
</tr>
<tr>
<td>2.3.4 Phenolic compounds and lignin</td>
<td>15</td>
</tr>
<tr>
<td>2.3.5 Carbohydrate transport and metabolism</td>
<td>16</td>
</tr>
<tr>
<td>2.3.6 Pollen germination and pollen tube growth</td>
<td>17</td>
</tr>
<tr>
<td>2.3.7 Conclusions on the role of B in plant metabolism</td>
<td>18</td>
</tr>
<tr>
<td>2.4 Boron in soils</td>
<td>18</td>
</tr>
<tr>
<td>2.4.1 Geochemistry</td>
<td>18</td>
</tr>
<tr>
<td>2.4.2 Boron adsorption sites</td>
<td>19</td>
</tr>
<tr>
<td>2.4.3 Soil factors affecting plant uptake of boron</td>
<td>21</td>
</tr>
<tr>
<td>2.5 Uptake of B and distribution within the plant</td>
<td>25</td>
</tr>
<tr>
<td>2.5.1 Uptake of B by roots</td>
<td>25</td>
</tr>
<tr>
<td>2.5.2 Translocation of B from roots to shoots</td>
<td>26</td>
</tr>
<tr>
<td>2.5.3 Distribution of B in shoots</td>
<td>26</td>
</tr>
<tr>
<td>2.6 Response of plants to boron imbalance</td>
<td>30</td>
</tr>
<tr>
<td>2.6.1 Germination</td>
<td>30</td>
</tr>
<tr>
<td>2.6.2 Symptoms of B toxicity</td>
<td>31</td>
</tr>
<tr>
<td>2.6.3 Development and yield</td>
<td>33</td>
</tr>
<tr>
<td>2.6.4 Critical concentrations of B in plants</td>
<td>35</td>
</tr>
<tr>
<td>2.7 Interspecific variation in response to boron</td>
<td>38</td>
</tr>
<tr>
<td>2.8 Intraspecific variation and genetic control of response to boron</td>
<td>41</td>
</tr>
<tr>
<td>2.8.1 Intraspecific variation</td>
<td>41</td>
</tr>
<tr>
<td>2.8.2 Inheritance of response to B</td>
<td>43</td>
</tr>
</tbody>
</table>
Chapter 3

Materials and methods - general procedures 46

3.1 Field experiments 46
3.1.1 Experimental sites 46
3.1.2 Experimental design 49
3.2 Glasshouse experiments 51
3.2.1 Soil 51
3.2.2 Application of B to soil 53
3.2.3 Culture of plants 53
3.3 Chemical analyses 56
3.3.1 Soil 56
3.3.2 Plant material 56
3.4 Cytological methods 57

Chapter 4

Response to boron for genotypes of differing tolerance and identification of selection parameters 59

4.1 Introduction 59
4.2 Materials and methods 61
4.2.1 Genotypes 61
4.2.2 Pot experiment 61
4.2.3 Field experiment 62
4.3 Results 63
4.3.1 Pot experiment 63
4.3.2 Field experiment 75
4.4 Discussion 80
4.4.1 Pot experiment 80
4.4.2 Field experiment 84

Chapter 5

Response of historically important Australian wheat varieties to high concentrations of boron 87

5.1 Introduction 87
5.2 Response of historically important Australian wheat varieties to high concentrations of boron in the field 91
5.2.1 Introduction 91
5.2.2 Materials and methods 91
5.2.3 Results 92
5.3 Response of historically important Australian wheat varieties to high concentrations of boron in a pot experiment

5.3.1 Introduction

5.3.2 Materials and methods

5.3.3 Results

5.3.4 Comparisons between responses at the vegetative stage and at maturity

5.3.5 Comparisons between responses to high concentrations of B in pots and in the field

5.4 The genetic source of boron tolerance for Australian wheat varieties

5.4.1 Introduction

5.4.2 Materials and methods

5.4.3 Results

5.5 Tolerance of the parents of Halberd to high concentrations of boron

5.5.1 Introduction

5.5.2 Materials and methods

5.5.3 Results

5.6 Response of accessions of Purple Straw to high concentrations of boron

5.6.1 Introduction

5.6.2 Materials and methods

5.6.3 Results

5.7 Response of the major wheat varieties currently grown in South Australia to boron

5.7.1 Introduction

5.7.2 Materials and methods

5.7.3 Results

5.8 Discussion

Chapter 6
Genetic control of tolerance of wheat to high concentrations of boron

6.1 Introduction

6.1.1 Genotypes

6.2 Identification of optimum concentrations of boron for selection between genotypes

6.2.1 Introduction
6.2.2 Materials and methods 144
6.2.3 Results 145
6.2.4 Discussion 151

6.3 Response of the F1 hybrids derived from five wheat genotypes to high concentrations of boron 153
6.3.1 Introduction 153
6.3.2 Materials and methods 153
6.3.3 Results 154

6.4 Response of an F2 population to two levels of boron stress 160
6.4.1 Introduction 160
6.4.2 Materials and methods 160
6.4.3 Results 160

6.5 Estimation of the number of loci controlling response to high concentrations of boron 164
6.5.1 Introduction 164
6.5.2 Materials and methods 165
6.5.3 Results 168

6.6 Discussion 182

Chapter 7
Chromosomal location of genes controlling tolerance to high concentrations of boron 187

7.1 Chromosomal location of genes by aneuploid techniques 187
7.1.1 Introduction 187
7.1.2 Aneuploid techniques 188

7.2 Response of intervarietal substitution line donors, monosomic varieties and interspecific amphiploids to boron 194
7.2.1 Introduction 194
7.2.2 Materials and methods 194
7.2.3 Results and discussion 195

7.3 Response of the Chinese Spring/Kenya Farmer substitution lines to boron 198
7.3.1 Introduction 198
7.3.2 Materials and methods 198
7.3.3 Results 199

7.4 Effect of chromosome 4A upon response to boron 204
7.4.1 Introduction 204
7.4.2 Materials and methods 204
Chapter 8
Correlation between response to B and other quantitative characters, with particular reference to grain yield and nutrient uptake, for field grown wheat.

8.1 Introduction
8.2 Materials and methods
8.2.1 Development of random lines
8.2.2 F4 short plots
8.2.3 F5 and F6 yield plots
8.3 Results
8.3.1 Chemical analyses
8.3.2 Yield
8.4 Discussion

Chapter 9
General discussion
Appendices

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix A</td>
<td>Monthly rainfall data for sites and seasons of field trials.</td>
</tr>
<tr>
<td>Appendix B</td>
<td>Effect of high concentrations of B in the grain upon seedling growth and concentration of B in plants.</td>
</tr>
<tr>
<td>Appendix C</td>
<td>Leading wheat varieties in Australia during the twentieth century.</td>
</tr>
<tr>
<td>Appendix D</td>
<td>Concentration of elements, other than B, in shoots and grain for the experiments of historically important wheat varieties and wheat varieties currently cultivated in South Australia conducted at Two Wells in 1985 and 1986.</td>
</tr>
<tr>
<td>Appendix E</td>
<td>The mean concentrations and standard deviations of the means for all agriculturally significant elements, other than B, for the (Halberd*(Wl*MMC)) families grown at Two Wells and Rudall.</td>
</tr>
</tbody>
</table>
ABSTRACT

This thesis describes studies into the genetic control of tolerance of wheat to high concentrations of boron (B). Initially, experiments were conducted to determine selection criteria for distinguishing between tolerant and sensitive genotypes for both glasshouse and field grown wheat. Responses of plants to high concentrations of B, under glasshouse conditions, included reduced vigour, delayed development, expression of symptoms of toxicity and reduced grain and total dry matter yields. Significant differences between tolerant and sensitive genotypes resulted for all parameters, however the greatest discrimination for tolerance to B, between genotypes, resulted during vegetative growth. Tolerant genotypes accumulated less B than the more sensitive genotypes for both glasshouse and field experiments. The concentration of boron in shoots was a highly heritable character and B concentrations in shoots were significantly correlated between high boron conditions in a glasshouse and the field. The concentration of B in grain was highly correlated with the concentration in shoots for field grown wheat, but this relationship did not occur for wheat grown in pots and the anomalous result was related to the artificial growth conditions. Grain is an appropriate tissue for analysis to determine the B accumulation, and therefore tolerance, for field grown wheat.

The tolerance to B for wheat varieties of historical importance in Australia was investigated. Many of the historically dominant varieties are tolerant to B and all tolerant Australian varieties are interrelated. The initial tolerant varieties were Federation and Currawa and members of the derived family include Ghurka, Quadrat, Insignia, Heron, Olympic, Halberd, Spear and Dagger. The distribution of Insignia, Heron and Halberd followed a similar pattern in South Australia and the regions where these varieties were most widely cultivated corresponds to the regions where the highest concentrations of B have been measured in barley grain samples. Thus, there is correlative evidence that the high concentration of B occurring in the subsoils has been a major selective force in South Australian wheat production.

Tolerance to high concentrations of boron is inherited as an additive character, however expression of tolerance varies from being a dominant to a partially dominant
character depending upon the concentration of applied boron. Major gene control of
tolerance to boron was identified from the segregation patterns of F2 and F3 generations
derived from parents of contrasting tolerance to boron. The parents used represented five
levels of tolerance to boron and the difference between successive levels of tolerance was
under the control of single genes. Three independent single gene differences were
identified. Transgressive segregation resulted between two tolerant lines, Halberd and
G61450, and this suggests they have contrasting genes controlling the uptake of boron. A
genetic model comprising four independent loci, designated Bor1, Bor2, Bor3 and Bor4
was proposed for the five lines. The five lines and their proposed genotypes were:
Kenya Farmer (very sensitive) bor1 bor2 bor3 bor4, (W1*MMC) (sensitive) bor1 bor2
Bor3 bor4, Warigal (moderately sensitive) bor1 Bor2 Bor3 bor4, Halberd (moderately
tolerant) Bor1 Bor2 Bor3 bor4 and G61450 (very tolerant) bor1 Bor2 Bor3 Bor4. As
tolerance to high concentrations of B is under the control of major genes, incorporation of
tolerance into sensitive but otherwise adapted local varieties should be readily achieved
through backcrossing.

The chromosomal location of genes controlling tolerance to B was undertaken by
the use of intervarietal substitution lines, monosomic analysis and interspecific addition
lines. Chromosome 4A of the Chinese Spring - Kenya Farmer substitution lines had a
significant effect upon tolerance to boron and the 4A substitution line was more sensitive
than Chinese Spring. Results for monosomic analysis were inconclusive, however
chromosomes identified as the more probable locations of genes controlling tolerance to
boron included 4A and 7D for analysis of the F3's of (Chinese Spring monosomics *
G61450) and chromosomes 7B, 3A and 2B for reciprocal monosomic analysis between
Chinese Spring and Federation. The Chinese Spring x Ag. elongatum amphiploid was
more tolerant than Chinese Spring and the chromosome 7E addition line was also more
tolerant than Chinese Spring. The results of three separate comparisons therefore
implicate the chromosomes of homoeologous group seven in the control of tolerance to
boron.

Random F4 and F5 lines derived from the tolerant Halberd and sensitive
(W1*MMC) were tested under naturally occurring high B conditions in the field.
Chemical analysis of shoots and grain by inductively coupled plasma spectrometry found uptake of B to be independent of nine other elements. The correlation between tolerance to B, as measured by B uptake, and yield among lines of this population was tested at six sites to identify conditions where tolerance to B resulted in a yield advantage. A significant correlation between tolerance to B and yield resulted only at sites where high boron concentrations of grain resulted. Genetic variation for concentrations of several other elements in shoots and grain also occurred within this population and significant correlations between the efficiency of nutrient uptake and grain yield resulted for Mn at Two Wells and Minnipa while genotypes with low Na accumulation produced significantly higher yields than genotypes with high Na uptake at Rudall. Genetic variation in response to soil elements, other than B, may explain the variable performance of varieties, between environments, and this is an area which warrants further investigation.
Acknowledgements

I would like to express my gratitude to my two supervisors, Dr. A.J. Rathjen and Dr. B. Cartwright for their enthusiastic support and advice throughout this project. I am also thankful to Dr. K.W. Shepherd for his advice.

Many people provided valued assistance and I thank Mr. P.A. Ellis for helping with the cytological methods, the members of the wheat breeding team, Mr. J.W. Chigwidden, Mr. J. Lewis, Mr. C. Stone and Mr. M.C. Kroehn for conducting field experiments and helping with glasshouse experiments, the staff at the CSIRO Division of Soils, Ms. L.R. Spouncer and Mr. B.A. Zarcinas, for assistance with chemical analyses and Mr. J. Coppi of the CSIRO Division of Soils and Mr. A. Dunbar of the Waite Institute for photography.

During this project I have enjoyed the discussions with the other researchers and students studying boron toxicity and in particular I thank Mr. D.B. Moody and Dr. R.O Nable for their input and encouragement.

I acknowledge the financial support of the Wheat Research Committee of South Australia.

Finally, I would like thank Heather and Sam for their encouragement, patience and assistance over the past four years.