THE UPPER BRACHINA SUBGROUP:
A LATE PRECAMBRIAN INTERTIDAL DELTAIC AND
SANDFLAT SEQUENCE IN THE FLINDERS RANGES,
SOUTH AUSTRALIA.

(VOLUME I)

by

PHILLIP S. PLUMMER, B.Sc.(Hons.) (Adelaide)
Department of Geology and Mineralogy,
The University of Adelaide.

This thesis is submitted as fulfilment of the
requirements for the degree of Doctor of
Philosophy in Geology at the University
of Adelaide.

September 1978
TABLE OF CONTENTS

VOLUME I

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table of Contents</td>
<td>ii</td>
</tr>
<tr>
<td>List of Locality Abbreviations</td>
<td>viii</td>
</tr>
<tr>
<td>(N.B. List for ready reference given as fold-out at the back of each volume)</td>
<td></td>
</tr>
<tr>
<td>List of Figures</td>
<td>xi</td>
</tr>
<tr>
<td>List of Tables</td>
<td>xv</td>
</tr>
<tr>
<td>List of Plates</td>
<td>xvi</td>
</tr>
<tr>
<td>List of Appendices</td>
<td>xxv</td>
</tr>
<tr>
<td>(N.B. Figures, Tables, Plates and Appendices are presented in Volume II)</td>
<td></td>
</tr>
<tr>
<td>Statement of Originality</td>
<td>xxvii</td>
</tr>
<tr>
<td>Abstract</td>
<td>xxviii</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>xxx</td>
</tr>
<tr>
<td>Dedication</td>
<td>xxiii</td>
</tr>
</tbody>
</table>

CHAPTER 1. INTRODUCTION

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>THE QUARTZITE PROBLEM</td>
<td>2</td>
</tr>
<tr>
<td>GEOGRAPHIC SETTING</td>
<td>5</td>
</tr>
<tr>
<td>HISTORIC REVIEW</td>
<td>6</td>
</tr>
<tr>
<td>GEOLOGIC SETTING</td>
<td>9</td>
</tr>
<tr>
<td>BASEMENT</td>
<td>10</td>
</tr>
<tr>
<td>THE ADELAIDE 'GEOSYNCLINE'</td>
<td>11</td>
</tr>
<tr>
<td>STRUCTURE</td>
<td>12</td>
</tr>
<tr>
<td>METAMORPHISM</td>
<td>14</td>
</tr>
<tr>
<td>SCOPE OF STUDY</td>
<td>14</td>
</tr>
</tbody>
</table>

CHAPTER 2. METHODOLOGY

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>STRATIGRAPHIC SECTION MEASUREMENT</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>
ANALYTICAL TECHNIQUES

FACIES ANALYSIS

PALAEOCURRENT ANALYSIS

PETROLOGIC ANALYSIS

CHAPTER 3. STRATIGRAPHY OF THE UPPER BRACHINA SUBGROUP

REGIONAL STRATIGRAPHIC RELATIONSHIPS

FACIES ASSOCIATION STRATIGRAPHY

GENERAL FACIES ASSOCIATION SUCCESSION

LITHOTYPE DESCRIPTIONS

Facies Association 1

Lithotype 1A

Lithotype 1B

Facies Association 2

Facies Association 3

Lithotype 3A

Lithotype 3B

Facies Association 4

Lithotype 4A

Lithotype 4B

Facies Association 5

Lithotype 5A

Lithotype 5B

Facies Association 6

Facies Association 7

Lithotype 7A

Lithotype 7B

Facies Association 8
Facies Association 9 46
Lithotype 9A 46
Lithotype 9C 47
Lithotype 9C 47

Facies Association 10 48
Lithotype 10A 48
Lithotype 10B 48

CHAPTER 4. PRE-UPPER BRACHINA SUBGROUP PALAEOGEOGRAPHY 49

PALAEOGEOGRAPHY OF THE MOOLOOLOO FORMATION 50

MOOLOOLOO FORMATION – UPPER BRACHINA SUBGROUP BOUNDARY 53

CHAPTER 5. PALAEOGEOGRAPHY OF THE UPPER BRACHINA SUBGROUP:
DELTAIC PHASE ... 55

REGIONAL LITHOTYPE ARRANGEMENT 56

SEDIMENTARY STRUCTURES, PALAEOCURRENTS AND PALAEOGEOGRAPHY 58

SEDIMENTOLOGY – TIME INTERVAL I 59

Submerged Distal Delta (Lithotypes 3A and 3B) 59

Deltaic Bottomset (Lithotype 1B) 61

Shallow Subtidal Mudflat (Lithotype 1A – basal) 62

PALAEOGEOGRAPHY – TIME INTERVAL I 64

SEDIMENTOLOGY – TIME INTERVAL II 65

Intertidal Deltaic Plain (Lithotypes 5A and 5B) 65

Sedimentary Structures and their Palaeoenvironmental Significance 65

Estimate of Palaeotidal Range 74

Barrier-Bar (Lithotypes 4A and 4B) 75

Sedimentary Structures and their Palaeoenvironmental Significance 76

Palaecurrents of the Intertidal Deltaic Plain and Barrier-Bar 77
Low Intertidal Mudflat (Lithotype 1A – upper) 79

Sedimentary Structures and their Palaeoenvironmental Significance 79

Palaeocurrents of the Low Intertidal Mudflat 83

PALAEOGEOGRAPHY – TIME INTERVAL II 85

EVIDENCE OF PRECAMBRIAN LIFE (?) 85

Newly Discovered Evidence (?) 85

Further Evidence (?) 89

SEDIMENTOLOGY – TIME INTERVAL III 90

Intertidal Mudflat (Facies Association 2) 90

Sedimentary Structures and their Palaeoenvironmental Significance 90

Palaeocurrents of the Intertidal Deltaic Phase and Intertidal Mudflat 94

The Problem of Colour 96

PALAEOGEOGRAPHY – TIME INTERVAL III 99

EVOLUTION OF THE DELTAIC SYSTEM 99

PALAEOGEOGRAPHIC EVOLUTION THROUGH THE DELTAIC PHASE OF THE UPPER BRACHINA SUBGROUP 102

CHAPTER 6. PALAEOGEOGRAPHY OF THE UPPER BRACHINA SUBGROUP: SANDFLAT PHASE 106

REGIONAL LITHOTYPE ARRANGEMENT 107

SEDIMENTARY STRUCTURES, PALAEOCURRENTS AND PALAEOGEOGRAPHY 108

SEDIMENTOLOGY – TIME INTERVAL IV 109

Intertidal Sandflat (Lithotypes 7A and 7B) 110

Sedimentary Structures and their Palaeoenvironmental Significance 110

Palaeocurrents of the Intertidal Sandflat 114

PALAEOGEOGRAPHY – TIME INTERVAL IV 114

SEDIMENTOLOGY – TIME INTERVALS V AND VI 117
LIST OF LOCALITY ABBREVIATIONS

1. **SECTION LOCALITIES WITHIN THE STUDY AREA**

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
<th>Subregion</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABC</td>
<td>ABC Range (Reference Section)</td>
<td>Central I</td>
</tr>
<tr>
<td>AGG</td>
<td>Alligator Gorge (composite, using localities AGM, AGP, AGW)</td>
<td>Western II</td>
</tr>
<tr>
<td>ARK</td>
<td>"Arkaba" Station</td>
<td>Central I</td>
</tr>
<tr>
<td>ARR</td>
<td>Aroona "Ruins"</td>
<td>Central I</td>
</tr>
<tr>
<td>BGL</td>
<td>Black Gap Lookout (in Bunbinyunna Creek)</td>
<td>Central I</td>
</tr>
<tr>
<td>BJR</td>
<td>Black Jack Range</td>
<td>Central II</td>
</tr>
<tr>
<td>CCR</td>
<td>Chace Range</td>
<td>Central I</td>
</tr>
<tr>
<td>DDR</td>
<td>Druid Range</td>
<td>Central I</td>
</tr>
<tr>
<td>ELG</td>
<td>Eurlipa Gap</td>
<td>Eastern</td>
</tr>
<tr>
<td>EPB</td>
<td>East of Point Bonney (Wilpena Pound)</td>
<td>Central I</td>
</tr>
<tr>
<td>IKC</td>
<td>Ilka Creek (near Moralana)</td>
<td>Central I</td>
</tr>
<tr>
<td>MCH</td>
<td>Marchant Hill</td>
<td>Eastern</td>
</tr>
<tr>
<td>MDG</td>
<td>Middle Gorge (Subsidiary Section)</td>
<td>Western II</td>
</tr>
<tr>
<td>MKT</td>
<td>Moockra Tower</td>
<td>Western I</td>
</tr>
<tr>
<td>ODW</td>
<td>Oodlawirra</td>
<td>Eastern</td>
</tr>
<tr>
<td>PRT</td>
<td>"Partacoona" Station (Willochra Creek-Kanyaka Creek confluence)</td>
<td>Western II</td>
</tr>
<tr>
<td>PTG</td>
<td>Petanna Gorge</td>
<td>Western II</td>
</tr>
<tr>
<td>RMG</td>
<td>Richman Gap</td>
<td>Western II</td>
</tr>
<tr>
<td>SNH</td>
<td>South of "Narinna" Homestead</td>
<td>Central I</td>
</tr>
<tr>
<td>SPG</td>
<td>South of Parachilna Gorge</td>
<td>Central I</td>
</tr>
<tr>
<td>WKG</td>
<td>"Warrakimbo Gorge" (in Willochra Creek)</td>
<td>Western II</td>
</tr>
<tr>
<td>WMY</td>
<td>West of Mount Yappala</td>
<td>Central II</td>
</tr>
<tr>
<td>WNG</td>
<td>Warren Gorge</td>
<td>Western II</td>
</tr>
<tr>
<td>WWG</td>
<td>Wilkawillina Gorge</td>
<td>Central I</td>
</tr>
</tbody>
</table>
2. OTHER LOCALITIES WITHIN THE STUDY AREA

AGH - Alligator Gorge: Hancock Lookout
AGM - Alligator Gorge: Mambray Creek
AGP - Alligator Gorge: Pine Track
AGW - Alligator Gorge: near Wilmington
AMC - Artimore Creek
AUB - Aubrey Creek (within Pichi Richi Pass)
BCC - Brachina Creek
BKG - Buckaringa Gorge
BNC - Bunyeroo Creek
BRG - Barunga Gap
BYR - Bubbinyunna Range (1 and 2)
CNC - Crow Nest Creek (near Black Jack Range)
DWS - Dawson
EBH - East of "Buckaringa" Homestead
ECR - East End of Chace Range
GGC - Gorge Creek
HMG - Hanniman Gap
IGG - Ingram Gap
LCQ - Locheil Quarry
MLH - "Moralana" Homestead
MMC - Mernmerna Creek (on "Arkaba" Station)
MRC - Mary Creek (on "Arkaba" Station)
MTF - Mount Fergusson (near Port Pirie)
MTG - Mount Grainger (near Redcliff)
NAR - North of Aroona "Ruins"
NBC - North of Brachina Creek

(Subregion)
Western II
Western II
Western II
Western II
Central I
Western II
Central I
Western II
Central I
Western III
Central I
Central II
Eastern
Western II
Central I
Western II
Western III
Western III
Central I
Central I
Central I
NBG – North of Bunyeroo Gorge (1 and 2) Central I
NBR – Nectar Brook Range Western II
NTO – "Narinna" Homestead Turn-Off Central I
OBM – Orarapinna Barytes Mine (near Wilkawillina Gorge) Central I
PCG – Parachilna Gorge Central I
PRL – Prelinna (near Wilpena Pound) Central I
PRP – Pichi Richi Pass (Saltia) Western II
RDR – Red Range (between Wilpena Pound and Elder Range) Central I
RNP – "Rawnsley Park" (near Wilpena Pound) Central I
RNQ – Ridge North of Quorn Western II
SAR – South of Aroona "Ruins" Central I
SBC – South of Brachina Creek Central I
SBG – South of Bunyeroo Gorge (1, 2 and 3) Central I
SDC – Sacred Canyon (near Wilpena Pound) Central I
SWG – South of Warren Gorge Western II
SWH – South of Wonoka Hill (near Hawker) Central I
TDM – The Dome (near Marchant Hill) Eastern
TDP – Third Plain Central I
UDR – Ulowdna Range Central I
WCW – "Warcowie" Homestead Central I
WKC – Waukarie Creek Western II
WKH – Wonoka Hill (near Hawker) Central I
WPC – Wilpena Creek Central I
WSF – Woolshed Flat (within Pichi Richi Pass) Western II

3. LOCALITIES OUTSIDE THE STUDY AREA

A. Eyre Peninsula

PTL – Point Lowly
SXB - Spinifex Bluff

B. **Northern Flinders Ranges**

 CBC - Chambers Creek
 MBR - Mount Bayley Range
 PPG - Puttapa Gap
 PTH - Patsy Hill

C. **Mount Lofty Ranges and the Fleurieu Peninsula**

 HLC - Hallett Cove
 MNR - Marino Rocks
 OSB - O'Sullivan's Beach
 SHC - South of Hallett Cove

N.B. List for ready reference given as a fold-out at the back of each volume.
LIST OF FIGURES

Figure Number

1-1 Locality map, showing position of the Adelaide 'Geosyncline' to the surrounding cratonic nuclei and the position of the study area within the Adelaide 'Geosyncline'. The position of each studied locality is shown on the study area enlargement.

1-2 Historic development of stratigraphic nomenclature and rock relation diagram of the Brachina Subgroup.

1-3 Subdivision of the Adelaide 'Geosyncline' into structural regions

2-1 Observed lithotype transition flow diagram for the upper Brachina Subgroup and bounding formations.

2-2 Major lithotype transition flow diagram for the upper Brachina Subgroup and bounding formations.

2-3 Types of cross-stratification found within the upper Brachina Subgroup.

2-4 (A) Computer program 1 output of circular frequency display of observed palaeocurrent data.

 (B) Estimated positions of the two populations within the observed circular frequency display.

2-5 Computer program 2 output of circular frequency displays of both observed and estimated palaeocurrent distributions, along with the estimated values of \(u_i, k_i, p_i \) and chi-square.

2-6 (A) Standard ternary sandstone classification scheme.

 (B) Ternary sandstone classification scheme adopted for numerical analysis.

3-1 Subdivision of the study area into (A) regions, and (B) subregions, with representative stratigraphic columns of the upper Brachina Subgroup for each subregion, where available.

3-2 Fence diagram of the upper Brachina Subgroup throughout the study area.

3-3 Fence diagram of the uppermost portion of the upper Brachina Subgroup within the northern reaches of the study area.

3-4 Major lithotype transitions drawn to represent a diagrammatic cross-section through the upper Brachina Subgroup.

3-5 Distribution of (A) facies association 1, and (B) facies association 2 within the study area.

3-6 Compositional plots of sandstones from (A) facies association 1,
(B) facies association 2, and (C) facies association 3.

3-7 Distribution of (A) facies association 3, and (B) facies association 4 within the study area.

3-8 Compositional plots of sandstones from (A) lithotype 4A, (B) lithotype 4B, and (C) lithotype 5A.

3-9 Distribution of (A) facies association 5, and (B) facies association 6 within the study area.

3-10 Distribution of (A) facies association 7, and (B) facies association 8 within the study area.

3-11 Compositional plots of sandstones from (A) facies association 6, (B) lithotype 7A, and (C) lithotype 7B.

3-12 Distribution of (A) facies association 9, and (B) facies association 10 within the study area.

3-13 Compositional plots of sandstones from (A) facies association 8, (B) lithotype 10A, and (C) lithotype 10B.

3-14 Compositional plots of sandstones from (A) lithotype 9A, (B) lithotype 9B, and (C) lithotype 9C.

4-1 Palaeogeography of the study area during Moolooloo Formation time.

5-1 Facies maps for (A) time interval I, and (B) time interval IIa.

5-2 Facies maps for (A) time interval IIb, and (B) time interval IIc.

5-3 Facies maps for (A) time interval IIIa, and (B) time interval IIIb.

5-4 Palaeocurrent maps for (A) time interval I, and (B) time interval IIa.

5-5 Palaeogeography of the study area during time interval I.

5-6 Stratigraphic column through one lithotype 5A-5B cycle from the section at Middle Gorge (MDG).

5-7 (A) Relationships within individual, and between adjacent crossbed sets.

(B) Envisaged origin of the cyclic lithotype 5A-5B arrangement.

5-8 Palaeocurrent maps for (A) time interval IIc, and (B) time interval IIIb.

5-9 'Fossil' locality map.
5-10 Isopach map of the upper Brachina Subgroup.

5-11 Palaeogeography of the study area during time interval II.

5-12 Palaeogeography of the study area during time interval III.

5-13 Ternary delta classification scheme and the trend of delta evolution within the upper Brachina Subgroup.

6-1 Diagrammatic cross-section relating upper Brachina Subgroup facies associations to episodes of tectonic uplift.

6-2 Facies maps for (A) time interval IVa, and (B) time interval IVb.

6-3 Facies maps for (A) time interval Va, and (B) time interval Vb.

6-4 Facies maps for (A) time interval VIa, and (B) time interval VIb.

6-5 Palaeocurrent maps for (A) time interval IV, and (B) time interval Va.

6-6 Palaeogeography of the study area during time interval IV.

6-7 Palaeocurrent maps for (A) time interval Vb, and (B) time interval Vla.

6-8 North-south cross-section through facies association 9 between Parachilna Gorge (PCG) and Ulowdna Range (UDA).

6-9 Palaeogeography of the study area during time interval V.

6-10 Palaeogeography of the study area during time interval VI.

7-1 Facies map for time interval VII.

7-2 Palaeogeography of the study area during time interval VII.

7-3 (A) Extent of upper Brachina Subgroup-Bunyeroo Formation disconformity within the study area.

(B) Stratigraphic section across the upper Brachina Subgroup-Bunyeroo Formation boundary at the Petanna Gorge Section (PGS).

(C) Detailed sketch map of the upper Brachina Subgroup-Bunyeroo Formation boundary at Buckaringa Gorge (BG).

7-4 Diagrammatic sketch relating Uplifts II and III to lithotype deposition during the development of the upper Brachina Subgroup disconformity.

8-1 Sequence of spherulite-like fragment alteration.
8-2 Flow diagram relating the texture of the sandy lithotypes to their source, sedimentation processes and depositional environments.

8-3 (A)-(C) Example of principal component analysis of petrologic data from sandstones of the upper Brachina Subgroup.

(D) Example of cluster analysis of petrologic data from sandstones of the upper Brachina Subgroup.
<table>
<thead>
<tr>
<th>Table Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1</td>
<td>Historic development of the major stratigraphic subdivisions within the Adelaide Supergroup.</td>
</tr>
<tr>
<td>2-1</td>
<td>Stratigraphic subdivision of the Brachina Subgroup.</td>
</tr>
<tr>
<td>2-2</td>
<td>Observed lithotype transition matrix ((t_{ij})) for the upper Brachina Subgroup and bounding formations.</td>
</tr>
<tr>
<td>2-3</td>
<td>Expected lithotype transition matrix ((e_{ij})) for the upper Brachina Subgroup and bounding formations.</td>
</tr>
<tr>
<td>2-4</td>
<td>Difference matrix ((d_{ij})) for the upper Brachina Subgroup and bounding formations.</td>
</tr>
<tr>
<td>2-5</td>
<td>Directional sedimentary structures analysed for palaeocurrent directions from each facies association within the upper Brachina Subgroup.</td>
</tr>
<tr>
<td>2-6</td>
<td>Depositional flow regimes of each lithotype within the upper Brachina Subgroup, and of the environment responsible for their deposition.</td>
</tr>
<tr>
<td>5-1</td>
<td>Characteristics of the two major delta types found within the deltaic phase of the upper Brachina Subgroup.</td>
</tr>
</tbody>
</table>
LIST OF PLATES

Plate Number

4-1 a. Stromatolitic laminations - Nuccaleena Formation (CBC).
 b. Tepee structure - Nuccaleena Formation (BCC).
 c. Graded bedding from siltstone to shale - Moolooloo Formation (WNG).
 d. Ripple-drift cross-laminated sandstone intercalated with siltstone - Moolooloo Formation (WNG).
 e. Casts of flute marks developed on the base of a siltstone bed - Moolooloo Formation (ABC).
 f. Casts of tool marks developed on the base of a siltstone bed - Moolooloo Formation (ABC).

4-2 a. Small-scale load structures developed at the base of a siltstone bed - Moolooloo Formation (BNC).
 b. Moulds of small-scale load structures - Moolooloo Formation (BNC).
 c. Small columnar dewatering outlets within a massive siltstone - Moolooloo Formation (BNC).
 d. Siltstone dyke - Moolooloo Formation (BGL).
 e. Structure resembling fleur-de-lys pattern - Moolooloo Formation (ABC).
 f. Cast of groove structure - Moolooloo Formation (MCH).
 g. Frondescent load structure - Moolooloo Formation (MCH).
 h. Toroid-like load structure - Moolooloo Formation (MCH).

5-1 a. Recumbent crossbedding - Lithotype 3A (NBR).
 b. Very shallow cross-stratification - Lithotype 3B (MDG).
 c. Soft-sediment deformation - Lithotype 1B (ODW).
 d. Pi crossbedding - Lithotype 1A (CCR).
 e. Slurry-slump structure displaying well-laminated sandstone becoming disrupted to the right - Lithotype 1A (CCR).
 f. Load and ball-and-pillow structures of sand within massive siltstone - Lithotype 1A (BGL).
 g. Siltstone displaying convolute laminations bounded by a flatly bedded shale-siltstone sequence - Lithotype 1A (WCW).
h. Intraformational conglomeratic tuffaceous siltstone – Lithotype 1A (WWG).

5-2

a. Erosional contact between two sets of crossbedded sandstone – Lithotype 1A (ARR).

b. Cast of large polygonal desiccation crack – Lithotype 5A (WSF).

c. Partial cast of large polygonal desiccation crack with casts of possible hail impact structures – Lithotype 5A (MDG).

d. Casts of possible hail impact structures within large polygonal desiccation crack – Lithotype 5A (MDG).

e. Surface appearance of Maslins Beach (south of Adelaide) after rain shower on 29.8.75.

f. Possible bubble track – Lithotype 5A (MTG).

g. Possible mudball moulds – Lithotype 5A (BKG).

5-3

a. Shale pebble moulds – Lithotype 5A (PRP).

b. Ripple marks developed upon crossbed foreset face – Lithotype 5A (PRT).

c. Interference ripple pattern developed between asymmetric current ripples and asymmetric wave-dominated combined-flow ripples – Lithotype 5A (BKG).

d. Outcrop appearance of lithotype 5A showing herringbone crossbedding – (WKC).

e. Reactivation surface separating crossbed sets – Lithotype 5A (MDG).

f. Straight- to wavy-crested asymmetric megaripples with superimposed asymmetric current ripples – Lithotype 5A (WKG).

g. Scour, or lunate megaripple with superimposed asymmetric current ripples – Lithotype 5A (PRT).

5-4

a. Crossbedding with slumped foreset faces – Lithotype 5A (WNG).

b. Load structures – Lithotype 5A (WSF).

c. Casts of shrinkage (synaeresis) cracks exposed on the base of a sandstone bed – Lithotype 5A (MDG).

d. Contemporaneous load structures and casts of shrinkage (synaeresis) cracks – Lithotype 5A (MDG).

e. Casts of shrinkage (synaeresis) cracks developed between the lenses of a connected lenticular sandstone bed – Lithotype 5A (SWG).
f. Casts of sinuous shrinkage (syinaeresis) cracks developed within the troughs of symmetric ripple marks - Lithotype 5A (WSF).

g. Cast of possible oddy scour. Weak current lineation trending toward 087° - Lithotype 5A (MDG).

h. Siltstone ball-and-pillow structure (pseudonodule) within flatly laminated shale - Lithotype 5B (MDG).

5-5

b. Casts of shrinkage (syinaeresis) cracks exposed on the base of a massive sandstone bed - Lithotype 4A (MDG).

c. Casts of flute rill marks exposed on the base of a massive sandstone bed - Lithotype 4A (MDG).

d. Lithotypes 3A-4A transition zone displaying large planar crossbedding at the base and smaller planar and trough crossbedding above - (north of MDG).

e. Flatly laminated to thinly bedded shale-siltstone sequence - Lithotype 1A (WCW).

f. Basal surface exposure of loaded siltstone layer - Lithotype 1A (WCW).

5-6

a. Upper surface exposure of soft-sediment deformed siltstone layer - Lithotype 1A (ARR).

b. Upper surface exposure of soft-sediment deformed siltstone layer - Lithotype 1A (ARR).

c. Disrupted bedding within tuffaceous siltstone - Lithotype 1A (EPB).

d. Ball-and-pillow structures - Lithotype 1A (ARR).

e. Ball-and-pillow structures - Lithotype 1A (WCW).

f. Wrinkle marks developed on ball-and-pillow structure - Lithotype 1A (ABC).

g. Shrinkage (syinaeresis) cracks developed on ball-and-pillow structure - Lithotype 1A (ABC).

h. Basal surface of soft-sediment deformed siltstone suggesting possible flowage - Lithotype 1A (ARR).

5-7

a. Possible lines of sediment flowage - Lithotype 1A (WGC).

b. Irregular bedding surface - Lithotype 1A (NBG).
c. Large-scale load structures – Lithotype 1A (ARR).

d. Moulds of small-scale load structures – Lithotype 1A (WWG).

e. Load-casted ripple marks – Lithotype 1A (ABC).

f. Soft-sediment deformation suggestive of movement toward bottom left – Lithotype 1A (SPG).

g. Highly contorted laminations and ball-and-pillow structures – Lithotype 1A (WCW).

h. Upward sand injection structures developed on the upper surface of the bed shown in plate 5-1f – Lithotype 1A (BGL).

5-8

a. Sand filled shrinkage (synaeresis) cracks – Lithotype 1A (ARR).

b. Wrinkle marks developed within ripple trough – Lithotype 1A (ABC).

c. Symmetric wave ripples. Surface later cracked by load-induced synaeresis mechanism – Lithotype 1A (ARR).

d. Polygonal interference ripple mark pattern – Lithotype 1A (ABC).

e. Flat-topped microripples – Lithotype 1A (SNH).

f. Flat-topped asymmetric ripple marks with current lineation developed on the eroded crestlines – Lithotype 1A (ARR).

g. Symmetric wave ripples, flat-topped and with secondary ripples in troughs, and asymmetric current ripples in shallow channel – Lithotype 1A (ARR).

5-9

a. Cross-lamination and 'pseudoripples' – Lithotype 1A (ABC).

b. Thin, connected lenticular sandstone bed – Lithotype 1A (ARR).

c. Beta crossbedded sandstone within shale-siltstone sequence – Lithotype 1A (BGL).

d. Large shale clast incorporated in sand infill of scour structure – Lithotype 1A (BGL).

e. Cobble within siltstone – Lithotype 1A (DDR).

f. Problematic sedimentary structure – Lithotype 1A (ARR).

5-10

a. Horizontal cross-sectional outline of both circular and ovoid fossils(?) – Lithotype 1A (CBC).

b. Vertical cross-sectional outline of fossil(?) structure showing flat, U-shaped base and infill bearing shale and siltstone intraclasts – Lithotype 1A (BNC).
c. Outcrop of fossil(?) resting solely within shale and showing a lopsided, U-shaped vertical section with a shallow central indentation – Lithotype 1A (CBC).

d. Radial markings on the base of a fossil(?) – Lithotype 1A (BGL).

e. Fossil(?) resting within shale, but terminating its base upon a massive siltstone layer – Lithotype 1A (BGL).

g. Basal surface of cross-laminated fine sandstone bearing impressions of possible medusoids – Lithotype 1A (EPB).

h. Enlargement of medusoid(?) arrowed in plate 5-10g.

5-11

a. Thin beds to thick isolated lenses of sandstone within dominantly shale-siltstone sequence – Facies Association 2 (ODW).

c. Upper surface of sandstone displaying raindrop impressions – Facies Association 2 (EPB).

d. Flat-topped symmetric wave ripples – Facies Association 2 (PRL).

e. Flat-topped asymmetric wave ripples with eroded sand lying within the troughs to the southwest of each eroded crestline – Facies Association 2 (MMC).

f. Flat-topped symmetric wave ripples with unaltered secondary set in the troughs – Facies Association 2 (WGW).

g. Wave ripples with rounded crests and pointed troughs – Facies Association 2 (PCG).

h. Symmetric wave ripples – Facies Association 2 (ARR).

5-12

a. Interference wave ripples – Facies Association 2 (ABC).

b. Interference ripple pattern between asymmetric current ripples and asymmetric wave ripples – Facies Association 2 (PRL).

c. Interference wave ripple pattern with major set flat-topped and shrinkage (synaeresis) cracks preserved in the troughs – Facies Association 2 (ARR).

d. Sand filled shrinkage (synaeresis) cracks below sandstone lens – Facies Association 2 (ABC).

e. Load structure generated from ripple cross-laminated sandstone – Facies Association 2 (APR).
f. Load and flame structures within siltstone - Facies Association 2 (ARR).

g. Soft-sediment deformation of sand within siltstone - Facies Association 2 (MDG).

h. Ball-and-pillow structures within shale beneath well-laminated siltstone - Facies Association 2 (ARR).

a. Section through ball-and-pillow structure (pseudonodule) - Facies Association 2 (SPG).

b. Wrinkle marks - Facies Association 2 (MCH).

c. Gamma crossbedding - Facies Association 2 (ARR).

d. Ripple-drift cross-laminated sandstone layer displaying erosional base - Facies Association 2 (ARR).

e. Shale pebbles at base of sand filled scour structure - Facies Association 2 (ARR).

g. Herringbone crossbedding capped by parallel lamination and flat-topped symmetric wave ripples - Facies Association 2 (ARR).

h. Xi crossbedding - Facies Association 2 (SNH).

6-1 a. Shale pebbles within well-laminated fine sandstone - Facies Association 6 (MDG).

b. Herringbone crossbedding with sand grading from coarse at the base of the foreset to medium at the top - Facies Association 8 (MDG).

c. Wavy crested symmetric wave ripple marks - Facies Association 8 (RMG).

d. Flat-topped ripple marks - Facies Association 8 (MDG).

e. Gorge cut through facies association 7 showing cyclic arrangement of lithotypes 7A and 7B (ARR).

f. Sharp conformable contact between facies association 2 and lithotype 7A (ARR).

6-2 a. Flat-topped wave ripples with unaltered secondary set developed in the troughs - Lithotype 7A (BGL).

b. Casts of possible halite crystals - Lithotype 7A (DDR).

c. Interference wave ripples - Lithotype 7A (PCG).
d. Asymmetric (catenary) current ripples – Lithotype 7A (ARR).

e. Ripple-like load structures – Lithotype 7A (BGL).

f. Small-scale load structures – Lithotype 7A (EPB).

g. Large-scale load structures – Lithotype 7A (PCG).

h. Small-scale load structures and problematic trail-like structure – Lithotype 7A (PRL).

6-3

a. Shrinkage (synaeresis) cracks – Lithotype 7A (WPC).

b. Shrinkage (synaeresis) cracks radiating from a small load structure – Lithotype 7A (DDR).

c. Casts of stationary tool marks – Lithotype 7A (RNP).

e. Casts of groove marks – Lithotype 7A (PCG).

f. Casts of bounce marks – Lithotype 7A (EPB).

g. Parting lineation – Lithotype 7A (ARR).

6-4

b. Recumbent crossbedding – Lithotype 7A (SPG).

c. Large-scale multi-generation scour structure – Lithotype 7A (ARR).

d. Interbed of coarse sandstone within lithotype 7A (PCG).

e. Undulose bedding surface – Lithotype 9A (NBG1).

g. Conglomeratic coarse sandstone – Lithotype 9C (CCR).

6-5

b. Asymmetric (catenary) current ripples – Lithotype 9B (SBG2).

c. Plénonal crossbedding showing graded foresets – Lithotype 9C (ABC).

e. Erosional contact between lithotypes 7A and 9C (BGL).
f. Microconglomerate of lithotype 9A compared to present day creek-rock from Arkaba Station (near ECR).

g. Large-scale planar crossbedding – Lithotype 10A (EBH).

7-1

b. Casts of flute marks – Bunyeroo Formation (HMG).

c. Casts of small groove marks – Bunyeroo Formation (MCH).

d. Pencil cleavage of Bunyeroo Formation shales (HMG).

e. Quartzite cobble in conglomerate resting above disconformity II (PTG).

f. Conglomerate resting above disconformity II (PTG).

g. Small-scale load structures at contact between shales of lithotype 9B and coarse sandstones of lithotype 9C (FCG).

h. Thin lens of coarse sand within the Bunyeroo Formation (CCR).

8-1

a. Section through well- to cross-laminated sandstone with tuffaceous sandstone interbeds – Lithotype 1A (BNC).

b. Intraformational conglomeratic tuffaceous siltstone with tuff band at top – Lithotype 1A (RDR).

c. Soft-sediment deformed tuffaceous siltstone – Lithotype 1A (RDR).

d. Chert nodules within interlaminated siltstones and sandstones – Lithotype 1A (HLC).

e. Uncompressed shards within ferruginous siltstone (CCR).

f. Compressed shards within fine sandstone and chloritic spherulites displaying Fe rims and alteration to quartz (ARR).

g. Chlorite and chert spherulites displaying Fe rims. Note alteration of chloritic to chert and carbonate (RDR).

h. Spherulite showing quartz mosaic having optical continuity with surrounding detrital quartz grains (MDG).

8-2

a. Reworked quartz overgrowth (SNH).

b. Haematitic rim separating detrital quartz grain from quartz overgrowth (RMF).

c. Silicified oolitic(?) limestone rock fragment (AGG).
d. Well-rounded detrital tourmaline (BJR).

e. Secondary specular haematite (PCG).

f. Authigenic tourmaline growth on well-rounded detrital tourmaline (BJR).

g. Sutured contacts between adjacent quartz grains (WMT).

h. Optical effects of straining by pressure solution (MCH).
LIST OF APPENDICES

Appendix Number

I Stratigraphic Sections through the upper Brachina Subgroup A1
 Map of section localities A2
 List of section abbreviations A3
 Sections along traverse A-A' A4
 Sections along traverse B-B' A5
 Sections along traverse C-C' A6
 Key to Reference and Subsidiary Sections A7
 Detail of Reference Section ABC A8
 Detail of Subsidiary Section MDG A9

II Computer Listing of Palaeocurrent Analysis Program A10

III Palaeocurrent Analysis Results A17
 Lithotype 1A A18
 Facies Association 2 A19
 Lithotype 3A A20
 Lithotype 4A A21
 Lithotype 5A A22
 Facies Association 6 A26
 Lithotype 7A A26
 Facies Association 8 A29
 Lithotype 9A A29
 Lithotype 9B A30
 Lithotype 9C A30
 Lithotype 10A A31

IV Tourmaline Analysis Results A32
 Locality map of sections analysed for tourmaline A33
 Key to tourmaline analysis A34
Grain count of each facies association from each section

Comparison of each facies association from each section with the average for that facies association, and the average of each section with the average for the entire sequence

Comparison of each facies association from each section with the average for that section, and the average of each facies association with the average for the entire sequence

Percentage columns of tourmaline types from sections AGG, RMG, MDG, and MKT

Percentage columns of tourmaline types from sections WMY, BJR, BGL, ARR and SNH

V.A. Reprint of the Paper:

"Stratigraphy of the lower Wilpena Group (late Precambrian), Flinders Ranges, South Australia" by P.S. Plummer, published in Transactions of the Royal Society of South Australia, Volume 102, pages 25-38.

V.B. Pre-print of the Paper:

"Palaeoenvironmental Significance of the Nuccaleena Formation (late Precambrian), central Flinders Ranges South Australia." by P.S. Plummer
ABSTRACT

The stratigraphy of the late Precambrian upper Brachina Subgroup has been studied in detail throughout the southern and central Flinders Ranges of South Australia. Ten stratigraphically significant facies associations are readily recognisable within which 18 separate and distinct lithotypes have been defined and described. The complex regional stratigraphic arrangement has been simplified by using a Markov Chain technique of analysis. The resultant lithotype stratigraphy is used as the base upon which the palaeogeographic history of the upper Brachina Subgroup is reconstructed.

A detailed sedimentologic analysis of each lithotype was undertaken in order to ascertain their individual palaeoenvironments of deposition. This involved a petrologic analysis of the arenaceous component of each lithotype, the analysis of the suite of sedimentary structures contained within each lithotype, and the analysis of all directional structures for palaeocurrent directions. For this latter analysis a new computer technique was developed whereby up to 3 individual populations can be separately analysed from any one distribution.

Deposition of the upper Brachina Subgroup succession was due to a phase of uplift tectonism and minor accompanying basic volcanism. Within this succession two distinct depositional episodes are readily discernable. During the first episode a massive sand influx flowed from a westerly source region (the Gawler Craton) into a shallow submerged, though possibly tidally influenced mudflat as a prograding deltaic succession (the "Alligator River Delta"). This initial delta developed in the western region of the Adelaide 'Geosyncline' as a fluvial and tide modified, wave-dominated system which was fed by stable outlet channels, protected by barrier-bars and surrounded by a low intertidal aerobic
mudflat. Preserved within this mudflat deposit are the probable body fossils of primitive cup-shaped coelenterates(?), which were possibly the ancestral organisms of the Ediacara assemblage. With continued sediment influx and basin shallowing, this initial delta system evolved to an unbarred fluvial modified, tide-dominated delta which was fed by migrating channels and surrounded by an intertidal mudflat. This mudflat was anaerobic, possibly due to the activity of abundant microscopic organisms.

The second depositional episode of the upper Brachina Subgroup developed when tectonic instability affected a portion of the basin's western margin (Uplift I). As a result, part of the previously deposited deltaic succession was eroded and reworked into a vast, thin intertidal sandflat which extended through the central region, and into the northern region of the Adelaide 'Geosyncline'. A second phase of tectonic instability (Uplift II) caused renewed activity along the basin's western margin, and also induced the emergence of at least two islands within the basin. Around these islands a thin, dominantly fluvial deposit was generated. The final phase of tectonic instability (Uplift III) affected only the western margin of the basin, and produced a narrow sand deposit of probable beach origin. Meanwhile, within the basin gradual subsidence induced the development of a shallow, possibly tidal aerobic mudflat and marked the end of the upper Brachina Subgroup phase of sedimentation.
ACKNOWLEDGEMENTS

This thesis was undertaken during the tenure of a Commonwealth Postgraduate Research Award, and its production has been aided and abetted by many people; people to whom the author is very grateful.

First and foremost my sincerest thanks are extended to my supervisor, Dr Victor A. Gostin, for his enthusiasm in this project from its inception.

Members of the Geology Department to whom I owe thanks include Dr Brian Daily, Dr Richard J. F. Jenkins and my fellow sedimentologists Messrs David Gravestock, Peter Moore and Mrs Robin Uppill for much discussion about Precambrian rocks, fossils and environments; Mr Michael Fitzgerald for assistance with the computer programs used in the petrologic analysis; Messrs Jeff Trevelyan and Sepp Trzicky of the thin section laboratory for their (at least outwardly) sawings and grindings of the highly resistant backbone of this thesis – namely quartzite; Mr Richard Barrett for his photographic work; and all other members of the department, both permanent and temporary, who became involved in discussions about various aspects of this thesis.

Mr Philip I. Leppard of the Statistics Department of this campus is thankfully acknowledged for programming the computer technique of palaeocurrent analysis, whilst Crosby Sensitizing are thanked for their reproductions of the stratigraphic columns found in the back pocket.

All samples collected from National Parks were done so under permits issued by the National Parks and Wildlife Service, whilst aid in establishing many of the section and sample localities was gained from aerial photographs supplied by the Department of Lands.

Lastly I wish to sincerely thank two people whose influence
extended far beyond that required of them by the individual tasks they performed for this thesis. They are my sister, Mrs Sue Gibson, whose nimble fingers produced the typescript you are now reading, and Miss Priya Aiyar, who proof-read the entire text.
DEDICATION

This thesis is dedicated to my parents in the hope that it is at least partial repayment for their 25 years faithful support.