UNIVERSITY ENROLMENT
PLANNING

by

L.H. CAMPBELL
B.Sc. (Adelaide)

A thesis submitted for the degree of
Doctor of Philosophy
in the University of Adelaide.
Department of Applied Mathematics
September, 1975.
TABLE OF CONTENTS

Summary (iv)

Signed Statement (vi)

Acknowledgements (vii)

Chapter 1. The background to university enrolment planning

1.1 Introduction 1

1.2 The non-growth phase 5

1.3 Models of retention-rate characteristics 8

1.4 A forecasting method in use at the University of Adelaide 22

1.5 Estimation of lifetimes in Ph.D.-degree course 25

1.6 Conclusions 38

Chapter 2. The single-course, single-grade case

2.1 Introduction 40

2.2 Formulation of the model 41

2.3 An optimal solution of the linear programme 45

2.4 Some other objective functions 51

2.5 Solving the linear programme 55

2.6 The programme with integrality constraints 60

2.7 The B.Sc.-degree course at the University of Adelaide 63

2.8 Summary 69
Chapter 3. Extensions of the basic model

3.1 Introduction 72
3.2 Retention rates not non-increasing 73
3.3 The single-course, multi-grade case 77
3.4 The multi-course, single-grade case 88
3.5 Conclusion 93

Chapter 4. Discussion

4.1 Applicability of the results 95
4.2 The non-growth period and moving towards it 97
4.3 Possibilities for further work 99

References 101
SUMMARY

At the University of Adelaide, the total number of students enrolled in any course is controlled by quotas on the number of new entrants to the course each year. A linear relationship is used to forecast total enrolment given the number of new students in each previous year; for future years, the number of new students is taken to be the size of the quota.

Chapter 1 relates the methods in use at the University of Adelaide to the work of other authors and demonstrates how a Markov model may be used to obtain the lifetimes of students in a particular course, namely the Ph.D.-degree course. Chapter 2 then develops a linear programming model which mimicks the forecasting method already in use and which determines the intake quotas over a period of years that use as much as possible of the course capacity while satisfying certain constraints. These constraints ensure that the total enrolment each year is no greater than the capacity in that year and that the intakes are non-decreasing and no greater than some maximum value. In particular, the programme is designed to be used to determine strategies which move the course into a constant enrolment, or non-growth, period while accounting for restrictions on the permissible rate of growth. It is shown that the special structure of the problem may be exploited to find a particular solution which is optimal for several, commonly encountered objective functions. The requirement that the intakes should be integral is discussed and is shown to pose very little additional difficulty. An example from the University of Adelaide is used to illustrate the methods.

Chapter 3 considers extensions of the basic model (the single-grade, single-course case) to situations where there are several
grades within a course with capacities on some of these grades or where several inter-related courses are to be planned at the same time. Finally, chapter 4 contains a discussion of the applicability of the work of the thesis and suggests possibilities for further extensions.
ACKNOWLEDGEMENTS

I should like to thank my supervisors, Professor R.B. Potts and Dr. R.J. Aust, for their guidance and encouragement throughout the progress of this research. I also gratefully acknowledge the assistance of members of the University Administration, particularly the following: the Academic Registrar, Mr. H.E. Wesley Smith, who gave me the full co-operation of his Office; the Statistics Officer, Mr. R.E. Smith, for his constant interest and willingness to discuss problems; and the other members of the A.C.S.U., for their fruitful discussions and criticism.

Finally, I wish to acknowledge the generosity of General Motors-Holden's, who supported me by their South Australian Post-graduate Research Fellowship, and the patience and good cheer of Ms. H. Williams, who typed all this.