Landscape Quality Assessment of South Australia

Andrew Lothian

Dissertation for Doctorate of Philosophy

Department of Geographical & Environmental Studies
University of Adelaide
2000
I lift my eyes to the hills - where does my help come from?
My help comes from the Lord, the Maker of heaven and earth

Psalm 121:1-2
New International Version
CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>PART 1 THEMATIC REVIEW</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Philosophy of Aesthetics</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>Gestalt Psychology</td>
<td>27</td>
</tr>
<tr>
<td>4</td>
<td>Perception and Colour</td>
<td>43</td>
</tr>
<tr>
<td>5</td>
<td>Psychoanalysis and Aesthetics</td>
<td>59</td>
</tr>
<tr>
<td>6</td>
<td>Culture and Landscape</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>PART 2 REVIEW OF LANDSCAPE STUDIES</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Twentieth Century Landscape Studies</td>
<td>147</td>
</tr>
<tr>
<td>8</td>
<td>Findings from Twentieth Century Landscape Studies</td>
<td>185</td>
</tr>
<tr>
<td></td>
<td>PART 3 LANDSCAPE QUALITY ASSESSMENT OF SOUTH AUSTRALIA</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Acquiring the Data</td>
<td>251</td>
</tr>
<tr>
<td>10</td>
<td>Analysis of Preferences</td>
<td>281</td>
</tr>
<tr>
<td>11</td>
<td>Application of the Results</td>
<td>382</td>
</tr>
<tr>
<td>12</td>
<td>Discussion and Conclusions</td>
<td>413</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>421</td>
</tr>
</tbody>
</table>
DISCLAIMER

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being available for loan and photocopying.

Andrew Lothian

14 September 2000
ACKNOWLEDGEMENTS

I acknowledge with sincere appreciation the assistance and encouragement given to me by many individuals over the eight years of preparing this dissertation.

In particular I thank the following:

My family, Cynthia my wife, and Nicholas, Clare and Joy who grew up during the course of the thesis

My supervisors, Associate Professor Nick Harvey, Department of Geographical and Environmental Studies, Dr John Brebner, Associate Professor, Department of Psychology, and Professor Anthony Radford, School of Architecture, University of Adelaide

Bob Willson and Mark Brown of the Computer Complex, Department of Psychology for assistance with SPSS

The librarians of the Barr Smith Library, University of Adelaide, the best library in Adelaide

Dr Ray Correll and Mary Barnes, Division of Mathematics and Information Sciences, CSIRO for statistical assistance

Dr Kym Nicolson, Jason Phillips and Linda Vears, GIS Applications Branch, Planning South Australia for mapping assistance

Jenny Deans, Graham Blair, Colin Harris, Dr Tony Robinson, Brendan Lay, Peter Copley for the loan of slides and photographs

Paul Edstein for editorial assistance

All individuals who participated in the slide rating and scoring sessions
ABSTRACT

The object of this thesis is to provide, through a thorough analysis of human perception and interaction with aesthetics and landscape quality, a comprehensive basis on which to develop a credible methodology for the large-scale assessment of perceived landscape quality.

The analysis of human perception and interaction with aesthetics and landscape quality is gained by inquiring in depth into a range of theoretical constructs from key disciplines, cultural aspects, and empirical studies covering:

- the contribution of philosophers to aesthetics
- the psychology of perception and colour
- the contribution of Gestalt psychology to aesthetics
- the psychoanalytical construct of human responses to aesthetics
- the influence of culture on landscape preferences, tracing the changing perceptions of mountains, the portrayal of landscapes in art, and the design of parks and gardens
- a review of over 200 surveys of landscape quality in the late 20th century, including typologies and theories of landscape quality

Based on the analysis of these and the knowledge gained, an empirical study is formulated and conducted, comprising a study of landscape quality of South Australia, an area of nearly 1 million km$^{-1}$.

This involves, firstly, the acquisition of data covering the delineation of landscape character regions for the State, photography of these landscapes, derivation of a set of representative slides, and rating of these by groups of participants.

Secondly, these preference ratings are comprehensively analysed on the basis of the attributes of the scenes covering land form, land cover, land use, water bodies, naturalism, diversity and colour.

Thirdly, the results are applied as follows:

- a map of landscape quality of South Australia is derived
- the results are used to predict the effect that changes in land use (e.g. clearance of trees) will have on landscape quality
- the theoretical constructs of landscape quality are evaluated on the basis of the preference ratings
- a protocol is detailed to guide the undertaking of large-scale landscape quality assessment

The thesis thus fulfils the objective of conducting a thorough analysis of human perception and interaction with, aesthetics and landscape quality, to provide a basis for developing a credible methodology for the large-scale assessment of perceived landscape quality.
PREFACE

This thesis represents the fulfilment of a personal quest, a search for understanding why we humans like beautiful landscapes, indeed, why we can regard landscapes as beautiful.

Originating in bushwalking trips to natural areas in Australia in the 1960s this quest was stimulated by travel in Europe, North America, Israel and New Zealand over the ensuing decades. The following quote from personal notes on a visit to the Lake District in England in 1984 indicates the state of my interest at the time:

"The lakes are simply superb, delightful and beautiful. I kept asking myself, what is it that makes them so lovely? Is it the variety of colours - the lush green, the mottled hues of trees, the blue lakes, the bright red and purple of the rhododendrons, the yellow buttercups; is it the land form - ever changing, contorted, full of surprises around every corner, different everywhere you look, new and exciting, grassy fields which sometimes look as though they are green felt draped over a skeleton of rocks; or is the hand of man - apparent in the herds of straggly woolly sheep crying out to be shorn, the grey flat stone walls across fields, the delightful little villages surrounded by enclosed fields, and the stands of woods.

"Each one of these elements - land form, land use, and land cover are the elements of landscape and, in the case of the lakes, each on their own would be sufficient to be a beautiful place. Put all three together and you have an outstanding area.

Why is it that we humans seem to like particular scenes though puzzles me. Yet there was no doubt in my mind that the scree slopes, forested with planted softwoods above Thirlmere, just didn't compare with the variety of colour and form, of "bumpy" fields, of farm animals, of a lakeshore, of Esthwaite or Windermere or Grassmere."

The quest for answers reached a threshold point in the early 1990s in a realisation that, if explanation was to be obtained to achieve personal satisfaction, it would only be fulfilled through a process of rigorous study and inquiry. Hence the PhD.

The personal motivations for the quest are relatively straightforward to discern. In the late 1960s environment management, my real interest, did not exist as a tertiary course. So I trained in urban and regional planning followed by post graduate studies [MSc Environment Resources] in the UK [University of Salford, 1973]. Returning to Australia, I commenced working in the newly formed South Australian Department of Environment and Conservation, the agency responsible for environment management in the mid 1970s.

Working across environmental impact assessment, environmental planning, environment policy development, environmental economics, state of environment reporting, mapping of vegetation clearance, and working across state as well as national issues, I became familiar with, and in many ways contributed to, this process of explanation and management of environmental components.

In the early 1980s I supervised a master's thesis on wilderness conservation in South Australia [Lesslie, 1981] and this triggered a realisation that landscape, like wilderness, was a qualitative aspect of the environment deserving of explanation. If this could be achieved with wilderness in a program of work which later [1995] culminated in mapping of wilderness quality across Australia, I reasoned why could not a similar outcome be achieved for landscape?

Yet attempts at landscape quality assessment were patchy, highly individualistic, statistically unsound in methodology and lacking comparability of technique, let alone reproducible results. Personal involvement included engaging consultants to undertake several landscape studies [Dallwitz, 1977; Sanderson, 1979], examining several theses of landscape surveys [eg Dare, 1978], and reviewing landscape studies in South Australia [Lothian, 1984].

With so much known about the environment compared with the state of knowledge 20 - 30 years previously, yet with landscape quality the one area that defied explanation, the challenge presented itself to resolve. Being able to
measure landscape quality; map it and to apply a method at a State-level and then nationally were key goals.

The quest of explanation has taken a somewhat unusual path, to the exasperation initially of my supervisors, but gradually with their understanding and forbearance that this was a personal odyssey to be enjoyed for the journey it provided, rather than for the destination that may or may not be attained. As a mature age student, the interest was definitely in the journey, the explorations of various possible explanatory pathways and alleys that sometimes were blind but worth pursuing nonetheless. The study comprised three distinct parts, reflecting a process of increasing specificity of purpose and these are the parts contained in the thesis.

The first part, the most discursive, tracks across a range of possible explanatory models. Philosophy, it was reasoned, should reveal why humans like landscapes, because beauty has been a subject of philosophers literally for millennia. Psychoanalysis with its understanding of the unconscious should have an explanation of why beauty is appreciated. Theories of perception and Gestalt psychology could surely offer understanding for the perplexed. The influence of culture on human appreciation of landscape was examined for an understanding of whether beauty is merely a cultural contrivance determined by one's cultural upbringing or something more innate. Each of these issues is subject of the exploratory papers in Part One.

Part of this exploration has resulted in the publication of a paper [Lothian, 1999] that synthesised aspects of philosophy and psychoanalysis. More papers are intended to make the fruits of this quest more widely available. By the end of the first part, one is more informed and perhaps wiser about a range of possible explanations of the central question - why humans like landscapes and some pointers for future directions of inquiry emerge.

The second part focuses on what landscape studies can say about human landscape preferences. It covers the underlying constructs or theories on which studies are based, the methodologies that have been developed to measure these preferences, and the findings of the studies. This part is exhaustive in covering over 200 surveys and provides much detailed understanding of the dimensions and characteristics of human landscape preferences.

The third and final part, the application phase, culminates the analysis of the first and second parts, an assessment of landscape quality at a State-wide level. South Australia as a whole was the subject, selected on the basis that if a methodology could work at this scale, then its application nationally would be largely a question of adequate resources, not of some fundamental inadequacy.

The methodology essentially sought to relate human preferences, the dependent variable, with the characteristics of the landscape, the independent variable, and to use this as the basis for mapping landscape quality at a State-wide level. It has involved deriving a map of landscape character for South Australia, photographing the South Australia landscape travelling nearly 20,000km throughout the State, selecting 160 slides for rating purposes and having over 300 respondents rate these in landscape quality terms. Based on this, a detailed analysis of the results was undertaken and relationships between the dependent and independent variables derived; relationships between human preferences and the physical landscape.

The result is a thesis that is believed to go a long way towards fulfilling the original quest. It is not claimed to have fulfilled this in its entirety, inevitably through the long and detailed process involved one is all too aware of shortcomings, of areas where more work is needed, of frustration in not gaining the complete understanding sought. But also the result is a sense of accomplishment, of fulfilment in what has been done. At the end the achievement has been of being more able to answer the question, why humans like landscape?, and to have applied this knowledge to its identification and measurement that can form the basis for its management and protection.
DETAILED CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contents</td>
<td>i</td>
<td></td>
</tr>
<tr>
<td>Disclaimer</td>
<td>iii</td>
<td></td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>iv</td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>v</td>
<td></td>
</tr>
<tr>
<td>Preface</td>
<td>vi</td>
<td></td>
</tr>
<tr>
<td>Detailed Contents</td>
<td>viii</td>
<td></td>
</tr>
<tr>
<td>Tables</td>
<td>xi</td>
<td></td>
</tr>
<tr>
<td>Figures</td>
<td>xvii</td>
<td></td>
</tr>
<tr>
<td>Attached CD</td>
<td>xxii</td>
<td></td>
</tr>
</tbody>
</table>

PART 1 THEMATIC REVIEW

2 Philosophy of Aesthetics

2.1 Introduction

2.2 Classical philosophy of aesthetics

2.3 Early Christian Era

2.4 Renaissance

2.5 Modern philosophy of aesthetics

2.6 British aestheticians

2.7 German philosophers

2.8 Romanticism

2.9 Contemporary philosophy of aesthetics

2.10 Philosophy of aesthetics - a summary

2.11 Integration of Kant's aesthetics with landscape theory

2.12 Objectivist vs subjectivist paradigms

2.13 Conclusions

3 Gestalt Psychology

3.1 Introduction

3.2 Origins of Gestalt

3.3 Gestalt tools of analysis

3.4 Gestalt and aesthetics

3.5 Contemporary perspective of the Gestalt contribution

3.6 Gestalt and landscape

Attachment 1 Application of Gestalt principles to landscapes

Attachment 2 Glossary of terms

4 Perception and Colour

4.1 Introduction

4.2 History of theories of visual perception

4.3 Information processing model

4.4 Visual perception mechanisms and models

4.5 Environmental psychological approaches to perception

4.6 Perception - Conclusion

4.7 Perception of colour
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.8</td>
<td>Application of perception and colour</td>
<td>58</td>
</tr>
<tr>
<td>5</td>
<td>Psychoanalysis and Aesthetics</td>
<td>59</td>
</tr>
<tr>
<td>5.1</td>
<td>Introduction</td>
<td>59</td>
</tr>
<tr>
<td>5.2</td>
<td>Basic concepts of psychoanalysis</td>
<td>59</td>
</tr>
<tr>
<td>5.3</td>
<td>Psychoanalytical approaches to aesthetics</td>
<td>63</td>
</tr>
<tr>
<td>5.4</td>
<td>Relevance of psychoanalytical approach to landscape</td>
<td>72</td>
</tr>
<tr>
<td>5.5</td>
<td>Conclusion</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>Attachment 1 Glossary of psychoanalytical terms</td>
<td>77</td>
</tr>
<tr>
<td>6</td>
<td>Culture and Landscape</td>
<td>79</td>
</tr>
<tr>
<td>6.1</td>
<td>Introduction</td>
<td>79</td>
</tr>
<tr>
<td>6.2</td>
<td>Concept of culture</td>
<td>79</td>
</tr>
<tr>
<td>6.3</td>
<td>Development of Western cultural attitudes towards landscape</td>
<td>80</td>
</tr>
<tr>
<td>6.4</td>
<td>Theme One: Attitudes to mountains</td>
<td>98</td>
</tr>
<tr>
<td>6.5</td>
<td>Theme Two: Landscape and art</td>
<td>111</td>
</tr>
<tr>
<td>6.6</td>
<td>Theme Three: Gardens, parks and the pastoral landscape</td>
<td>129</td>
</tr>
<tr>
<td>6.7</td>
<td>Summary</td>
<td>139</td>
</tr>
<tr>
<td>6.8</td>
<td>Conclusions</td>
<td>142</td>
</tr>
<tr>
<td>PART 2</td>
<td>REVIEW OF LANDSCAPE STUDIES</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Twentieth Century Landscape Studies</td>
<td>147</td>
</tr>
<tr>
<td>7.1</td>
<td>Introduction</td>
<td>147</td>
</tr>
<tr>
<td>7.2</td>
<td>Early 20th century landscape studies</td>
<td>147</td>
</tr>
<tr>
<td>7.3</td>
<td>Typologies of landscape studies</td>
<td>153</td>
</tr>
<tr>
<td>7.4</td>
<td>Characteristics of landscape preference studies</td>
<td>161</td>
</tr>
<tr>
<td>8</td>
<td>Findings of Twentieth Century Landscape Studies</td>
<td>185</td>
</tr>
<tr>
<td>8.1</td>
<td>Introduction</td>
<td>185</td>
</tr>
<tr>
<td>8.2</td>
<td>Landscape theory</td>
<td>185</td>
</tr>
<tr>
<td>8.3</td>
<td>Influence of observer on preferences</td>
<td>208</td>
</tr>
<tr>
<td>8.4</td>
<td>Mode of presentation</td>
<td>220</td>
</tr>
<tr>
<td>8.5</td>
<td>Preferences for landscapes</td>
<td>228</td>
</tr>
<tr>
<td>8.6</td>
<td>Conclusions</td>
<td>248</td>
</tr>
<tr>
<td>PART 3</td>
<td>LANDSCAPE QUALITY ASSESSMENT OF SOUTH AUSTRALIA</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Acquiring the Data</td>
<td>251</td>
</tr>
<tr>
<td>9.1</td>
<td>Methodology</td>
<td>251</td>
</tr>
<tr>
<td>9.2</td>
<td>Statistical Design</td>
<td>252</td>
</tr>
<tr>
<td>9.3</td>
<td>Derivation of Independent Variables</td>
<td>255</td>
</tr>
<tr>
<td>9.4</td>
<td>Derivation of Dependent Variables</td>
<td>267</td>
</tr>
<tr>
<td>9.5</td>
<td>Deficiencies in Responses</td>
<td>271</td>
</tr>
<tr>
<td>9.6</td>
<td>Characteristics of Participants</td>
<td>271</td>
</tr>
<tr>
<td>10</td>
<td>Analysis of Preferences</td>
<td>281</td>
</tr>
<tr>
<td>10.1</td>
<td>Approach to analysis</td>
<td>281</td>
</tr>
<tr>
<td>10.2</td>
<td>Overall statistics</td>
<td>287</td>
</tr>
<tr>
<td>10.3</td>
<td>Group statistics</td>
<td>293</td>
</tr>
<tr>
<td>10.4</td>
<td>Ratings by respondent characteristics</td>
<td>301</td>
</tr>
<tr>
<td>10.5</td>
<td>Regional analysis</td>
<td>306</td>
</tr>
<tr>
<td>10.6</td>
<td>Analysis by landscape types</td>
<td>308</td>
</tr>
<tr>
<td>10.7</td>
<td>Land form</td>
<td>319</td>
</tr>
<tr>
<td>10.8</td>
<td>Land cover</td>
<td>328</td>
</tr>
<tr>
<td>10.9</td>
<td>Land use</td>
<td>339</td>
</tr>
<tr>
<td>10.10</td>
<td>Water</td>
<td>350</td>
</tr>
<tr>
<td>10.11</td>
<td>Diversity</td>
<td>352</td>
</tr>
<tr>
<td>10.12</td>
<td>Naturalism</td>
<td>354</td>
</tr>
<tr>
<td>10.13</td>
<td>Colour</td>
<td></td>
</tr>
</tbody>
</table>
TABLES

Chapter 2 Philosophy of Aesthetics
Table 2.1 Summary of Philosophers of Aesthetics 22

Chapter 4 Perception and Colour
Table 4.1 Figure and Ground Characteristics 51
Table 4.2 Kaplans’ Informational Variables 55
Table 4.3 Average Rankings of Colour Preferences 57

Chapter 5 Psychoanalysis and Aesthetics
Table 5.1 Summary of Psychoanalytical Models of Aesthetics 74

Chapter 6 Culture and Landscape
Table 6.1 Summary of Significant Findings: Classical & Teleological Foundations 140
Table 6.2 Summary of Significant Findings: Attitudes to Mountains 140
Table 6.3 Summary of Significant Findings: Development of Landscape Art 141
Table 6.4 Summary of Significant Findings: Development of Gardens and Parks 141
Table 6.5 Objectivist and Subjectivist Positions: Summary 143
Table 6.6 Objectivist and Subjectivist Classification 143

Chapter 7 20th Century Landscape Studies
Table 7.1 Frequency of Paradigms in Studies, 1965 – 80 156
Table 7.2 Summary of Landscape Analysis Typologies 159
Table 7.3 Objectivist [physical] and Subjectivist [psychological] Paradigms 161
Table 7.4 Country of Study Location 162
Table 7.5 Purpose of Preference Studies 164
Table 7.6 Theoretical Bases of Surveys 164
Table 7.7 Instruments Used in Landscape Preference Surveys 165
Table 7.8 Derivation of Scenic Beauty Estimation [SBE] for Three Scenes 170
Table 7.9 Sample of Surveys using Questionnaires 176
Table 7.10 Shafer’s Predictive Model of Landscape Preferences 179
Table 7.11 Participants Used in Landscape Preference Surveys 181
Table 7.12 Use of Students in Landscape Preference Surveys 181
Table 7.13 Participant Characteristics 182
Table 7.14 Frequency of Participant Characteristics 182
Table 7.15 Landscape Characteristics Covered by Surveys 182
Table 7.16 Number of Characteristics Covered by Landscape Preference Surveys 183
Table 7.17 Representation of Landscapes by Surveys 183
Table 7.18 Form of Photographs Used in Surveys 183
Table 7.19 Forms of Statistical Analysis Used in Surveys 183
Table 7.20 Assessment of the Findings of Studies 184

Chapter 8 Findings of Landscape Studies
Table 8.1 Comparison of Most & Least Attractive Trees 187
Table 8.2 Informational Processing Factors as Predictors of Preference for Groups 199
Table 8.3 Relationship between predicted values & preference ratings 200
Table 8.4 Physical Attributes of Mystery 200
Table 8.5 Influence of Personality on Landscape Preferences [correlations] 211
Table 8.6 Correlation [Pearson] matrix 212
Table 8.7 Comparison of Preferences between Groups 217
Table 8.8 Comparison of On-site and Photograph Ratings 223
Table 8.9 Comparison of Field and Laboratory Assessments 224
Table 8.10 Preferences in open-ended responses 224
Table 8.11 Content in open-ended responses 220
Table 8.12 Effect of Labels on Photographs 226
Table 8.13 Galvanic Responses to Scenes and Descriptions 226
Table 8.14 Correlation of Variables with Preference 229
Table 8.15 Comparison of Mean Scores for Tranquillity and Preference 230
Table 8.16 Frequency of scenes by landform and scenic preference score 235
Table 8.17 Regression Coefficients for Specific Landscape Dimensions 235
Table 8.18 Shafer’s Predictive Model of Landscape Preferences 239
Table 8.19 Summary of Positive and Negative Aspects of Trees and Forest Management 240
Table 8.20 Features Viewed from Road in Rockies 242
Table 8.21 Influence of Naturalism on Rating of South Australian Landscapes 243

Chapter 9 Acquiring the Data
Table 9.1 Examples of Statistical Analysis by Landscape Studies 253
Table 9.2 Preference Rating of Similar Scenes 254
Table 9.3 Summary of Landscape Photographic Trips 258
Table 9.4 Location of All Slides 262
Table 9.5 Summary of State Landscape Character Derivations 262
Table 9.6 Landscape Regions of South Australia 263
Table 9.7 Landscape Regions and Landscape Units 264
Table 9.8 South Australian Landscape Types 265
Table 9.9 Regional Distribution of Rating Slides 265
Table 9.10 Landscape Types Represented by Rating Slides 266
Table 9.11 Examples of Rating Scales 267
Table 9.12 Participant Information Sought 267
Table 9.13 Viewing Intervals for Slides 267
Table 9.14 Summary of Surveys on Instructions to Participants 269
Table 9.15 Slide Rating Sessions 270
Table 9.16 Participation rates in rating sessions 261
Table 9.17 Age of Participants 272
Table 9.18 Gender of Participants 272
Table 9.19 Educational levels of participants 272
Table 9.20 Educational levels of community 273
Table 9.21 Income Comparison 273
Table 9.22 Birthplace of Participants 273
Table 9.23 Childhood Residence 273
Table 9.24 Familiarity with South Australian Regions 274
Table 9.25 Scoring of Regional Familiarity 274

Chapter 10 Analysis of Preferences
Overall Analysis
Table 10.1 Key statistics of 160 scene ratings 281
Table 10.2 Key statistics of 319 respondents’ ratings 283
Table 10.3 Correlations between respondents 285
Table 10.4 Respondents with low correlations 286
Respondent Groups
Table 10.5 Consolidation of respondent groups 287
Table 10.6 Groups of respondents for analysis 287
Table 10.7 Key statistics of respondent groups 288
Table 10.8 Group ratings in descending order 289
Table 10.9 ANOVA - all groups 289
Table 10.10 ANOVA - all groups except group 6 [ABW] 289
Table 10.11 Post-hoc test [Bonferroni] - group 6 and other groups 290
Respondent Characteristics
Table 10.12 Average ratings by age category 293
Table 10.13 ANOVA of age categories 294
Table 10.14 Correlations between age classes 294
Table 10.15 Average ratings by gender 295
Table 10.16 ANOVA of gender categories 295
Table 10.17 Average ratings by education category 295
Table 10.18 ANOVA of education categories 295
Table 10.19 Correlations between education classes 296
Table 10.20 Average ratings by income category 296
Table 10.21 ANOVA of income categories 296
Table 10.22 Average ratings by birthplace category 297
Table 10.23 ANOVA of country of birth categories
Table 10.24 Average ratings by childhood residence
Table 10.25 ANOVA of childhood residence categories
Table 10.26 Correlations between childhood residence classes
Table 10.27 Correlations of respondent characteristics
Table 10.28 Size of range of values

Familiarity
Table 10.29 Familiarity with South Australian regions
Table 10.30 Ratings of regions in order of familiarity

Regional Analysis
Table 10.31 Average ratings by landscape region
Table 10.32 Ranking of landscape regions
Table 10.33 Average ratings of landscape types
Table 10.34 ANOVA of regional distributions
Table 10.35 Positive Characteristics Identified in Studies

Land Form
Table 10.36 Key Statistics for Flats, Hills and Mountain Scenes
Table 10.37 ANOVA – Flats, Hills and Mountains
Table 10.38 Coastal landform classification
Table 10.39 Coastal Landform Scenes
Table 10.40 Key Statistics for Coastal Landform Scenes in Descending Order
Table 10.41 Comparison of Ratings of Categories of Coastal Scenes
Table 10.42 Description of Highly Rated Scenes
Table 10.43 ANOVA of Coastal Landforms
Table 10.44 River Murray Landform Scenes
Table 10.45 Comparative statistics of River Murray Landforms
Table 10.46 Flinders Ranges and Arid Ranges Scens - Rock face Scores
Table 10.47 Rating of Rock Face Scores
Table 10.48 ANOVA - Significance of Rock Faces
Table 10.49 Number of Angles of Elevation Measured from Scenes
Table 10.50 Elevation Classes
Table 10.51 All Scenes – Number of Scenes
Table 10.52 All Scenes - Ratings of Attributes
Table 10.53 Downward Viewing Scenes – Number of Scenes
Table 10.54 Downward Viewing Scenes – Ratings of Attributes
Table 10.55 Flinders Ranges and NW Ranges – Number of Scenes
Table 10.56 Flinders Ranges and NW Ranges – Ratings of Attributes
Table 10.57 Summary of Findings of Influence of Elevation on Preferences

Land cover
Table 10.58 Distribution of Scores of Tree Significance
Table 10.59 Significance of Trees in Scenes
Table 10.60 ANOVA - Significance of Trees in Scenes
Table 10.61 Distribution of Vegetation Height and Density Scores
Table 10.62 Ratings of all Scenes by Scores of Vegetation Height and Density
Table 10.63 ANOVA - Vegetation Height, All Scenes
Table 10.64 ANOVA - Vegetation Density, All Scenes
Table 10.65 Distribution of Vegetation Height & Density Scores Excluding Coastal Scenes
Table 10.66 Ratings of all Scenes by Scores of Vegetation Height & Density - without coastal scenes
Table 10.67 ANOVA - Vegetation Height, All Scenes - less coastal scenes
Table 10.68 ANOVA - Vegetation Density, All Scenes - less coastal scenes
Table 10.69 Summary of Algorithms for Scenes with Vegetation
Table 10.70 Structure of South Australian Vegetation [after Carnahan]
Table 10.71 Ratings of Vegetation Types
Table 10.72 Rating of Indigenous and Introduced Vegetation Types
Table 10.73 ANOVA - Indigenous & Introduced Vegetation
Table 10.74 Algorithms of Influence of Height and Density of Vegetation on Preferences

Land Use
Table 10.75 Key Statistics of Land Use Categories
Table 10.76 ANOVA - Preferences for Land Uses
Table 10.77 Scenes of Crops and Pastures - in descending order of means 330
Table 10.78 Key Statistics of Distributions of Crops and Pastures 331
Table 10.79 Key Statistics of Scenes of Crops & Pastures 331
Table 10.80 ANOVA - Presence of Ridges vs Flat Land in Cropping & Pasture Scenes 331
Table 10.81 ANOVA - Tall Crops vs Low Crops 332
Table 10.82 ANOVA - Crop Colour, Yellow vs Green 332
Table 10.83 Average Scores of Ridges Crop and Pasture Scenes 333
Table 10.84 Classification of Ratings Ridges in Scenes of Crops & Pastures 333
Table 10.85 ANOVA - Ridges in Cropping and Pasture Scenes 333
Table 10.86 Average Rating of Presence of Trees - Crop & Pasture Scenes 333
Table 10.87 Classification of Ratings - Presence of Trees 333
Table 10.88 ANOVA - Presence of Trees in Scenes of Crops and Pastures 333
Table 10.89 Summary of Preferences for Vines - in descending order of means 334
Table 10.90 Key Statistics of Scenes with Vines 334
Table 10.91 Mixed Use Scenes, Mt Lofty Ranges 335
Table 10.92 Summary of Scenes of Hills & Pastures, Mt Lofty Ranges - in descending order 335
Table 10.93 Key Statistics for Hills & Pastures, and Mixed Use Scenes, Mt Lofty Ranges 336
Table 10.94 Key Statistics of Colour of Scenes Hills & Pastures, and Mixed Uses 336
Table 10.95 ANOVA - Colour of Scenes of Hills and Pastures & Mixed Uses, Mt Lofty Ranges 336
Table 10.96 Scores of Significance of Trees - Vines, Mixed uses, Hills & Pastures 336
Table 10.97 Rating of Trees, Hills & Pastures, Mixed Uses, & Vines 337
Table 10.98 ANOVA - Presence of Trees in Hills & Pastures, Mixed Uses, & Vines 337
Table 10.99 Scoring of Scenes Vines with Trees Scenes 337
Table 10.100 Frequency of Scores for Scenes with and Without Vines 337
Table 10.101 Scoring of Terrain, Hills & Pastures, Mixed Uses & Vines Scenes 338
Table 10.102 Scoring of Terrain, Hills & Pastures & Mixed Uses Scenes 338
Table 10.103 Scoring of Terrain on Vines 338

Water
Table 10.104 Statistics of Scenes with and without water 339
Table 10.105 Key Statistics for Coastal Scenes 340
Table 10.106 Scoring of Coastal Scenes by Attributes 341
Table 10.107 Summary of Scenes of Murray Valley in descending order 343
Table 10.108 Key Statistics for Scenes of Murray Valley 343
Table 10.109 Components in Scenes of Murray Valley 343
Table 10.110 Ratings of Scenes by Attribute Classes - Murray Valley 344
Table 10.111 Ratings of Scenes by Attribute Classes - River Murray 345
Table 10.112 Scenes with Farm Dams, Mt Lofty Ranges - in descending order of means 345
Table 10.113 Mt Lofty Ranges Scenes with and without dams 346
Table 10.114 ANOVA - Scenes with and without dams, Mt Lofty Ranges 346
Table 10.115 Key Statistics, Small and Large Dams, Mt Lofty Ranges 346
Table 10.116 Summary of Inland Water Scenes 347
Table 10.117 Key Statistics for Inland Waters Scenes 347
Table 10.118 Attribute Scores for Inland Waters Scenes 347
Table 10.119 Attribute Classes for Inland Water Scenes 347
Table 10.120 Colour of Water in Scenes 348
Table 10.121 Key Statistics for Colour of Water 348
Table 10.122 Summary of Statistics for Scenes with Water 349

Diversity
Table 10.123 Diversity: Number of Scores 351
Table 10.124 Scoring of Diversity 351
Table 10.125 ANOVA of Diversity Scores 351

Naturalism
Table 10.126 Naturalism - Number of Scores 353
Table 10.127 Scoring of Naturalism 353
Table 10.128 ANOVA for Naturalism Scores 353
Table 10.129 Correlations between Naturalism and Diversity Scores 354

Colour
Table 10.130 Scale of Hues 355
Table 10.131 Frequency of Colours in Scenes 356
Table 10.132 Scenes with Largest Number of Colours
Table 10.133 Colour Spectrum Chart
Table 10.134 Summary of Statistics for the Average Colour of Features
Table 10.135 Number of Dominant Hues Identified
Table 10.136 Frequency of Dominant Hues Identified
Table 10.137 Average Ratings of Dominant Hues
Table 10.138 ANOVA - Significance of Dominant Hues
Table 10.139 Ratings of the Frequency of Dominant Hues
Table 10.140 ANOVA – Number of Significant Hues
Table 10.141 Frequency of Scenes per Category
Table 10.142 Preferences Based on Scene Saturation and Lightness

Clouds
Table 10.143 Scoring of Clouds in Scenes
Table 10.144 Scoring of Cloudiness
Table 10.145 ANOVA - Cloudiness of Scenes

Factor Analysis
Table 10.146 Factor Loadings River Murray Scenes
Table 10.147 Factor Loadings Coastal Scenes
Table 10.148 Factor Loadings Flinders Ranges
Table 10.149 Factor Loadings Hills and Pastures
Table 10.150 Factor Loadings Crops and Pastures
Table 10.151 Factor Loadings – Vineyards
Table 10.152 Summary of Factors Identified

Confounding Effect
Table 10.153 Comparison of Scores for Rockface Scores

Summary
Table 10.154 Summary of Algorithms for Attributes

Chapter 11 Application of the Results
Table 11.1 Categories of Coastal Landscapes
Table 11.2 Ratings of Murray Valley Landscapes
Table 11.3 Ratings of Arid Region
Table 11.4 Ratings of Arid Vegetation Types
Table 11.5 Categories of Arid Landscapes
Table 11.6 Categories of Flinders Ranges Landscapes
Table 11.7 Lengths of Landscape Quality Ratings Coast
Table 11.8 Lengths of Coastal Ratings by Region
Table 11.9 Areas of Landscape Quality Ratings - South Australia [sq km] (Excluding coast)
Table 11.10 % of Landscape Quality Ratings - South Australia (Excluding coast)
Table 11.11 Ratings of Pastoral Scenes
Table 11.12 Changes in Ratings
Table 11.13 Landscape Quality Ratings for Diversity and Naturalism Scores
Table 11.14 Habitat theory: Frequency of Scores
Table 11.15 Habitat theory: Ratings of Scores
Table 11.16 Prospect & Refuge: Frequency of Scores
Table 11.17 Prospect & Refuge: Ratings of Scores
Table 11.18 Information Processing: Frequency of Scores
Table 11.19 Information Processing: Ratings of Scores
Table 11.20 Gestalt: Frequency of Scores
Table 11.21 Gestalt Scores
Table 11.22 Psychoanalytical Attributes: Frequency of Scores
Table 11.23 Psychoanalytical Attributes: Ratings of Scores
Table 11.24 Ratings per Aggregated Score for each Theory
Table 11.25 Duration of Landscape Assessment Project
Table 11.26 Estimated Project Budget
FIGURES

Chapter 1 Introduction
Figure 1.1 A Taxonomy of Aesthetics 5
Figure 1.2 Model of Human-Landscape Interaction 5
Figure 1.3 Outline of Thesis Structure 67

Chapter 2 Philosophy of Aesthetics
Figure 2.1 Kant’s Aesthetic Theory - A Framework 16
Figure 2.2 Relationship of the Objectivist and Subjectivist Paradigms 25

Chapter 3 Gestalt Psychology
Figure 3.1 Gestalt Laws of Perceptual Grouping 29
Figure 3.2 A Reversible Figure 33

Chapter 4 Perception and Colour
Figure 4.1 An Information Processing Model 46
Figure 4.2 Measurement of Arc of Vision 46
Figure 4.3 Concept of Visual Angles 48
Figure 4.4 Law of Size Constancy 49
Figure 4.5 Pictorial Cues of Distance 49
Figure 4.6 Brunswick’s Lens Model 53
Figure 4.7 Hypothetical Relationship of Uncertainty to Aesthetic Response 56
Figure 4.8 Relationship between Stimulus Diversity and Preferences 56
Figure 4.9 Wavelengths of Visible Light Spectrum 56
Figure 4.10 Affective Preference for Colours - in Ascending Order 56
Figure 4.11 Rankings of Colour Preferences by Gender 57
Figure 4.12 Variations in Colour Preference, 1910 – 30, Males, University of Nebraska 58

Chapter 5 Psychoanalysis and Aesthetics
Figure 5.1 Psychoanalytical Model of Landscape Aesthetic Response 74

Chapter 6 Culture and Landscape
Figure 6.1 Approximate Span of Influence of Various Factors 142

Chapter 7 20th Century Landscape Studies
Figure 7.1 Porteous’ Groups Involved in Landscape Research 154
Figure 7.2 Landscape Perception (interaction) Process 156
Figure 7.3 Comparison of Landscape Typologies of Zube et al and Daniel & Vining 158
Figure 7.4 Theoretical Framework Based on Consensus for Landscape Evaluation 158
Figure 7.5 Hierarchy of Landscape Assessment Methodologies 161
Figure 7.6 Year of Landscape Preference Study 162
Figure 7.7 Numbers of Photographs for Paired Comparisons - LCJ Method 167
Figure 7.8 SBE Model - Hypothetical Example 170
Figure 7.9 Example of Landscape Zones Designated on Photograph [Shafer’s method] 178

Chapter 8 Findings of Landscape Studies
Figure 8.1 Comparison of Preferences for Savanna by Age 189
Figure 8.2 Interactive Effect of Refuge and Gender on Preferences 193
Figure 8.3 Affect Scores Before and After Slides 195
Figure 8.4 Analgesic Doses per Patient - wall & tree views 196
Figure 8.5 Kaplans’ Predictor Variables 198
Figure 8.6 Rating of Waterscapes by Variables 201
Figure 8.7 Rating of Mountainous Scenes by Variables 202
Figure 8.8 Vygotsky’s Development Paradigm + Dewey’s Modes of Aesthetic Experience 204
Figure 8.9 Dearden’s Hierarchy of Societal Landscape Preferences 206
Figure 8.10 Correlations for Scenic Preference by Age Group 209
Figure 8.11 Correlations with Age Group Scenic Ratings 210
Figure 8.12 Comparison of Italian and Australian Landscape Preferences 212
Figure 10.19 Distribution of ratings by males
Figure 10.20 Distribution of ratings by females
Figure 10.21 Boxplot of ratings by gender category
Figure 10.22 Trend of average ratings by education category
Figure 10.23 Boxplot of ratings by education category
Figure 10.24 Relationship between ratings and income
Figure 10.25 Boxplot of ratings by income category
Figure 10.26 Boxplot of ratings by childhood residence
Figure 10.27 Correlations between respondent characteristics

Familiarity

Figure 10.28 Effect on ratings of familiarity with regions
Figure 10.29 Significance of differences between familiarity categories

Regional analysis

Figure 10.30 Mean ratings and standard deviations of landscape regions
Figure 10.31 Boxplot of ratings of landscape regions
Figure 10.32 Boxplot of ratings of landscape regions and units
Figure 10.33 Distributions and QQ plots of landscape regions

Landform

Figure 10.34 Boxplot of Flats, Hills and Mountains
Figure 10.35 Distribution of ratings - Flats
Figure 10.36 Distribution of ratings – Hills
Figure 10.37 Distribution of ratings – Mountains
Figure 10.38 Boxplot of Coastal Landform Ratings
Figure 10.39 Boxplot of River Murray Landforms
Figure 10.40 Boxplot of Scores of Rock Face Significance
Figure 10.41 Scoring vs Rating of Rock Face Significance
Figure 10.42 Derivation of Angles of Elevation
Figure 10.43 Derivation of Angles for Lower Landscapes
Figure 10.44 Boxplot of Height vs Ratings
Figure 10.45 Boxplot of Distance vs Ratings
Figure 10.46 Boxplot of Angles vs Ratings
Figure 10.47 Influence of Elevation on Preferences - All Scenes
Figure 10.48 Influence of Downward Views on Preferences
Figure 10.49 Influence of Elevation on Preferences - Flinders Ranges & NW ranges

Land Cover

Figure 10.50 Significance of Trees - Scores vs Ratings
Figure 10.51 Boxplot of Scoring of Significance of Trees
Figure 10.52 Relationship of Ratings with Scores of Vegetation Height and Density
Figure 10.53 Boxplot of Vegetation Height Ratings
Figure 10.54 Boxplot of Vegetation Density Ratings
Figure 10.55 Relationship of Ratings with Scores of Vegetation Height & Density - without coastal scenes
Figure 10.56 Boxplot of Vegetation Height Ratings without coast
Figure 10.57 Boxplot of Vegetation Density Ratings without coast
Figure 10.58 Ratings of Vegetation Types - in order of ratings
Figure 10.59 Boxplot of Indigenous and Introduced Vegetation
Figure 10.60 Boxplot of Land Use Categories
Figure 10.61 Distribution of Means of 29 Scenes of Crops & Pastures
Figure 10.62 Boxplot of Factors in Crop & Pasture Scenes
Figure 10.63 Influence of Ridges on Crops & Pasture Scenes
Figure 10.64 Boxplot of Ratings of Tree Presence Classes
Figure 10.65 Distribution of Ratings, Hills & Pastures, Mt Lofty Ranges
Figure 10.66 Boxplot of Scene Colours Hills & Pastures & Mixed Uses
Figure 10.67 Significance of Trees, Rating vs Scores - Hills & Pastures, Mixed Uses, & Vines
Figure 10.68 Boxplot of Scoring of Tree Presence in Hills & Pastures, Mixed Uses, & Vines
Figure 10.69 Influence of Terrain on Ratings of Hills & Pastures, Mixed Uses & Vines

Water
Figure 10.70 Scenes without water features
Figure 10.71 Scenes with water features
Figure 10.72 Boxplot Comparison of Scenes with and without water features
Figure 10.73 Distribution of Ratings, Coast
Figure 10.74 Coastal Scenes - Means vs SDs
Figure 10.75 Coastal Scenes - Relationship of Attributes and Ratings
Figure 10.76 Distribution of ratings, Murray Valley Scenes
Figure 10.77 Boxplot of Murray Valley Ratings
Figure 10.78 Murray Valley Scenes - Relationship of Scores to Ratings
Figure 10.79 River Murray Scenes - Scores vs Ratings
Figure 10.80 Boxplot of Scenes without and with Dams
Figure 10.81 Preferences vs Visual Significance of Water in Dam
Figure 10.82 Inland Water Scenes - Relationship of Scores to Ratings
Figure 10.83 Boxplot of Scenes with Water - in descending order

Diversity
Figure 10.84 Ratings vs scores – Diversity
Figure 10.85 Boxplot of Rating of Diversity Scores

Naturalism
Figure 10.86 Ratings vs scores – Naturalism
Figure 10.87 Boxplot of Rating of Naturalism Scores
Figure 10.88 Correlations between Naturalism Scores [X axis] and Diversity Scores [lines]

Colour
Figure 10.89 Frequency of Colours in Scenes
Figure 10.90 Spectrum Scale of Major Hues for each Feature
Figure 10.91 Boxplot of Ratings of Dominant Hues
Figure 10.92 Hues in Order of Preference
Figure 10.93 Ratings of Frequency of Dominant Colours
Figure 10.94 Boxplot of Frequencies of Dominant Colours
Figure 10.95 Preferences based on Scene Saturation and Lightness

Cloud
Figure 10.96 Ratings vs scores – Clouds
Figure 10.97 Boxplot of Rating of Cloudiness Scores

Confounding Effect
Figure 10.98 Comparison of Scores for Rockface Scores
Figure 10.99 Correlations of Attributes with the Rockface#4 Score
Figure 10.100 Correlations of R Murray Area Score #4 with Naturalism and Diversity
Figure 10.101 Correlations of R Murray Edge Score #4 with Naturalism and Diversity

Summary
Figure 10.102 Comparison of Slopes of Algorithms - in descending order
Figure 10.103 Percentage Change per Score Class in Attributes - in order

Chapter 11 Application of the Results
Figure 11.1 Relative Lengths of Coast by Region
Figure 11.2 Length of Ratings of Coast [Km]
Figure 11.3 Map of South Australian Landscape Quality
Figure 11.4 Area of Ratings - South Australia
Figure 11.5 Area of Ratings - Agricultural Region
Figure 11.6 Area of Ratings - Far North Region
Figure 11.7 Pastoral Scenes – Ratings vs Significance of Trees
Figure 11.8 Scoring of Habitat theory
Figure 11.9 Scoring of Prospect and Refuge
Figure 11.10 Information Processing: Scoring of Attributes
Figure 11.11 Gestalt: Scoring of Attributes
Figure 11.12 Psychoanalytical Attributes: Scoring
Figure 11.13 Summary of Algorithm Slopes In Descending Order
Figure 11.14 Ratings per Aggregated Score - all Theories
Figure 11.15 Components of Theories with Commonalities
ATTACHED CD

The following are located in the CD enclosed with the thesis

Summary
An extensive 23 page summary of the thesis.

Appendixes
Chapter 7
Appendix 7.1 Spreadsheet of Landscape Preferences Studies
Appendix 7.2 Purpose of Landscape Preference Studies
Appendix 7.3 Types of Numbers and their Capabilities

Chapter 8 Findings of Landscape Studies
Appendix 8.1 Informational Predictor Variables
Appendix 8.2 Basic Respondent Characteristics
Appendix 8.3 Culture
Appendix 8.4 Familiarity
Appendix 8.5 Expert vs Lay Observers
Appendix 8.6 Water
Appendix 8.7 Mountains
Appendix 8.8 Trees
Appendix 8.9 Naturalism

Chapter 9 Acquiring the Data
Appendix 9.1 Examples of Factor Analysis and Multiple Regression from Studies
Appendix 9.2 South Australian Landscape Character
Appendix 9.3 Slides by Region
Appendix 9.4 Description of Slides by their Sequence
Appendix 9.5 Landscape Quality Rating Sheet
Appendix 9.6 Measurement of Independent Variables from Photographs

Chapter 10 Analysis of Preferences
Appendix 10.1 Ratings of all slides - means and standard deviations
Appendix 10.2 Coastal Scenes with Views of the Sea - in descending order of means
Appendix 10.3 Elevations and Angles in Scenes
Appendix 10.4 Scoring of Significance of Trees in Scenes
Appendix 10.5 All Vegetation, Scoring of Height and Density
Appendix 10.6 Ratings of Types of Vegetation
Appendix 10.7 Allocation of Scenes to Land Uses
Appendix 10.8 Coastal Scenes with Views of the Sea
Appendix 10.9 Diversity Scores
Appendix 10.10 Naturalism Scores
Appendix 10.11 Colours of Slides Designation: Hue/Saturation/Lightness
Appendix 10.12 Colour of Scenes - Hues only
Appendix 10.13 Dominant & Co-dominant Colours
Appendix 10.14 Saturation and Lightness of Dominant Colours
Appendix 10.15 Scoring of cloud cover

References
The references used in the preparation of the thesis are shown under their relevant chapter headings.
Reference set of scenes
The 160 scenes used in the thesis are shown in a Powerpoint file on the CD. This also displays the distribution graph of preferences for each scene, their means and SDs, locational information and descriptions of the scenes.

Overview
This Powerpoint presentation summarises the methodology and findings of the survey of landscape quality of South Australia.