
 - i - 

 

 

 

Evaluating Hyperspectral Imagery 

for Mapping the Surface Symptoms of Dryland Salinity 

 

by 

Anna Dutkiewicz 

 

 

Thesis submitted in fulfilment of the requirements for the degree of 

Doctor of Philosophy 

 

 

Discipline of Soil and Land Systems 

School of Earth and Environmental Sciences 

The University of Adelaide 

July 2006 

 



 - iii - 

 

TABLE OF CONTENTS 

TABLE OF CONTENTS iii 

LIST OF FIGURES vii 

LIST OF TABLES xiii 

ABSTRACT xv 

ABSTRACT xv 

DECLARATION xvii 

DEDICATION xviii 

ACKNOWLEDGEMENTS xix 

PUBLICATIONS xxi 

1 INTRODUCTION 1 

1.1 The problem of dryland salinity 2 

1.2 The surface symptoms of dryland salinity 2 

1.3 Conventional mapping and monitoring dryland salinity 5 

1.3.1 Aerial photography 6 

1.3.2 Geophysical mapping of subsurface salinity 7 

1.3.3 Multispectral remote sensing of surface expressions of 

salinity 7 

1.4 The advantage of high spectral resolution imagery 10 

1.4.1 Spectral response of plants 11 

1.4.2 Effects of stress and senescence on plant spectral response 12 

1.4.3 Spectral variation between plant groups and species 12 

1.4.4 Spectral characteristics of soils 14 

1.5 The potential of hyperspectral imagery to map dryland 

salinity 15 

1.6 Conclusion 16 

1.7 Research aims 17 

1.8 Significance 18 

1.9 Thesis outline 19 

2 CHARACTERISING SALINITY AT POINT STURT 21 

2.1 Introduction and aims 21 

2.2 Study Site 21 

2.2.1 Climate 22 



- iv - 

2.2.2 Landscape and hydrogeology 22 

2.2.3 History 23 

2.2.4 Present landuse and vegetation 24 

2.2.5 PIRSA soil maps 25 

2.2.6 National Land and Water Resources salinity map 27 

2.2.7 Landsat ETM dryland salinity maps 28 

2.3 Field methods 29 

2.3.1 Identifying surface expressions of salinity 29 

2.3.2 Soil sampling 30 

2.3.3 Salinity  and soil water content 32 

2.3.4 Soil mineralogy 32 

2.4 Results 33 

2.4.1 Saline soils 33 

2.4.2 Vegetation symptoms of salinity 38 

2.5 Conclusion 41 

3 SPECTRAL CHARACTERISATION OF SALINITY 43 

3.1 Introduction and aims 43 

3.2 Methods 44 

3.2.1 Spectral collection sites 45 

3.2.2 Time of year 45 

3.2.3 Collection of soil and vegetation spectra 45 

3.2.4 Statistical analysis 48 

3.3 Results and discussion 48 

3.3.1 Spectral characteristics of saline soils 48 

3.3.2 Spectral characteristics of perennial species 50 

3.3.3 Statistical comparisons of grass species 51 

3.4 Conclusion 55 

4 MAPPING SALINITY SYMPTOMS WITH HYMAP HYPERSPECTRAL 

IMAGERY 57 

4.1 Introduction and aims 57 

4.2 HyMap imagery 59 

4.3 Hyperspectral processing and mapping 61 

4.3.1 Preprocessing: atmospheric and cross track illumination 

correction 62 

4.3.2 Hyperspectral image analysis 63 

4.4 Accuracy Assessment 66 

4.5 Results and Discussion 67 

4.6 Conclusion 77 



 - v - 

5 MAPPING SALINITY SYMPTOMS WITH HYPERION SATELLITE 

IMAGERY 79 

5.1 Introduction and aims 79 

5.2 Analysis of Hyperion imagery 81 

5.2.1 Hyperion data 81 

5.2.2 Specialised image pre-processing for Hyperion imagery 83 

5.2.3 Standard hyperspectral processing methods 86 

5.3 Results 87 

5.4 Conclusions 92 

6 MAPPING SALINITY SYMPTOMS WITH CASI AIRBORNE IMAGERY 95 

6.1 Introduction and aims 95 

6.2 CASI survey and data specifications 97 

6.3 CASI data pre-processing methods 98 

6.4 Salinity symptom mapping with CASI imagery 100 

6.4.1 Endmember extraction 102 

6.4.2 Partial unmixing mapping of sea barley grass and 

samphire 102 

6.4.3 Saltpan partial unmixing mapping methods 102 

6.5 Accuracy Assessment 104 

6.5.1 Samphire and saltpan maps 104 

6.5.2 Sea barley grass maps 104 

6.6 Results of partial unmixing mapping 105 

6.7 Discussion and Conclusions 110 

7 COMPARISON OF HYPERSPECTRAL AND CONVENTIONAL 

SALINITY MAPS 113 

7.1 Introduction and aims 113 

7.2 Methods 113 

7.3 Results 114 

7.3.1 Comparison to PIRSA salinity maps 114 

7.3.2 Comparison to NLWRA dryland salinity map 119 

7.3.3 Comparison to Landsat based salinity maps 120 

7.4 Conclusion 121 

8 DISCUSSION AND CONCLUSION 125 

8.1 Review of results 125 

8.1.1 Surface symptoms of dryland salinity selected for mapping 

with hyperspectral imagery 125 

8.1.2 Optimum time of year for mapping 126 

8.1.3 Comparison of different hyperspectral imagery 127 



- vi - 

8.1.4 Analysis of multiple image swaths 128 

8.1.5 Mapping salinity with Hyperion satellite imagery 130 

8.1.6 Mapping accuracies 130 

8.1.7 Optimum processing procedure for vegetation and soil 

symptoms of salinity 133 

8.2 Limitations 134 

8.3 Significance of findings 135 

8.3.1 Optimal time of year for mapping salinity 135 

8.3.2 Image analysis and multiple swath mapping 136 

8.3.3 Comparison of different sensors 136 

8.3.4 Mapping saline areas with vegetation cover 137 

8.3.5 Improvements on conventional salinity mapping 137 

8.4 Implications of hyperspectral salinity mapping 138 

9 REFERENCES 141 

APPENDIX 1 157 

APPENDIX 2 158 

APPENDIX 3 169 

 

 



 - vii - 

LIST OF FIGURES 

Figure 2-1 Point Sturt Peninsula is located at the mouth of the Murray River in South 

Australia.......................................................................................................................... 21 

Figure 2-2 Monthly mean rainfall (top) and temperature (bottom) from 1989 to 2003 

(from Hindmarsh Island immediately south of Point Sturt). Data from the Bureau of 

Meteorology [http://www.bom.gov.au/] ......................................................................... 22 

Figure 2-3 Hydrogeological map of Point Sturt Peninsula showing the boundary 

between the clay and limestone aquifers (dashed line), major recharge areas (after 

Henschke (2000)) and elevation contours. ..................................................................... 23 

Figure 2-4 Mosaic of three aerial photographs taken in 1956 of  Point Sturt (courtesy of 

Department of Environment and Heritage, Mapland, South Australia).  The land had 

been extensively cleared by this time. At the time there were significant areas of 

remnant vegetation in the west and little vegetation on the bare dune ridges just north of 

the site where the township of Clayton later developed. White exposed soils are visible 

throughout the peninsula................................................................................................. 24 

Figure 2-5 PIRSA salinity induced by watertable map showing salinity classes 

associated with each soil landscape unit. Note that Class E (moderately high to high 

salinity) was is not represented on the Point Sturt Peninsula. ........................................ 27 

Figure 2-6 The National Land and Water Resources Audit extent of land affected by 

salinity in 2000 (Salinity 2000) was obtained from the Australian Natural Resources 

Atlas [http://audit.ea.gov.au/anra/atlas_home.cfm]. ....................................................... 28 

Figure 2-7 Map of severely saline areas (red) based on Landsat ETM imagery and 

spatial modelling (Thomas, 2001). ................................................................................. 29 

Figure 2-8 Map of showing 4 main saline sites. The clay aquifer discharges at Sites A, 

AA and F whereas the limestone aquifer discharges at Site B. ...................................... 30 

Figure 2-9 Detail of Site A showing GPS locations where surface and depth soil 

samples (red) were collected. The soil transect (black) extended north from the 

samphire, across the sea barley grass and terminating on a rise covered with non-

halophytic grass. ............................................................................................................. 31 

Figure 2-10 Symptoms of high to extreme salinity at Point Sturt during the dry season: 

a) plant dieback; b) dead trees; c) samphire (Halosarcia pergranulata), and marine 



- viii - 

couch grass (Sporobolus virginicus); d) red phase samphire; e) saltpan at Site A and f) 

pigface (Carpobrotus glaucescens).................................................................................34 

Figure 2-11 a) Saltpan soil pit (Site A1) showing the leached upper horizon grading to 

iron oxide dominated lower horizon at 30 cm and b) the downward view illustrates the 

shallow groundwater seeping into the pit at a depth of 60 cm, shortly after digging was 

completed. .......................................................................................................................35 

Figure 2-12 Soil analysis along transect extending out from saltpan at Site A. EC 

values, soil moisture and pH decreased away from the samphire-sea barley grass 

interface (0 m) indicating the change from high salinity to non-saline soils. .................38 

Figure 2-13 Dense large zones (left) of sea barley grass (Critesion marinum) with well 

developed seed heads (right) were evident during spring (September 2004) .................39 

Figure 2-14 Moderately saline area at Site AA (November 2003). Green sea barley 

grass (a) and curly rye grass (b) have colonised the lowlying saline soil.  Silver grass 

and brome grass (c and d) surround the pan. Close-up images of the 4 major grass 

species are inset. ..............................................................................................................40 

Figure 3-1 Collecting spectra in the field with the portable spectrometer ......................46 

Figure 3-2 Schematic diagram of the field of view (~5cm) of the spectrometer ............46 

Figure 3-3 Method for collecting spectra from soil and plant samples in the laboratory47 

Figure 3-4 Comparison of salt crust spectra from Site A and Site B ..............................49 

Figure 3-5 Continuum removed salt crust spectra from Site A, Site B and USGS 

gypsum spectra. ...............................................................................................................49 

Figure 3-6 Field spectra of green samphire.....................................................................50 

Figure 3-7 Field spectra of red samphire ........................................................................50 

Figure 3-8 Detail showing green and red samphire reflectance peaks............................50 

Figure 3-9 Comparison of dryland lucerne and samphire spectra ..................................50 

Figure 3-10 Mean spectra of sea barley grass and brome grass at the time of maximum 

growth or “spring flush” (September) .............................................................................51 



 - ix - 

Figure 3-11 “Spring flush” t values by wavelength for pairs of comparisons between 

mean spectra of sea barley grass and brome grass. There is no significant difference at 

any wavelengths.............................................................................................................. 52 

Figure 3-12 Mean spectra acquired at the time of senescence (November) of four grass 

species: a) field spectra; b) laboratory spectra................................................................ 52 

Figure 3-13 T-values by wavelength comparing the mean spectra of sea barley grass to 

non-halophytic grass species. The spectra differ significantly where t>t critical, 

equivalent to a probability=0.05. There are consistently significant differences at most 

wavelengths except at the red edge around 700 nm. ...................................................... 54 

Figure 4-1 Mosaic of six parallel hyperspectral image strips displayed in true colour, 

covering approximately 140 km
2
. The locations of study Sites A & B are also displayed.

........................................................................................................................................ 60 

Figure 4-2 Daily rainfall prior to the acquisition of HyMap imagery on 14 March 2001. 

There was only one major rainfall event one month before. .......................................... 61 

Figure 4-3 Selection of endmembers extracted from one image strip. Similar 

endmembers from the same landcover types (for example more irrigated and dry 

vegetation) were not displayed. ...................................................................................... 68 

Figure 4-4 Comparison of samphire endmember (dashed) and samphire mean spectrum 

(solid). The ROI spectrum was generated from a region that encompassed a known 

samphire patch. ............................................................................................................... 69 

Figure 4-5 Detail of soil image-derived endmember spectra. The absorption features 

correspond to USGS minerals spectra of a) gypsum b) calcite 3) montmorillonite or 

kaosmectite ..................................................................................................................... 70 

Figure 4-6 MF gypsum map where bright areas, indicating areas of high gypsum 

abundance, coincide with the location of known saltpans.............................................. 72 

Figure 4-7 Samphire map comprising georeferenced MTMF results of 4 image strips. 

Bright pixels indicated areas of high abundance. ........................................................... 73 

Figure 4-8 Saltpans were mapped at Site A and B with HyMap imagery. Matched 

filtering discriminated the highly saline soils of the saltpan from the non-saline dunes 

and quarries..................................................................................................................... 74 



- x - 

Figure 4-9 Samphire was mainly mapped along the coast and surrounding the major 

saltpan at Site A and in the central discharge area. .........................................................74 

Figure 4-10 Optimum processing flow for mapping multiple HyMap image swaths ....75 

Figure 5-1 Daily rainfall prior to the acquisition of Hyperion imagery on 18 February 

2002. There is only one major rainfall event one month before. ....................................82 

Figure 5-2 Hyperion raw image swath............................................................................83 

Figure 5-3 Hyperion strip spatially subset to the Point Sturt area (georegistered true 

colour) .............................................................................................................................84 

Figure 5-4 A representative selection of endmembers extracted from the Hyperion 

image. Noisy endmembers are not displayed..................................................................87 

Figure 5-5 Processing flow for Hyperion data. ...............................................................88 

Figure 5-6 MTMF result using mean samphire reference spectrum. The samphire 

around the central saltpans (red square) and along the coast was successfully mapped.90 

Figure 5-7 MTMF result using mean saltpan reference spectrum. Bright saltpans are 

dispersed throughout the central and coastal discharge areas. The main Site A pan is not 

clearly mapped. ...............................................................................................................90 

Figure 5-8 Saltpan (top) and samphire (bottom) maps are displayed in GIS layout. 

Several saltpans throughout the discharge regions are also successfully mapped. The 

central and coastal samphire areas are well defined. ......................................................91 

Figure 6-1 Mosaic of seven CASI image swaths ............................................................98 

Figure 6-2 Daily rainfall six months prior to the acquisition of CASI imagery on 25 

November 2003. There are fewer rainfall events in November. .....................................98 

Figure 6-3 CASI image spectra before (left) and after (right) ACORN atmospheric 

correction. The spectrum on the right clearly shows the prominent overcorrection 

around 940 nm.................................................................................................................99 

Figure 6-4 Example of CASI spectra after atmospheric correction with FLAASH. In the 

saline soil spectra note the small 740 nm peak and the smaller overcorrection rise 

around 940 nm...............................................................................................................100 



 - xi - 

Figure 6-5 Two irrigated vegetation spectra 1) inverse-MNF spectra with MNF bands 

2&5 excluded showing the increase in red reflectance (dotted) and 2) inverse-MNF 

spectra with no across track illumination bands removed (solid line).......................... 101 

Figure 6-6 Endmember spectra from swath 710........................................................... 103 

Figure 6-7 Salinity symptom mapping flow ................................................................. 106 

Figure 6-8 CASI salinity symptoms map at Point Sturt. Many mapped saltpans (blue) 

and samphire (cyan) were confined to the central and coastal saline areas. Sea barley 

grass (yellow) mapped areas were more sparsely distributed adjacent saline areas..... 107 

Figure 6-9 Detail of salinity symptom maps overlain with the PIRSA SLU polygons. 

The black dotted line shows a discontinuity in mapping saltpans across 2 image swaths

...................................................................................................................................... 109 

Figure 6-10 Zonal statistics showing the % area of sea barley grass, samphire and 

saltpans mapped in nonsaline and saline areas defined in the PIRSA SLU maps........ 109 

Figure 7-1 PIRSA salt affected areas overlaid with the salinity maps produced from a) 

HyMap, b) Hyperion and c) CASI hyperspectral data (with image extent outlined in 

red). ............................................................................................................................... 117 

Figure 7-2 HyMap: Samphire and saltpans were mapped in 21.5% of the high salinity 

SLUs (class F) and 13.7% of the very high to extreme salinity SLUs (class G). ......... 118 

Figure 7-3 Hyperion: samphire and saltpans were mapped in 26% of the high saline 

areas (SLUs class F) and 24.8% of the very high to extremely saline (SLUs class G).  

More saltpans and samphire were mapped in low saline SLUs compared to HyMap . 118 

Figure 7-4 CASI: samphire and saltpans were mapped in 20.6% of the highly saline 

areas and 15.9% of the very high to extremely saline areas. The highest proportion of 

sea barley grass was mapped in moderately saline areas. A high proportion of sea barley 

grass was also mapped in non-saline areas. .................................................................. 118 

Figure 7-5 Detail of HyMap salinity symptom (Site A) overlaid with PIRSA Soils 

Landscape Units attribute of salinity induced by watertable........................................ 119 

Figure 7-6 NLWRA dryland salinity 2000 map overlain with the HyMap samphire and 

saltpans maps. ............................................................................................................... 120 



- xii - 

Figure 7-7 Detail of the NLWRA dryland salinity 2000 map and the HyMap salinity 

maps overlying the true colour HyMap image. The HyMap image analysis was better 

able to map saline land with a good cover of samphire vegetation along the central and 

southern coasts. .............................................................................................................120 

Figure 7-8 a) Map of severely saline areas (red) based on Landsat ETM imagery 

(source (Thomas, 2001) previously presented in Chapter 2) b) compared to the HyMap 

saltpan and samphire maps (bottom).............................................................................122 

Figure 8-1 Comparing the optimum processing flow for mapping vegetation (a) and soil 

(b) symptoms of dryland salinity. .................................................................................134 



 - xiii - 

 

LIST OF TABLES 

Table 2.1 PIRSA soil landscape unit description of salinity levels. Sea barley grass 

would be mainly expected to occur in the moderate to moderately high salinity level 

areas and samphire and saltpans in the very high to extreme areas (after Maschmedt, 

2000). .............................................................................................................................. 26 

Table 2.2 PIRSA soil landscape unit attribute that refers to salinity induced by 

watertable levels. This attribute is designated 7 salinity classes A-G, where A is 

assigned to soil polygons with negligible salinity and G is assigned to extremely saline 

polygons (After PIRSA, 2001).  Descriptions of salinity levels, from negligible to 

extreme, are shown in Table 1. ....................................................................................... 26 

Table 2.3 Analysis of three surface soil samples from the main saltpans at Site A and B. 

The surface layer of crystals at Site B is halite............................................................... 35 

Table 2.4 Soil analysis of samples collected at 10 cm depths from saltpan at Site A. The 

pH and EC measurements indicate extremely saline, alkaline soil. The higher values at 

the surface indicated the surface evaporative concentration of the groundwater salts. 

The XRD results confirm the presence of the evaporite minerals halite and gypsum.... 36 

Table 2.5 Soil analyses at 10 cm depths from 2 other sample sites on the main Site A 

saltpan. These soils also show the increased salinity at the surface due to evaporation. 

No XRD analysis was performed. .................................................................................. 37 

Table 2.6 Soil analysis from three soil transect samples. Soil water EC and pH all 

decrease at increasing distance from the samphire-sea barley grass interface. The XRD 

analysis shows the change from clay to sandy soils along the transect. Soil analysis 

results for all transect soil samples are shown in Figure 2.12. ....................................... 37 

Table 2.7 Summary of salinity symptoms at Point Sturt and their suitability for mapping 

with hyperspectral imagery............................................................................................. 42 

Table 3.1 Species and number of samples of spectra collected in September (spring 

flush). Some samples were not analysed because of excessive noise * ......................... 47 

Table 3.2 Species and number of samples of spectra collected in November. The field 

spectra of wheat were not used because insufficient good quality spectra were 

collected* ........................................................................................................................ 47 



- xiv - 

Table 4.1 Partial unmixing mapping tests on image swath 03. Matched filtering 

produced the most accurate maps (KHAT=0.67) when using the gypsum 1750 nm 

feature..............................................................................................................................71 

Table 4.2 a) Error Matrix for the samphire map (129 sample sites over 4 image strips)76 

Table 5.1 Comparison of Hyperion and HyMap salinity mapping accuracies. Saltpans 

maps from both sensors showed a moderate agreement with field data however, 

Hyperion samphire maps showed poor agreement compared to HyMap .......................93 

Table 6.1 PIRSA SLU attribute “salinity induced by watertable” is assigned 8 classes 

A-G (after (PIRSA, 2001A)). ........................................................................................105 

Table 6.2) Error Matrix for the samphire map (133 sample sites over 6 image swaths)

.......................................................................................................................................108 

Table 6.3) Error Matrix for the saltpan map (138 sampling sites over 7 image swaths)

.......................................................................................................................................108 

Table 7.1 Expectedsalinity symptoms associated with each PIRSA SLU “salinity 

induced by watertable” class (after (PIRSA, 2001A) and Maschmedt, 2001).  Sea barley 

grass would be mainly expected to occur in the moderate to high levels of salinity and 

samphire in the high to extreme areas (Classes F and G). *Class E was not represented 

at Point Sturt..................................................................................................................114 

Table 8.1 Hyperspectral imagery was acquired from 3 different sensors: 2 airborne and 

one satellite instrument. The HyMap and Hyperion data was captured during the dry 

season and the CASI imagery was captured during spring senescence. .......................128 

Table 8.2 Summary of salinity symptoms mapped with HyMap, CASI and Hyperion 

imagery.  Salinity levels are based on PIRSA classifications. ......................................132 



 - xv - 

ABSTRACT 

Airborne hyperspectral imagery has the potential to overcome the spectral and spatial 

resolution limitations of multispectral satellite imagery for monitoring salinity at both 

regional and farm scales. In particular, saline areas that have good cover of salt tolerant 

plants are difficult to map with multispectral satellite imagery. Hyperspectral imagery 

may provide a more reliable salinity mapping method because of its potential to 

discriminate halophytic plant cover from non-halophytes.  

HyMap and CASI airborne imagery (at 3m ground resolution) and Hyperion satellite 

imagery (at 30 resolution) were acquired over a 140 sq km dryland agricultural area in 

South Australia, which exhibits severe symptoms of salinity, including extensive 

patches of the perennial halophytic shrub samphire (Halosarcia pergranulata), sea 

barley grass (Hordeum marinum) and salt encrusted pans. The HyMap and Hyperion 

imagery were acquired in the dry season (March and February respectively) to 

maximise soil and perennial vegetation mapping.  The optimum time of year to map sea 

barley grass, an annual species, was investigated through spectral discrimination 

analysis. 

Multiple reflectance spectra were collected of sea barley grass and other annual grasses 

with an ASD Fieldspec Pro spectrometer during the September spring flush and in 

November during late senescence. Comparing spectra of different species in November 

attempted to capture the spectral differences between the late senescing sea barley grass 

and other annual grasses. Broad NIR and SWIR regions were identified where sea 

barley grass differs significantly from other species in November during late 

senescence. The sea barley grass was therefore shown to have the potential to be 

discriminated and mapped with hyperspectral imagery at this time and as a result the 

CASI survey was commission for November. Other salinity symptoms were 

characterised by collecting single field and laboratory spectra for comparison to image 

derived spectra in order to provide certainty about the landscape components that were 

to be mapped.  

Endmembers spectra associated with saltpans and samphire patches were extracted from 

the imagery using automated endmember generation procedures or selected regions of 

interest and used in subsequent partial unmixing. Spectral subsets were evaluated for 

their ability to optimise salinity maps. The saltpan spectra contained absorption features 

consistent with montmorillonite and gypsum. A single gypsum endmember from one 
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image strip successfully mapped saltpans across multiple images strips using the 1750 

nm absorption feature as the input to matched filter unmixing. The individual spectra of 

green and red samphire are dominated by photosynthetic vegetation characteristics. The 

spectra of green samphire, often seen with red tips, exhibit peaks in both green and red 

wavebands whereas the red samphire spectra only contain a significant reflectance peak 

in the visible red wavelength region.  

For samphire, Mixture Tuned Matched Filtering using image spectra, containing all 

wavelength regions, from known samphire patches produced the most satisfactory 

mapping. Output salinity maps were validated at over 100 random sites. The HyMap 

salinity maps produced the most accurate results compared to CASI and Hyperion.  

HyMap successfully mapped highly saline areas with a good cover of samphire 

vegetation at Point Sturt without the use of multitemporal imagery or ancillary data such 

as topography or PIRSA soil attribute maps. CASI and Hyperion successfully mapped 

saltpan, however, their samphire maps showed a poor agreement with field data. These 

results suggest that perennial vegetation mapping requires all three visible, NIR and 

SWIR wavelength regions because the SWIR region contains important spectral 

properties related to halophytic adaptations. Furthermore, the unconvincing results of 

the CASI sea barley grass maps suggests that the optimal sensor for mapping both soil 

and vegetation salinity symptoms are airborne sensors with high spatial and spectral 

resolution, that incorporate the 450 to 1450 nm wavelength range, such as HyMap.  

This study has demonstrated that readily available software and image analysis 

techniques are capable of mapping indicators of varying levels of salinity. With the 

ability to map symptoms across multiple image strips, airborne hyperspectral imagery 

has the potential for mapping larger areas covering sizeable dryland agriculture 

catchments, closer in extent to single satellite images. This study has illustrated the 

advantage of the hyperspectral imagery over traditional soil mapping based on aerial 

photography interpretation such as the NLWRA Salinity 2000 and the PIRSA soil 

landscape unit maps. The HyMap salinity maps not only improved mapping of saline 

areas covered with samphire but also provided salinity maps that varied spatially within 

saline polygons.  
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1 INTRODUCTION  

Human induced salinity is an expanding problem in southern Australia and in many arid 

and semi-arid regions of the world, including the great plains of North America, Africa, 

South America, China, India and the Middle East (Ghassemi et al., 1995). Dryland 

salinity is recognised as a major land degradation problem in Australia (PIMSEC, 1999; 

Webb, 2000) particularly in productive agricultural regions.  

Research groups and catchment managers are becoming aware of the need for improved 

remote sensing technologies for baseline mapping and ongoing monitoring of salt 

affected areas. The National Dryland Salinity Program stressed the importance of 

“greatly improved methods of using remotely sensed data to map and monitor the risk 

of dryland salinity” (NDSP, 2000). The Australian Dryland Salinity Assessment 2000 

Technical Report also recognised the benefits of the increasing availability of improved 

satellite and other remote sensing methods (Webb, 2000). Clearly, there is a need for 

broad-scale, consistent salinity mapping methods. The implementation of monitoring 

and evaluation strategies is necessary to “ensure we have appropriate data on 

streamflow and quality, groundwater depth and quality, vegetation cover and salinised 

land areas” (1999).  

Therefore, improved remote sensing technologies have an important role to play in 

mapping and monitoring dryland salinity. Spies and Woodgate (2004) recently 

compiled a technical report for the National Dryland Salinity Program (NDSP) in 

Australia, assessing various remote sensing technologies for their applicability to 

mapping dryland salinity in Australia. Several remote sensing methods such as aerial 

photography, multispectral satellites and airborne geophysics, have already contributed 

to the ongoing search for knowledge regarding the surface and subsurface extent of 

dryland salinity. The NDSP report noted that the spatial scales of airborne hyperspectral 

imagery are suitable for both paddock and regional level mapping and would provide a 

superior performance to multispectral satellites for natural resource management. The 

report concluded that hyperspectral imagery has the potential to not only improve the 

accuracy of mapping the current areas affected by dryland salinity but also to assist in 

monitoring salinity spread at either regional scales or fine scales over targeted high 

value agricultural areas.  
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This research investigates the potential of a more recent remote sensing technology, 

hyperspectral imagery, to map the surface expressions of dryland salinity.  

1.1 The problem of dryland salinity 

Dryland salinity refers to human induced salinity in non-irrigated areas. In Australia, the 

major salt affected areas of concern are situated in southwestern Western Australia and 

the Murray Darling Basin. Vast quantities of naturally occurring salts reside in the soils 

and regolith underlying most of Australia’s productive agricultural land. The regolith 

salt mainly originates from sea spray carried inland and deposited on the land as rainfall 

and dust over thousands of years (George et al., 1998; Herzeg et al., 2001). The source 

of salt in the Murray Basin groundwaters has evolved from a combination of marine 

fallout and continentally derived solutes and evapo-transpiration over tens of thousands 

of years of relatively arid environmental conditions (Herzeg et al., 2001).  

Dryland salinity is caused by widespread land clearing post-European settlement. Broad 

scale clearing of indigenous eucalypt forests, woodland and savannah scrubland has 

increased the amount of water infiltrating to the groundwater system. Australian native 

trees and plants are very efficient at using soil water. Their roots draw water from deep 

in the ground and they use water all year round so that very little infiltrating rainwater 

finds its way through to the groundwater system. Native vegetation has been replaced 

by shallow-rooted annual crops and pasture that use less water and for only part of the 

year. The excess incoming rainfall either runs off into streams and rivers, or more 

importantly, infiltrates below the root zone and accumulates as groundwater, a process 

known as groundwater recharge. As the groundwater level rises, it dissolves the benign 

salt stored in the soil profile and brings it or close to the surface or discharge at the 

surface.  

In Australia, major impacts of dryland salinity include damage to agricultural areas, 

salinisation of rivers and loss of land and aquatic habitats which reduces biodiversity 

(Webb, 2000).  

1.2 The surface symptoms of dryland salinity  

Dryland salinity discharge sites can be recognised through a range of surface symptoms 

relating to vegetation, soils and position in the landscape. Three stages of saline 

discharge have been defined (Chaturvedi et al., 1983). The primary stage involves 

surfacing water (waterlogging), the intermediary stage is declining plant condition and 
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the introduction of salt tolerant plant species or halophytes and the final process is the 

annihilation of all vegetation and the development of permanent salt water or dry salt 

deposits on the surface. Dryland salinity is most often associated with low-lying areas 

such as flats, catchment drainage lines, lake margins, stream banks and land depressions 

(Department of Primary Industries, 2004). In addition, saline discharge can occur at the 

base of hills where there is a change in surface gradient to a gentler slope (break in 

slope). 

Waterlogging refers to surface layers of the soil profile becoming permanently or 

periodically saturated with rising saline groundwater (Maschmedt, 2000), which can 

result initially in increased vegetation cover. Permanent moist soils or free surface water 

often indicates a groundwater discharge site, particularly in summer when most crops 

and pasture have dried out. Saline seeps are areas where highly saline groundwater 

discharges to the land surface and this groundwater may be naturally saline or may have 

mobilised salt stores deeper within the soil profile. Free water with electrical 

conductivity measuring above 5 dS/m in winter is most likely to be groundwater 

(Department of Primary Industries, 2004).In Australia, salt affected soils are classified 

as saline, sodic and alkaline soils (Chhabra, 1996); the latter two soil types are not 

associated with dryland salinity. Saline soils are defined by the levels of salt ion 

concentration mainly Cl
-
, SO4

2-
, Ca

2+
, Na

+
, Mg

2+
 and to a lesser degree HCO3

-
. In 

Australia, NaCl is the most common salt found in soils of arid to subhumid regions 

(Fitzpatrick et al., 2003; Isbell et al., 1983) and in some regions saline soils are also 

composed of sulfate salts, such as NaSO4, MgSO4, and CaSO4 (gypsum) (Fitzpatrick et 

al., 2003; Isbell et al., 1983). Levels of salt ion concentrations or soil salinity can be 

determined by measuring the electrical conductivity either of a solution of soil and 

water (EC1:5) or with ground-based geophysics electrical conductivity instruments. 

Salinity at the land surface can be broadly divided into 7 classes: nonsaline (less than 2 

dS/m); moderately low (2-4 dS/m); moderate (4-8 dS/m); moderately high (8-16 dS/m); 

high (16-32 dS/m); very high and extreme salting (greater than 32 dS/m) (Maschmedt, 

2000). 

Soil salt accumulation impairs plant growth by reducing water availability to the plants. 

Mild salinity creates stressful conditions for many plants (Larcher, 1980) and induces 

plant symptoms such as 1) yellowing of leaves of crops and pasture (chlorosis) and 

drying before the growing season has ended; 2) slow growth rate and stunting of leaves; 
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3) whole plant growth rate decline; 4) reduced number of plants; 5) greater 

susceptibility to disease and 6) decreased seed germination and viability (Department of 

Primary Industries, 2004; (Larcher, 1980). These indicators become quite noticeable as 

the salinity spreads and patchy areas of discolouration or dieback appear in the fields of 

crops or pasture. The deteriorating crops and pasture can be replaced by halophytes, one 

of the most conspicuous indicators of salinity. Halophytic plants have adapted to saline 

soils by developing distinctive leaf, stem and root structures that either regulate salt ion 

uptake, eliminate and dilute saline water, or allow the plant to tolerate salt 

accumulation.  

In Australia, common halophytic plants associated with mild salinity include sea barley 

grass, swamp couch and wimmera rye grass (Department of Primary Industries, 2004). 

As salinity increases to moderate levels (8-16 dS/m), these halophytes are progressively 

replaced by species such as salt grass, ruby saltbush, ice plant and spiny rush 

(Department of Primary Industries, 2004). Ultimately, when severe levels of salting are 

attained (greater than 16 dS/m), the only species remaining are highly tolerant plants 

such as beaded glasswort, samphire and rounded noon flower (Department of Primary 

Industries, 2004). These easily recognisable halophytes are stunted bushes, often 

reddish in colour with semi-succulent leaves. Plants develop tolerance to salinity by 

diluting salts ions in distended cells (succulence) or compartmentalising salt in plant 

structures such as the leaf vacuoles (Larcher, 1980). Succulence is a property of 

numerous halophytes caused by high concentrations of soil chloride ions. As the salts 

are drawn into the plant during growing season, the salt concentration can be 

considerably reduced if excess water can been drawn simultaneously. Samphires and 

other plants adapted to severely saline areas are typically found in the lowest parts of 

the landscape (Barrett-Lennard, 2003). Halophytic species often exhibit zonation, 

growing in homogeneous patches associated with favourable soil conditions and 

topographic features (Barrett-Lennard, 2003). Zonation of halophytic vegetation over 

sizable areas means that these species are ideal candidates for mapping with remote 

sensing imagery. 

The final extreme stage in the salinisation process is the development of highly 

concentrated saline seeps. Plant damage is so severe that no vegetation, including 

halophytes, can be sustained. At this point, soil becomes exposed and prone to erosion. 

Stock can even exacerbate soil exposure by preferentially occupying the wet, cool, salty 
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discharge sites. On bare ground where saline seeps persist, surface water can readily 

evaporate, leaving behind an obvious white stain of salt crystals or salt crust. In arid 

regions these crystalline crusts mainly contain NaCl (Chhabra, 1996). At these severe 

levels of salinity (greater than 32 dS/m), no plants can tolerate the conditions and a 

permanent saltpan will result. 

Different salinity symptoms are associated with varying levels of salinity as well as 

changing hydrogeological provinces. In the winter dominant rainfall regions of  

southern Australia, particularly in Western Australia and the Upper South East (USE) of 

South Australia, waterlogging is of primary concern. In these cropping areas, salinity 

mapping surveys have reported a range of other salinity symptoms, such as exposed 

salt-affected ground, marginally saline areas with a good cover of halophytic vegetation 

(Furby, 1995; Furby, 1998; Furby, 1999). Adjacent to the USE are the western margins 

of the Murray Basin where discharge from regional aquifers produce severe regional 

dryland salinity problems. In the coastal plains of South Australia, salinas with high 

salinity levels occur up to 150 km inland (Warren, 1982), sometimes associated with 

extensive samphire flats. The salinas are easily recognisable as broad flattish areas low 

in the landscape that exhibit symptoms such as vegetation death, salt accumulation on 

the surface and soil erosion. Similar salinity levels occur in some parts of the eastern 

Mallee in Victoria, where groundwater salinity levels are similar to sea water (Coram et 

al., 2000). In this region, lowlying shallow ephemeral lakes and wetlands have 

concentrated through evaporation to form salinas (Coram et al., 2000).  

Groundwater salinity generally decreases from the western reaches of the Murray 

Darling Basin to the eastern basin margins and into the NSW and Victoria uplands 

(Coram et al., 2000). Victoria reports a variety of symptoms with more severe salinity 

occurring in the west and lower slopes of the ranges of NSW and Victoria and in 

Central Victoria. In the uplands of eastern Australia, levels of salinity are generally low 

or moderate and in the steeper uplands large areas of salinisation seldom occur (Coram 

et al., 2000). These areas are more likely to exhibit less severe symptoms of salinity 

such as salt tolerant grasses. 

1.3 Conventional mapping and monitoring dryland salinity 

Unambiguous knowledge as to the distribution and quantity of recharge and discharge is 

necessary for the implementation of dryland salinity management plans, particularly in 
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the worst affected agricultural districts. Data gathering about how these processes vary 

spatially across the landscape and how they change over time is time consuming and 

expensive (SCARM, 2000).  

For over a decade, studies have assessed multispectral remote sensing imagery for 

mapping areas affected by dryland salinity, particularly in Australia, because traditional 

farm surveys failed to “provide maps of where the salinity is, where it is spreading to or 

the rate at which it is spreading” (Evans et al., 1996). Current remote sensing methods 

include optical systems, such as aerial photography and satellite imagery, and more 

recently airborne electromagnetics and improved optical hyperspectral sensors. The 

satellite borne Landsat Thematic Mapper has been considered the most appropriate cost 

effective method for mapping and monitoring dryland salinity at regional or catchment 

scales, whereas aerial photography is the most accurate method at farm scale (Webb and 

Price, 1994).  

1.3.1 Aerial photography 

Aerial photographs are interpreted by comparing observed colour, fine details and tonal 

changes to other relevant expert groundbased knowledge such as geology, 

geomorphology, soils and landuse (Ferdowsian, 1994). Typical aerial photography 

mapping is at a medium (1:20,000 to 1:80,000) or fine scales (1:4,000 to 1:20,000).  

Aerial photographs were utilised by the National Land and Water Audit in NSW and 

SA to supplement groundwater data to produce landscape maps of dryland salinity 

(Webb, 2000). The highly regarded Soil Landscape Unit maps in South Australia were 

also based on aerial photographic interpretation in conjunction with extensive field soil 

sampling (Maschmedt, 2000). Salinity mapping from aerial photographs involves the 

detection of visible salt on the land surface or the identification of surrogate landcovers 

such as vegetation and surface water that infer salinity (Spies and Woodgate, 2004). 

Mapping might also entail detecting landforms related to salinisation landscape 

processes. Areas that have distinctive soil and landscape characteristics are portrayed as 

homogeneous mapping units on conventional maps or polygons in GIS (digital 

geographical system) databases. This mapping convention usually acknowledges that 

the mapping units do not portray spatial variability of soils at the scale of mapping. In 

addition, it does not allow for mapping of gradational or transitional zones of soil 

variation.  
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Although photo interpretation is an important aid to salinity mapping, Hick and Russell 

(1988) point out that aerial photography is technically restricted by the lack of 

“geometric control and photosensitivity” and the limited spectral coverage beyond 

visible wavelengths. Conventional aerial photography generally requires time 

consuming and costly visual interpretation for mapping which is not well suited to 

digital analysis and more automated mapping approaches. Recent development in 

Australia is the introduction of aerial digital cameras, although no significant salinity 

mapping projects have been reported (Spies and Woodgate, 2004).  

1.3.2 Geophysical mapping of subsurface salinity 

There are many geophysical methods available for geological and hydrogeological 

investigation, including gravity, magnetics, electromagnetic and radiometrics. The most 

important geophysical methods for subsurface salinity mapping are groundbased or 

airborne electromagnetics.  

Electromagnetics methods measure the electrical conductivity of soils and regolith. 

High conductivity is usually associated with electrolytic dissolved salts in moisture-

filled pore spaces. Saline groundwater is highly conductive whereas dry salt is non-

conductive. However, careful interpretation is required because various studies have 

found some clay types to also have high conductivity (2001). 

Though geophysics has an important role to play in mapping aspects of subsurface 

salinity, the National Airborne Geophysics Project has also named other crucial 

datasets. These datasets include topography, orthophotos, hydrological data, multi-

spectral data (e.g. Landsat satellites, airborne multi-spectral and thermal scanners), soil 

maps and geophysical data. However, the report acknowledged that many datasets are 

not readily available or are not at the scale or resolution needed. 

1.3.3 Multispectral remote sensing of surface expressions of salinity 

The first Landsat multispectral satellite was launched in 1972 for the specific purpose of 

broad-scale repetitive observation of land areas on the surface of the earth to 

discriminate dominant landcover types of vegetation soil and water (Campbell, 1996). 

Since earth-orbiting satellites periodically pass over the same region at regular intervals, 

new data time is recorded each time so that changes in land use and condition can be 

monitored.  
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The Landsat TM wavelength bands coincide with the visible, near infrared (NIR) and 

shortwave (SWIR) regions in the electromagnetic spectrum. These bands were chosen 

to optimise discrimination of common landcovers for landuse mapping, general 

vegetation inventories and geological studies (Jensen, 2000). The particular value of 

these wavebands is water penetration, discrimination of vegetation types, differentiation 

of clouds, snow and ice and identification of certain hydrothermally altered rocks. The 

visible and NIR bands maximise leaf reflectance related to leaf pigmentation, leaf 

canopy and structure and moisture content.  

Early on, classification methods and vegetation indices were developed for monitoring 

the environment and change in landuse patterns. Vegetation indices sensitive to 

vegetation condition were also developed to extract and model plant biophysical 

variables associated with vegetation health, such as green biomass and the related leaf 

area index (LAI)
 1

. Jensen (2000) credits Rouse et al (1974) with the development of the 

widely used Normalised Difference Vegetation Index or NDVI, which has been 

commonly applied to multitemporal satellite data to map general changes in vegetation. 

Over the last two decades, several studies have assessed multispectral satellite imagery 

for mapping and monitoring surface salinity with mixed results (Hick and Russell, 

1988; Wheaton et al., 1992); Mougenot et al, 1993; (Evans and Caccetta, 2000; Evans 

et al., 1996; Furby et al., 1998; Furby et al., 1995; Kiiveri and Caccetta, 1998; 

Metternicht and Gonzalez, 2000) Howari, 2003; Metternicht and Zinck, 2003). Landsat 

TM imagery incorporating the thermal band proved useful in discriminating white 

surface expressions of salt from bright sandy soils because both soils are 

indistinguishable in the visible and near infrared wavelengths (Metternicht and Zinck, 

1997; Verma et al., 1994).  Separation of vegetated saline from non-saline sites can be 

achieved by comparing satellite images from dry season images to images taken at the 

time of maximum vegetation growth (sometimes referred to as “spring flush”) (Hick 

and Russell, 1988; Rao et al., 1991). During the spring flush, there is maximum 

vegetation growth at the non-saline sites, then as the dry season progresses, the 

                                                 

1
 Vegetation indices have been well summarised by Jensen, J.R., 2000. Remote sensing of the 

environment: An earth resource perspective. Prentice-Hall Series in Geographic Information Science. 

Prentice Hall, Upper Saddle River, N. J. 
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vegetation dries out. This phenological change in vegetation may not be apparent at 

saline sites; instead, vegetation can be limited all year round.   

Integration of satellite imagery with other datasets has also improved mapping accuracy 

(Caccetta et al., 2000; Evans and Caccetta, 2000; Evans et al., 1996; Furby et al., 1998; 

Furby et al., 1995; Kiiveri and Caccetta, 1998; Thomas, 2001). Kirkby (1992) 

recognised the scope for integration of datasets such as digital elevation models (DEM), 

soil type, geology and groundwater within the GIS framework. For example, Evans et al 

(1996) integrated digital elevation data with Landsat imagery using a decision tree 

classifier, to produce successful classification maps of several landcover classes such as 

bare salt scalds, bare soil, water, remnant vegetation, crops and pasture.   

Multispectral satellite imagery is currently regarded as the preferred low cost broad 

scale mapping method because of its ability to map extreme surface expressions of 

salinity. The main advantages of satellite imagery are the synoptic views of large areas 

and the repeated acquisition at intervals of a few weeks (Gunn et al., 1988). However, 

multispectral data has limited diagnostic capabilities because it lacks fine scale spatial 

information (compared to aerial photography) and spectral information (Kruse, 1998). 

The major limitations of direct mapping of salt affected soils with multispectral imagery 

occur where saline soils are covered with salt-tolerant vegetation (Furby et al 1995; 

Howari, 2003) and where there is no evidence of salt crust (Howari, 2003). Furby et al. 

(1995) also noted that non-saline exposed soils were often confused with bare, severely 

salt affected areas. Maximum likelihood classification was then able to accurately map 

spectrally distinct bare saline affected areas and halophytes, but, marginally saline areas 

with salt tolerant grasses and weeds were mapped with less accuracy and were often 

spectrally confused with heavily grazed pastures or low productivity non saline pastures 

(Wheaton et al., 1992). Most studies have attempted to overcome the spectral and 

spatial limitations of the imagery by combining multitemporal imagery and ancillary 

data, such as soils and terrain data. 

Fraser and Joseph (1998) suggest that Landsat spectral resolution is inadequate because 

the difference between the spectra of saline land, stubble and waterlogged land was “not 

significant enough to allow spectral separation”. Furthermore, they concluded that the 

broadband spectral response of saline soil is extremely variable, with only extreme 

expressions of surface salt, such as large salt scalds, exhibiting spectral uniformity. In 

addition, the absence of narrow bands in the ranges of 700-730 nm, 730-760 nm and 
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900-1100 nm limits the ability to discriminate plant species and plant health (Hick and 

Russell, 1988).  

Research groups and catchment managers are becoming aware of the need for improved 

remote sensing technologies for baseline mapping and ongoing monitoring of salt 

affected areas (NDSP, 2004). The NAGP Report recommended investments in R&D to 

optimise technology to “improve the performance of radiometrics and hyperspectral 

remote sensing techniques for the definition of soils and their mineralogical, physical 

and chemical properties”. Thomas (2001) concluded that emerging remote sensing 

technologies would not only increase current dryland salinity extent mapping 

capabilities, but also improve salinity prediction. These new technologies include 

imagery acquired by the satellite borne ASTER sensor, RADAR-derived digital 

elevation models (DEM), airborne geophysics and high resolution hyperspectral remote 

sensing.  

1.4 The advantage of high spectral resolution imagery 

Hyperspectral remote sensing began in the 1980s with the development of AIS 

(Airborne Imaging System) and the NASA Airborne Visible-InfraRed Imaging 

Spectrometer (AVIRIS). Hyperspectral remote sensing instruments are a major advance 

in remote sensing capabilities because they offer a significant increase in the number of 

spectral bands compared to multispectral instruments. Multispectral sensors “drastically 

under sample the information content available from a reflectance spectrum” (Kruse, 

1998) by acquiring data in only a few spectral bands, each up to several hundred 

nanometers wide. In contrast, hyperspectral or imaging spectrometers sample 100-200 

or more bands at fine intervals, generally less than 20 nm wide. The large number of 

contiguous fine resolution bands produce almost continuous spectral response curves.  

Hyperspectral imagery has the unique combination of high spectral resolution and the 

ability to be calibrated to absolute reflectance, so that direct comparisons can be made 

to field and laboratory spectra. Laboratory and field spectrometers directly measure the 

radiation reflected from materials as continuous response curves in the visible, near 

infrared (NIR) and shortwave infrared (SWIR) wavelengths. This continuous spectral 

response curve is referred to as the spectral signature.  
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In order to evaluate hyperspectral imagery for mapping dryland salinity, it is necessary 

to firstly understand the spectral properties of soils and vegetation and how salinity 

influences their spectral response. 

1.4.1 Spectral response of plants 

The overall spectral reflectance of plant canopies is a function of the total leaf area 

exposed to the sensor, an absorption coefficient, a scattering coefficient and the 

background reflectivity (Knipling, 1970). Therefore the canopy spectral response can be 

a mixture of reflectivity and absorption from photosynthetically active green leaves and 

branches, shadows and background soil. However, it is the spectral response of leaves 

that dominate the reflectance spectra of green plant canopies.  

The spectral response of green leaves is a function of chlorophyll and other pigments, 

various biochemicals, internal leaf structure and leaf water content
2
. The surface of the 

leaf is largely translucent to solar radiation, whereas the underlying layers containing 

pigments absorbs radiation. The absorption properties of chlorophyll, carotenes and 

xanthophyll pigments produce the general low reflectivity in the visible part of the 

spectrum between 400 and 700 nm (Gates et al., 1965). In this wavelength region, the 

main spectral features of green leaves are the chlorophyll a and b absorption in the blue 

and red wavelengths and a characteristic peak in green wavelengths (of 525-605 nm). 

Consequently, the visible part of the spectrum is important for discriminating between 

plant species (Elvidge, 1990).  

Typically, the continuous laboratory spectral signature of healthy photosynthetically 

active green leaves has significantly higher reflectance in the NIR, associated with leaf 

cellular structure, and beyond 1300 nm reflectance is dominated by broad water 

absorption features (Gates et al., 1965); Knipling, 1970, Gausman, 1973). The rapid 

increase in reflectance between the visible red and NIR wavelengths around 700 nm is 

known as the red-edge. The spectral structure within the NIR region is shaped by strong 

water absorption features and associated “lobes” at 900, 1080 and 1270 nm (Elvidge, 

1990).  

                                                 

2
 A comprehensive table of published absorption features of plant spectra has been compiled by Lewis 

and Jooste Lewis, M. and Jooste, V., 1999. Identification of vegetation signatures in AMS imagery., 

Unpublished report to the Anglo American Corporation. 



- 12 - INTRODUCTION 

 

In the short wave infrared (SWIR) region beyond 1300 nm, the overall shape of green 

leaf spectra is mainly influenced by water. Green leaf spectra are dominated by broad 

water absorptions centred at 1460 and 1950 nm, which generally “mask’ finer lignin, 

cellulose, tannin, pectin and plant wax absorption minima seen in dry plant material 

(Elvidge, 1990). Cellulose and lignin absorption features are combinations and 

overtones of fundamental absorptions in the thermal infrared. Elvidge lists the cellulose 

features centred at 1220, 1480, 1930, 2100, 2280, 2340 and 2480 nm, and lignin 

absorptions which occur at 1450, 1680 and 1930 nm, a broad absorption region centred 

at 2090 nm and SWIR absorptions at 2270, 2330, 2380 and 2500 nm.  

1.4.2 Effects of stress and senescence on plant spectral response 

Spectral changes in stressed leaves can be seen principally in the visible and VNIR 

regions spanning 400-800 nm (Carter and Miller, 1994; Elvidge, 1990; Hick and 

Russell, 1988; Knipling, 1970; Wang et al., 2001). During early senescence, the red-

edge, around 700 to 800 nm, shifts to shorter wavelengths and the NIR “leading edge” 

collapses (Elvidge, 1990).  

Advanced senescence or chlorosis (i.e. yellow to red brown leaves) is symptomatic of 

extreme changes in leaf pigments (Elvidge, 1990; Knipling, 1970). Reduced radiation 

absorption by deteriorating chlorophyll produces a simultaneous increase in reflectance 

in visible green and red wavelengths (Carter and Miller, 1994; Knipling, 1970)). 

Gausman and Allen (1973) discussed the significant contribution of decreased leaf 

water content in the yellow (non dried) leaf spectra to increased reflectance in the 750-

1300 nm range. Other studies also recognise the value of examining spectral structure in 

the SWIR region for detecting plant chlorosis (Elvidge, 1990; Hick and Russell, 1988).  

1.4.3 Spectral variation between plant groups and species 

Spectral differences between plant types are difficult to detect, because most plants have 

essentially the same biochemical constituents. Furthermore, most pigments, biochemical 

and structural components have relatively broad and often overlapping absorption 

features (Elvidge, 1990), unlike the fine, distinctive absorptions of minerals. Therefore, 

spectral variations between plant types are mainly based on relative differences in 

reflectance across broad spectral bands (Lewis, 2001). However, there are also 

considerable relative differences in reflectance within plant groups, due variation in 
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structure, growth stage, health and composition. Unfortunately, the spectral variability 

between species may be less than the range of variability within species (Price, 1994).   

Despite these difficulties, early studies identified variations in reflectance spectra 

between plant groups, and even to some extent between species (Gates et al., 1965; 

Gausman and Allen, 1973; Knipling, 1970). Generally, plant pigment variation between 

groups can be observed in the visible part of reflectance spectra, whereas variations in 

cell structure and water content are expressed in the NIR and SWIR regions. 

Differences in these regions contribute to plant group discrimination (Elvidge, 1990; 

Gates et al., 1965; Lewis, 2001; Lewis, 2002; Sampson et al., 1998). Specifically, desert 

succulents reflect substantially more radiation in the visible and NIR regions than 

mesophytes (Gates et al., 1965). The visible part of the spectrum associated with 

chlorophyll absorption and the bands associated with the “red-edge” region, were also 

found to be the key regions for maximum discrimination of grass species in the African 

rangelands (Schmidt and Skidmore, 2001). For discriminating groups of Australian arid 

zone plants, the most influential spectral regions are the infrared (beyond 740 nm), the 

chlorophyll absorption band centred at 680 nm, the green and other visible wavebands 

(Lewis, 2001).  

In the SWIR region, Elvidge demonstrated that the broad water features prominent in 

the reflectance spectra of fresh leaves mask many fine cellulose and lignin absorption 

features in plants of mesic environments. These fine fetures become evident in the 

spectra of dried plant material. These biochemical absorptions may be more readily 

observed in the spectra of plants adapted to arid environments, because of specialised 

leaf tissue structure, such as leaf thickening and sometimes reduced leaf water content 

(Lewis et al., 2000).  

Therefore, spectral discrimination of halophytic species may also be possible because of 

their distinctive leaf and stem structure adaptations. Lewis et al (2000) observed that 

semi-succulent foliage of salt tolerant chenopod shrubs display subdued VNIR 

reflectance and multiple SWIR absorption features that can be attributed to waxy cuticle 

leaf coating. Dehaan and Taylor (2002B) found the spectral signature of samphire 

(Halosarcia pergranulata) to be characterised by two peaks at 555 nm and 624 nm due 

to accessory pigments and a distinctive slope to the infrared reflectance plateau between 

1250 and 1400 nm. Furthermore, the variable depth of the NIR water absorption 

features in conjunction with the height of the associated “lobes” at 900, 1080 and 1270 
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nm are also important structures for plant species differentiation (Elvidge, 1990) such as 

halophytes (Dehaan and Taylor, 2002B). 

Discriminating plant groups such as halophytes is showing promise, particularly for 

plants with spectral features in the SWIR. However, difficulties arise from the highly 

variable nature of foliage reflectance due to leaf angle, crown structure and 

nonphotosynthetic vegetation, all of which may impede discrimination and must be 

considered during spectral analysis (Cochrane, 2000). 

1.4.4 Spectral characteristics of soils  

The spectral signature of soils is a function of soil texture (particle size) and surface 

roughness, soil moisture content, organic matter content and mineral constituents such 

as iron oxide and clay content (Ben-Dor et al., 1999), particularly in the wavelength 

range 1300-2400 nm (Baumgardner et al., 1985; Hick and Russell, 1990).  

Mineral constituents such as iron oxides and clay groups have more easily recognisable 

features. The major characteristics of soil reflectance curves are strong water absorption 

bands at 1450 and 1950 nm and occasionally at 970, 1200 and 1770nm (Baumgardner et 

al., 1985). Strong absorption bands are due to bound water, specifically hydroxyl ions. 

Clay minerals generate strong water absorption features due to their hygroscopic 

properties. The spectra of kaolinite soils contain an hydroxyl feature around 1400 nm, 

coinciding with the 1450 nm water feature, and an asymmetric doublet hydroxyl feature 

around 2200 nm (Goetz et al., 1985).  

The properties of saline soils which most influence their reflectance spectra are salt 

minerals, poor soil structure, low organic matter, low microbial activity and free or 

crystal lattice bound water (Ben-Dor, 1999). However, the complexity of soil properties 

makes spectral identification of soil saline minerals problematic (Csillag et al., 1993), 

compounded by the fact that one of the most common salts, halite, has an essentially 

featureless spectrum in the optical wavelengths (Crowley, 1993). 

Nevertheless, some studies have investigated spectral properties of salt crusts, 

identifying distinctive spectral features relating to numerous evaporite minerals 

(Crowley, 1993). Saline crusts, formed by sustained evaporation of near surface 

groundwater, are combinations of evaporite minerals. The saline crusts have been found 

to exhibit fine diagnostic absorption features, particularly in the SWIR region, 

corresponding to overtones of fundamental vibrations of hydrogen bonded structural 
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water molecules and other ions such as carbonate and nitrate (Crowley, 1993). Saline 

crusts are combinations of evaporite minerals and have various diagnostic absorption 

features in the SWIR region (Crowley, 1993). Drake concluded that anhydrous chloride 

and sulphate minerals such as halite and anhydrite, possess very similar high albedo 

spectra in addition to the ubiquitous water absorption features near the 1450 and 1950 

nm (Drake, 1995).  

More recently, some spectral features of irrigation induced saline soils have been 

identified by Dehaan and Taylor (2002B). However they acknowledge, like Csillag, that 

precise determination of soil composition through spectral analysis was difficult, 

particularly the surface salt efflorescence, which is highly sensitive to variations in 

watertable height. Saline soils were found to have a pronounced reflectance high, or 

shoulder, from around 800 nm to 1300 nm, with the slope of this ramp decreasing as 

salinity increases. Dehaan and Taylor (2002B) also reported that increasing salinity 

could be inferred from the reduced intensity of the 2200 nm hydroxyl feature and a 

reflection high at 800 nm. However, reduction in the clay feature could be associated 

with increasing moisture. 

1.5 The potential of hyperspectral imagery to map dryland salinity 

Many field and laboratory studies have demonstrated the existence of spectral 

characteristics associated with salinity symptoms, such as plant stress (namely chlorosis 

and reduced plant growth), halophytic plant species, soil moisture, saline mineralogy 

and salt scalds. When interpreting remotely sensed images, it is assumed that 

differences exist between the spectral signature of different types of soils and vegetation 

and between healthy vigorously growing vegetation and stressed plants and that these 

differences can be observed and assessed (Gates et al., 1965). Distinctive spectral 

features associated with different landscape components can be extracted and used to 

produce image maps showing the location and abundance of each component. High 

spectral resolution imagery, therefore, makes possible greater discrimination between 

landscape features, vegetation groups and species, and more precise crop health 

evaluations. 

By exploiting the distinctive spectral characteristics of soil and vegetation, high spectral 

resolution airborne imagery has mainly been applied to surface geological mapping (for 

details of AVIRIS geological mapping case studies see Kruse (1998)). However, its 
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capabilities are being extended to map soil minerals and properties (Palacios-Orueta and 

Ustin, ; Ryan and Lewis, 2001), vegetation types (Chewings et al., 2000; Lewis, 2002; 

Lewis et al., 2000; McGwire et al., 2000; Roberts et al., 1993) and coastal areas 

(Dekker and Bukata, 2002; Green et al., 1998; Silvestri et al., 2002; Underwood et al., 

2003).  

Hyperspectral data has the potential for detecting subtle changes in plant pigments 

sensitive to stress (Gamon et al., 1993). Wavebands associated with pigment sensitivity 

are commonly used in narrow band vegetation indices, developed by field or laboratory 

spectral studies. Gamon et al. (1993) applied NDVI to AVIRIS data and concluded that 

structurally based indices are able to capture seasonal and spatial patterns in canopy 

greenness and therefore plant productivity. A leaf scale water stress model based on 

NIR, green, red and SWIR waveband indices was successfully applied to HyMap 

imagery to map variations moisture stress in eucalypts (Chisholm, 2001).  

Other than plant stress, the presence of halophytic plant species is an obvious symptom 

of saline soils. Some initial success was achieved in the Lewis et al. (1999) study which 

isolated chenopod shrubs, such as halophytic saltbush, from Airborne Multispectral 

Scanner data.  

A significant recent study by Dehaan and Taylor (2002A) assessed hyperspectral 

imagery for mapping irrigation-induced salinity. Image-derived spectra (endmembers) 

were successfully equated with several halophytic species. Image endmembers with 

twin reflectance peaks in the visible red and distinctive slope between 1250 and 1400 

nm were identified as either samphire, which under saline conditions appears red, or the 

purple/red halophyte sea blite. Distinctive absorption features at 2080 and 1720 nm also 

identified halophytic grasses. In image-derived spectra, the authors also found that the 

presence of evaporite minerals, such halite and bassenite, could be inferred from a 

prominent shoulder at 800 nm, and variations in hydrate absorption features at 900 and 

1150 nm. They concluded that airborne hyperspectral data could differentiate saline 

from non-saline bare ground (due to ploughing for example), which is a significant 

advance over earlier sensors.  

1.6 Conclusion 

By exploiting the distinctive spectral characteristics of soil and vegetation, high spectral 

resolution airborne imagery has proved a powerful tool for geological and land cover 
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mapping. Preliminary studies have also applied hyperspectral imagery to mapping soil 

and vegetation indicators of irrigation-induced salinity (Dehaan and Taylor, 2002A; 

Taylor, 2001; Whiting and Ustin, 1999), although the resultant maps were not 

statistically assessed for accuracy. The fine spectral and spatial resolution of airborne 

hyperspectral imagery may allow for discrimination of salt tolerant plants and certain 

properties related to saline soils. To evaluate the capabilities of hyperspectral imagery 

for mapping dryland salinity, studies need to be carried out in affected regions with 

variable terrains, soils and landcovers and using hyperspectral imagery with different 

spectral and spatial specifications.  

1.7 Research aims 

Given the magnitude of the dryland salinity problem in Australia and the limitations of 

current remote sensing methods, the overall aim of this study was to determine whether 

hyperspectral imagery can be used to improve the mapping and monitoring of surface 

symptoms of dryland salinity. The study used a South Australian site within the 

Murray-Darling Basin to characterise the reflectance properties of surface salinity 

symptoms and evaluate the suitability of several forms of hyperspectral imagery for 

mapping them at catchment scales.  

Specifically, the project objectives were to 

1. Characterise how dryland salinity was expressed in the landscape and 

determine those salinity symptoms were spectrally and spatially suited to 

mapping with hyperspectral imagery; 

2. Identify the optimum time of year for mapping each target symptom, 

especially areas with a good cover of salt tolerant vegetation. 

3. Compare and evaluate the suitability of different spectral and spatial 

resolutions of airborne and hyperspectral imagery for mapping selected 

dryland salinity symptoms;  

4. Compare image-derived maps of salinity symptoms with conventional soil 

and salinity mapping and multispectral image mapping; and   

5. Develop an efficient and consistent processing procedure for mapping 

symptoms of salinity at regional and catchment scales. 
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1.8 Significance 

This research responds to the recent calls from the National Dryland Salinity Program 

for improved remote sensing methods for baseline mapping and ongoing monitoring of 

dryland salinity. Hyperspectral imagery has the potential to address the problem of 

underestimating the extent of salt affected land because the high spectral and spatial 

resolution imagery may allow for mapping of salt affected land with a good cover of 

vegetation. This study explores that potential by evaluating several forms of 

hyperspectral imagery, each with differing spatial and spectral resolutions, and collected 

at different times of year, for their suitability for mapping dryland salinity symptoms.  

While studies to date have applied hyperspectral imagery to the mapping of soil and 

vegetation indicators of irrigation induced salinity at specific sites (Dehaan and Taylor 

2002B), this study evaluates hyperspectral imagery for mapping salinity across broader 

landscapes where dryland agriculture is the predominant landuse. Dryland salinity 

affects larger areas and a wider range of landscape contexts than irrigation induced 

salinity. The study area is part of the Lower Murray region and has large areas of salt 

affected land that are contributing to the increasing salinity of the Murray River and 

Lake Alexandria and is an increasing threat to agriculture. The Lower Murray region 

has been identified as a “priority region” by the National Action Plan for Salinity and 

Water Quality
3
.  

Mapping farms, catchments and regions necessitates the use of extensive sets of 

airborne hyperspectral imagery to cover these broad areas of interest. These extensive 

datasets pose a challenge which require the development of suitable radiometric and 

geometric image calibration methods as well as techniques for consistent image analysis 

and mapping. In meeting these methodological challenges, this research places 

emphasis on the use of readily available image analysis and mapping techniques to 

provide catchment managers with an accessible alternative to conventional salinity 

mapping based on aerial photography interpretation and multispectral satellite imagery. 

                                                 

3
 Priority region map is available from the National Action Plan for Salinity and Water Quality (NAP) 

website [http://www.napswq.gov.au/priority-regions.html] 
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1.9 Thesis outline 

Chapter 1 has provided an introduction to the problem of dryland salinity and reviewed 

the literature on remote sensing methods for salinity mapping and the capabilities of 

hyperspectral imagery. The aims and significance of this research have also been 

explained. 

In Chapter 2, the hydrogeology and history of landuse at the study site are described in 

order to explain the occurrence of dryland salinity in the region. Current salinity maps 

from the region are also reviewed. Soil analyses are presented to demonstrate the levels 

of salinity at some salt affected sites. Finally, the results of field observations and 

measurements are presented, leading to the identification of salinity symptoms that have 

suitable spatial distribution for remote sensing mapping. 

Chapter 3 reports the spectral characterisation of these salinity symptoms in order to 

establish which symptoms had spectrally distinguishing properties and were therefore 

suited to mapping with hyperspectral imagery. This chapter also presents methods used 

for collecting multiple field and laboratory spectra of various grass species at different 

times of year. Statistical comparisons were performed in order to determine the 

optimum time of year to map sea barley grass, an important early indicator of salinity. 

Chapters 4, 5 and 6 detail the mapping of the chosen salinity symptoms with HyMap 

multiple airborne image swaths, Hyperion satellite imagery and CASI multiple swaths 

respectively. Image feature extraction mapping procedures were devised to optimise 

salinity mapping for each hyperspectral dataset, and field data was used to assess the 

accuracy of the mapping. 

Chapter 7 reports comparisons of the resultant hyperspectral salinity maps to previous 

salinity maps of the study site. The final Chapter reviews the results from each section 

and summarises the key findings of this research. 





 SPECTRAL CHARACTERISATION OF SALINITY - 21 - 

 

2 CHARACTERISING SALINITY AT POINT STURT  

2.1 Introduction and aims 

The initial research stage aimed to characterise salinity at the study site, Point Sturt in 

South Australia, by examining local salinity maps and landuse history in the area. The 

next stage involved field observations and soil sample analysis. Fieldwork entailed 

identifying salinity symptoms and collecting and analysing soil samples to measure 

salinity levels. Field observations aimed to determine which salinity symptoms were 

spatially suited to mapping with remote sensing imagery and to identify the optimum 

time of year for mapping each target symptom, especially areas with a good cover of 

salt tolerant vegetation.  

2.2 Study Site 

Point Sturt is situated 70 km southeast of Adelaide on the eastern side of the southern 

Mt Lofty Ranges in South Australia (Figure 2-1). Point Sturt Peninsula juts into Lake 

Alexandrina, near the mouth of the Murray River and is part of the Murray-Darling 

Basin catchment. The peninsula and the lake are part of the Murray River coastal plain.  

 

Figure 2-1 Point Sturt Peninsula is located at the mouth of the Murray River in South 

Australia 

 



- 22 - SPECTRAL CHARACTERISATION OF SALINITY 

 

2.2.1 Climate 

The area has a Mediterranean climate with cool, wet winters (June to August) and 

warm, dry summers (December to February) (Figure 2-2). The peninsula is 

predominately a dryland farming region with a mean annual rainfall of approximately 

425 mm. 

  

Figure 2-2 Monthly mean rainfall (top) and temperature (bottom) from 1989 to 2003 

(from Hindmarsh Island immediately south of Point Sturt). Data from the Bureau of 

Meteorology [http://www.bom.gov.au/] 

2.2.2 Landscape and hydrogeology 

Point Sturt is part of the Murray-Darling Basin depression, which has filled with 

Quaternary and Tertiary sediments. The salt stores in the sediments have accumulated 

primarily originate from rainfall and aeolian deposition of airborne marine salts, which 

have been concentrated through evaporation over tens of thousands of years of relative 

aridity (Herzeg et al., 2001). The peninsula itself is part of an ancient coastal dune range 

(Thomas, 2001). Interdunal salt lakes originated during the Holocene when sea-water 

fed groundwater lakes formed in the permeable Quaternary beach-dune system (Warren, 

1982). 

The area can be divided into two definable hydrogeological regions based on two main 

regional aquifer systems (Figure 2-3), the deeper regional confined limestone aquifer in 

the east and the upper watertable clay aquifer in the west (Dooley and Henschke, 1999). 

The eastern area is dominated by sandy soils overlaying rocky calcrete containing the 

limestone aquifer system. The calcrete rises to the highest point, 29 metres, at the far 

eastern end of the peninsula. In the west, the dominant soil types include sands, loams 

and calcareous soils of variable depths overlaying sedimentary clays that host the 
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separate regional clay aquifer. The main clay aquifer flow terminates into coastal and 

central lowlying areas in preference to Lake Alexandrina (Dooley and Henschke, 1999). 

In these low-lying areas, there is highly saline groundwater due to strong evaporative 

discharge. These areas are associated with dryland salinity symptoms, such as 

waterlogging, saline discharge sites, saltpans and hyper-saline lakes; some of these 

extreme saline areas are thought to be naturally occurring primary salinity (Thomas, 

2001). Of concern are the increasing saltloads in the swales and flats on the peninsula 

that directly feed into the Lake Alexandrina (Dooley and Henschke, 1999). 

Figure 2-3 Hydrogeological map of Point Sturt Peninsula showing the boundary between 

the clay and limestone aquifers (dashed line), major recharge areas (after Henschke 

(2000)) and elevation contours.  

2.2.3 History  

Since the time of European settlement in the 1800s, extensive land clearing has 

contributed to aquifer recharge. By 1956 the entire peninsula was cleared but large 

tracts of less dense remnant vegetation still persisted in the west (Figure 2-4). The early 

settlers noticed the sharp contrast between the fertile, grassy, open country of the 

Angas-Bremer plains in the north and the thickly wooded mallee scrub which grew on a 

variety of high limestone content soils (Faull, 1981). The native halophytic vegetation 

LakeLakeLakeLake    

AlexandrinaAlexandrinaAlexandrinaAlexandrina    
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around the lake was samphire, sea barley grass
4
 and saltwater couch (Faull, 1981). On 

the peninsula, the dense mallee scrub gave way to low woodland formation in which 

she-oaks and melaleucas were common.  

 

Figure 2-4 Mosaic of three aerial photographs taken in 1956 of  Point Sturt (courtesy of 

Department of Environment and Heritage, Mapland, South Australia).  The land had 

been extensively cleared by this time. At the time there were significant areas of remnant 

vegetation in the west and little vegetation on the bare dune ridges just north of the site 

where the township of Clayton later developed. White exposed soils are visible throughout 

the peninsula  

2.2.4 Present landuse and vegetation 

Today, annual grasses and pastures cover most of the study site, with mixed agriculture 

of grazing and cropping in the west and predominately grazing in the east. However, 

                                                 

4
 Faull designates sea barley grass as a native halophyte, however in Flora of South Australia Part IV 

(Jessop, 1986) defines sea barley grass as an introduced species. 
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small patches of remnant native vegetation still persist throughout the area, mainly on 

the dunes in the west and some riparian wetlands thrive in coastal areas (Michalski, 

2000).  

Much of the lowlands are at risk from rising watertables (Dooley and Henschke, 1999), 

which are recharged from three main sites (Michalski, 2000). The Point Sturt 

management plan developed strategies to reduce recharge whilst supporting the 

economic viability of the local farmers (Michalski, 2000).  

2.2.5 PIRSA soil maps  

During the 1990’s, an inventory of the land and soil resources of South Australia’s 

agricultural districts was undertaken to produce a base-line database of soil attribute 

maps using the geographic information system (GIS) technology (Maschmedt, 2000; 

PIRSA Land Information, 2001B). The PIRSA soil landscape units (SLU) maps were 

compiled by extrapolating and interpolating data from air photo interpretation, field 

observations and recordings, laboratory analysis, stratigraphy, expert knowledge and 

existing mapping data.  

The inventory includes a range of soil and landscape attributes which are linked to each 

soil landscape unit (SLU) or mapping polygon with hard boundaries that represent 

transition zones (PIRSA Land Information, 2001B). Each attribute has some 

significance for agricultural use or management. Interpretive boundaries were mapped 

from 1:40,000 colour aerial photography and mapped onto 1:50,000 or 1:100,000 base 

depending on the agricultural district. Photographic information was also supplemented 

with soil data from over 24,000 field sites. Soil mapping in the Point Sturt region was 

predominately carried out at a scale of 1:50 000
5
. Maschmedt recognises there are 

limitations in the mapping system as the “criteria used to define the classes are based on 

observation and experience only, and not on experimental work”. 

The attribute salinity induced by rising watertables (SALT_COM) accounts for dryland 

salinity but does not distinguish secondary and primary salinity (Maschmedt, 2000). 

This salinity attribute is assigned seven classes depending on the level of salinity of the 

landscape as a whole (Table 2-1) and the extent of land affected by highly saline 

                                                 

5
 The border between the 1:50,000 and 1:100,000 maps occurs at the eastern tip of the Point Sturt 

Peninsula. This border corresponds to the boundary between South Australian map sheets. 
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seepage (Table 2-2). The landscape units with assigned salinity levels can be 

represented as a GIS map (Figure 2-5). 

Table 2-1 PIRSA soil landscape unit description of salinity levels. Sea barley grass would 

be mainly expected to occur in the moderate to moderately high salinity level areas and 

samphire and saltpans in the very high to extreme areas (after Maschmedt, 2000). 

Salinity level Vegetative indicators EC (dS/m) 

Low No evidence of salt effects 
<2 (surface) 

<4 (subsoil) 

Moderately low Subsoil salinity  
<4 (surface) 

4-8 (subsoil) 

Moderate 
Halophytic species such as sea barley grass 
are usually evident 

4-8 (surface) 

8-16 (subsoil) 

Moderately high 
Halophytes are common - sea barley grass, 
curly rye grass and salt water couch  

8-16 (surface) 

16-32 (subsoil) 

High 
Land dominated by halophytes with bare 
areas. Samphire & ice plant evident 

16-32 (surface) 

>32 (subsoil) 

Very high 
Supports only samphire, swamp tea-tree or 
similar halophytes 

>32 (surface) 

 

Extreme Bare salt encrusted surface >32 (surface) 

 

Table 2-2 PIRSA soil landscape unit attribute that refers to salinity induced by watertable 

levels. This attribute is designated 7 salinity classes A-G, where A is assigned to soil 

polygons with negligible salinity and G is assigned to extremely saline polygons (After 

PIRSA, 2001).  Descriptions of salinity levels, from negligible to extreme, are shown in 

Table 1. 

Class Nature of watertable induced salinity 

A Negligible 

B Slight salinity, or less than 2% of land affected by highly saline seepage 

C Moderate salinity, or 2 - 10% of land affected by highly saline seepage 

D Moderately high salinity, or 10 - 30% of land affected by highly saline seepage 

E 
Moderately high to high salinity, or 30 - 50% of land affected by highly saline 

seepage 

F High salinity. More than 50% of land affected by highly saline seepage 

G Very high to extreme salinity 

X Not applicable 
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Figure 2-5 PIRSA salinity induced by watertable map showing salinity classes associated 

with each soil landscape unit. Note that Class E (moderately high to high salinity) was is 

not represented on the Point Sturt Peninsula. 

 

The main saline discharge sites assigned moderate, high and extreme salinity levels 

(Classes C, D, F & G) are located along the coastal areas and across the central region 

where the clay aquifer flow terminates (Saline Class E is not represented on the 

peninsula). Salinity decreases inland away from the peninsula. 

2.2.6 National Land and Water Resources salinity map  

The National Land and Water Resources Audit was the first rigorous scientific attempt 

to present a national perspective of salinity in Australia (Webb, 2000). The Audit 

recognised that dryland salinity management requires knowledge of the extent and 

impacts of dryland salinity and therefore compiled an overview of the extent, current 

status and risks of dryland salinity in Australia. State by state comparisons were not 

considered because the methods, scale and reliability of data underpinning the state 

assessments were varied. Estimates from Western Australia, South Australia and New 

South Wales were considered the most reliable (Webb, 2000).  
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Figure 2-6 The National Land and Water Resources Audit extent of land affected by 

salinity in 2000 (Salinity 2000) was obtained from the Australian Natural Resources Atlas 

[http://audit.ea.gov.au/anra/atlas_home.cfm]. 

 

2.2.7 Landsat ETM dryland salinity maps 

Recent studies have mapped dryland salinity in the Point Sturt area (Figure 2-7) based 

on Landsat ETM imagery and spatial data integration (Clarke, 2000; Thomas, 2001). 

The Thomas study in 2001 evaluated Landsat imagery for mapping dryland salinity as 

part of the South Australian Land Condition Monitoring Project. Salinity mapping 

involving vegetation indices, classification techniques and multitemporal Landsat data 

proved inadequate for discriminating saline from other exposed soils with the Landsat 

imagery alone. Ultimately severely saline areas were mapped through integration of 

Landsat imagery with selected information from the PIRSA soils database (described in 

section 2.2.5). The Landsat-based study found that the most suitable procedure to 

discriminate saline areas from other degraded areas was a combination of unsupervised 

classification, the thermal band from a summer image, NDVI analyses and depth to 

watertable information from the PIRSA soils database.  
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Figure 2-7 Map of severely saline areas (red) based on Landsat ETM imagery and spatial 

modelling (Thomas, 2001).  

2.3 Field methods 

2.3.1 Identifying surface expressions of salinity  

Soil and vegetation salinity symptoms that extended over sizeable homogeneous areas 

were identified as suitable for mapping. These areas were required to span an area 

covered by several hyperspectral image pixels to allow for global positioning system 

unit (GPS) and georegistration errors, so suitable symptoms needed to cover a minimum 

of 10 x10 m (in the case of high spatial resolution airborne imagery used in this study, 

the ground resolution is 3 m).  

Point Sturt landscape is dominated by annual dryland pastures. The region is 

interspersed with remnant native vegetation, predominately mallee, and irrigated 

pastures, which are intersected by unsealed roads of exposed calcrete. The mallee 

vegetation stands are often sparse revealing exposed sandy mallee soils. Soils are also 

exposed in roadside quarries and on sand dune ridges. The location and extent of some 

of these areas were recorded with a global positioning system unit (GPS) offering 1-2 m 

accuracy, and photographs taken. These sites were visited during different seasons in 

2003 and 2004 to observe changes in vegetation and soil moisture in order to 

understand how salinity is expressed in the landscape. This knowledge was used to help 

make decisions regarding optimal times of year to acquire hyperspectral imagery for 

mapping different salinity symptoms.  
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2.3.2 Soil sampling 

Soil sample sites were selected according to two criteria. Firstly, sites were located 

within the two aquifer systems. Most of the sites were associated with the major 

discharge region where the clay aquifer terminates at the interface with the limestone 

aquifer (Sites A, AA and F). Site B was located along the southern coast and is 

associated with the limestone aquifer. Secondly, sample sites were also selected on the 

basis of accessibility to properties because access to some parts of the study area was 

limited due to landuse. The main study sites contained a representative range of salinity 

symptoms in the area (Figure 2-8).   

 
Figure 2-8 Map of showing 4 main saline sites. The clay aquifer discharges at Sites A, AA 

and F whereas the limestone aquifer discharges at Site B. 

 

Three surface soil samples were collected from the main Site A saltpan and one sample 

collected from Site B for comparison. At the Site A saltpan, soil samples were also 

collected at 10 cm depth intervals from the one soil pit (Site A1) and two soil cores 

(Sites A2 and A3) in order to investigate subsurface soil horizons, watertable levels and 
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fluctuations. The subsurface measurements of salinity have no direct relationship to the 

remote sensing imagery but provide an understanding of the vertical distribution of 

salinity through the soil profile. Soil samples were analysed in the laboratory to 

determine salinity levels (EC1:5), pH and soil mineralogy through X-Ray Diffraction 

analysis (XRD). Knowing the geographical coordinates of each site allowed for direct 

comparisons between soil analysis, field spectral measurements and spectral 

information derived from georegistered hyperspectral imagery.   

Surface soils were also sampled from 14 sites at 20 m intervals along a transect, 

extending out from the edge of the Site A saltpan, in order to demonstrate the 

relationship between decreasing soil salinity levels and changes in vegetation (Figure 

2-9). The first transect sample was located in very wet black soil within a patch of dense 

samphire, the next sample was collected 10m away, to the north, in the sea barley grass 

and the remainder were sampled every 20 m, terminating on a low rise over 200 m away 

where no halophytic grasses were evident.  

 
Figure 2-9 Detail of Site A showing GPS locations where surface and depth soil samples 

(red) were collected. The soil transect (black) extended north from the samphire, across 

the sea barley grass and terminating on a rise covered with non-halophytic grass.  
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2.3.3 Salinity  and soil water content 

Soil samples were analysed to determine the level of salinity and soil water content at 

salt affected sites. The soil water content may give an indication of the level of 

waterlogging from shallow groundwater. The level of soil salinity was determined by 

measuring the electrical conductivity of a solution of soil and water in a ratio of 1 part 

soil and 5 parts deionised water (EC1:5). The solutions were shaken for 1 hour before 

measuring.  

Soil water content is defined as the mass of water relative to the mass of dry soil 

particles, often referred to as the gravimetric water content, is given by 

soildry  oven mass

soil) dried oven of (masssoil) wet of (mass

soildry  of mass

 watersoil of mass
m

−
==θ  

In the field, soil samples were sealed in double plastic bags to preserve the soil water for 

transport to the soil laboratory. Soil samples were weighed before and after oven drying 

for 24 hrs at 105
o
 C.  

2.3.4 Soil mineralogy  

XRD analysis was also performed on 11 samples (3 samples from the saltpan surface, 5 

saltpan samples at different depths and 3 surface samples along the soil transect) to 

determine soil mineralogy pertaining to salinity and enabled comparisons with the 

minerals identified from spectral analysis of field and image spectra. XRD analysers are 

instruments used to identify minerals and crystalline compounds. The principle is based 

on passing high-energy X-rays through ground soil samples and the resulting diffraction 

pattern (which occurs in accordance to Braggs Law) is related to crystal interplanar 

spacings (Sumner, 2000). No two minerals have exactly the same distances between 

planes of atoms. The diffracted beam from different minerals produces high-count rates 

or peaks at different diffraction angles. Peaks occurring at known angles can identify 

mineral compounds.  

XRD patterns were recorded with a Philips PW1800 microprocessor-controlled 

diffractometer using Cobalt Kα radiation. Because of financial restraints, only a limited 

number of samples were analysed. The samples were ground in an agate mortar and 

pestle before being lightly pressed into aluminium sample holders for insertion into the 
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XRD analyser. Diffraction patterns were recorded in steps of 0.05° 2θ with a 1 second 

counting time per step.   

Each mineral identified in the results was assigned approximate percentage of total 

mineral content of the sample. A mineral content of 60% was defined as dominant, 20-

60% as sub-dominant, 5-20% as minor and less that 5% was defined as trace.  

A limited number of samples were investigated with XRD analysis, including surface 

saltpan samples at three locations at the Site A and one at Site B. From the soil pit at 

Site A1, analysis was also performed on soils extracted at 10 cm depth intervals. Three 

surface samples were also analysed from the 14 surface samples collected at 20 m 

intervals along the soil transect.  

2.4 Results  

A range of salinity symptoms was observed throughout the Point Sturt Peninsula. The 

symptoms indicated a range of salinity levels, from moderate (marine couch and dead 

trees), high (exposed soils and samphire) through to extreme salinity (saltpans) (Figure 

2-10). Salinity symptoms corresponding to varying levels of salinity were best observed 

at different times of the year.   

January to March corresponded to the driest months in which dry saltpans, exposed 

soils and perennial vegetation, including perennial halophytes were easily identified 

among a background of dry grass (Figure 2-10). Mild to moderate salinity indicated by 

a good cover of salt tolerant annual vegetation, such as sea barley grass, was best 

observed in wetter months because annual grasses could be more readily identified from 

their distinctive seed heads. At the height of the wet season in August, saltpans and 

coastal vegetation were inundated with water (pronounced waterlogging). 

2.4.1 Saline soils 

Three surface soil samples from Site A saltpan (Figure 2-9) were fine grained, sandy 

clay, mid grey with a fine thin creamy-white crust, particularly at the pan edges, also 

with evidence of pale fibrous plant material and small shells. Just below the dry surface 

the soil was very moist. In contrast, the saltpan at site B was covered with a coarse thick 

white salt crust underlain by black wet mud. Chemical and XRD analysis confirmed the 

extreme salinity of both sites, the EC levels of the crust at Site B was 10 times greater 

than Site A (Table 2-1). Both saltpans contained evaporite minerals halite and gypsum. 
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The presence of gypsum is unsurprising because large Holocene gypsum deposits are 

common along the South Australian coastline (Warren, 1982). The white crust at Site B 

appeared to be crystalline halite because of the cubic structure of the large crystals.   

  

  

  

Figure 2-10 Symptoms of high to extreme salinity at Point Sturt during the dry season: a) 

plant dieback; b) dead trees; c) samphire (Halosarcia pergranulata), and marine couch 

grass (Sporobolus virginicus); d) red phase samphire; e) saltpan at Site A and f) pigface 

(Carpobrotus glaucescens) 

a)  b)  

c)  d)  

e)  f)  
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Table 2-3 Analysis of three surface soil samples from the main saltpans at Site A and B. 

The surface layer of crystals at Site B is halite. 

Sample 

Site 
Depth Description pH 

EC1:5 

(dS/m) 
XRD Mineralogical Composition 

Site A1 

Saltpan 
Surface 

Saltpan crust, grey 

soil, undecomposed 

organic matter 

9.3 28.1 

Dominant halite, sub-dominant gypsum, 

minor calcite, trace quartz, kaolin and 

possible smectite (montmorillonite) 

Site A2 

Saltpan 
Surface 

Saltpan crust, fine 

creamy white crystal, 

grey soil 

9.3 14.9 

Dominant quartz, sub-dominant halite, 

trace gypsum, albite (Na feldspar) and 

orthoclase (K feldspar) 

Site B 

Saltpan 
Surface 

Saltpan crust, cubic 

white crystals 
9.0 159.0 

Dominant halite, trace gypsum and 

quartz 

 

At saltpan Site A1, the soil pit profile was clearly separated into two clay rich layers, 

the surface grey layer and the lower red layer indicating high iron oxide content (Figure 

2-11a and b).  EC1:5 and pH values decrease with depth (Table 2-4). The high EC values 

at the surface were consistent with high salinity resulting from sustained evaporation of 

surface groundwater. The surface EC values approach the 14 dS/m samphire tolerance 

level. 

  

Figure 2-11 a) Saltpan soil pit (Site A1) showing the leached upper horizon grading to 

iron oxide dominated lower horizon at 30 cm and b) the downward view illustrates the 

shallow groundwater seeping into the pit at a depth of 60 cm, shortly after digging was 

completed. 
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In the soil pit (Site A1), XRD analysis identified subdominant/minor gypsum and 

gypsum traces were found in all other soil samples at different depths B (Table 2-4). 

The EC and pH measurements indicate extremely saline, alkaline soil. The higher 

values at the surface and the presence of evaporite minerals are indicative of 

evaporative processes that have concentrated groundwater salts to form evaporite 

mineral deposits. 

Table 2-4 Soil analysis of samples collected at 10 cm depths from saltpan at Site A. The 

pH and EC measurements indicate extremely saline, alkaline soil. The higher values at the 

surface indicated the surface evaporative concentration of the groundwater salts. The 

XRD results confirm the presence of the evaporite minerals halite and gypsum. 

  Depth Profile A1 (Site A soil pit) 

Depth 

(cm) 
Description  pH 

EC1:5 

dS/m 
XRD Qualitative Analysis 

0-10 Saltpan layer - mid grey  8.29 35.5 
Dominant quartz, minor halite, gypsum, 

smectite, trace kaolin and calcite 

10-20 Saltpan layer - light grey  8.89 17.5 

Dominant quartz, minor halite, possible ankerite 

(Fe dolomite), Mg-calcite, trace gypsum, kaolin, 

calcite, albite, orthoclase, aragonite and mica 

(illite) 

20-30 
Saltpan layer - light 

red/brown 
8.29 12.5 

Dominant quartz, minor halite, gypsum, Mg-

calcite, trace kaolin, calcite, possible ankerite, 

albite, orthoclase and mica 

30-40 
Saltpan layer - mid 

red/brown  
8.18 14.0 

Dominant quartz, minor gypsum, Mg-calcite, 

possible smectite, trace halite, kaolin, possible 

ankerite, albite, mica 

40-50 
Saltpan layer - mid 

red/brown + large crystals 
8 13.0 

Dominant quartz, minor halite and gypsum, 

kaolin, Mg-calcite, possible smectite, trace albite 

and mica 

 

Soils were also sampled at regular depth intervals at two other saltpan locations (Table 

2-5). These samples showed reduced salinity levels compared to the main soil pit but 

still rate as high to extreme, with the highest values again in the surface layer. 
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Table 2-5 Soil analyses at 10 cm depths from 2 other sample sites on the main Site A 

saltpan. These soils also show the increased salinity at the surface due to evaporation. No 

XRD analysis was performed. 

Depth profile A2 (Site A) Depth profile A3 (Site 3) 

Depth 

(cm) 
pH 

EC1:5 

(dS/m) 

Depth 

(cm) 
pH 

EC1:5 

(dS/m) 

0-10 8.5 15.80 0-10 8.74 29.00 

10-20 8.62 7.70 10-20 8.73 17.80 

20-30 8.69 6.80 20-30 8.36 20.20 

30-40 8.76 4.00 30-40 8.36 27.20 

40-50 8.33 5.80 40-50 8.71 21.90 

 

At Site A, there was a change in soil salinity along the soil transect (Figure 2-9) that 

extended north from edge of the saltpan. Away from the edge, clay content, soil water 

and EC values decreased as the proportion of sand increased (Table 2-6 and Figure 

2-12).  As soil salinity decreases so does the soil water content, which indicates that 

there is waterlogging by saline discharge at the pan edge. In the soil transect samples 

with highest EC values, XRD analysis shows that soil is dominated by clay (smectite) 

and also contains minor amounts of saline minerals halite and gypsum (Table 2-6). The 

clay dominant soils at the pan edge indicate that the clay aquifer is near the surface. 

Midway along the transect, evaporite minerals and clay are absent but quartz dominates 

indicating a more sandy soil.  

Table 2-6 Soil analysis from three soil transect samples. Soil water EC and pH all 

decrease at increasing distance from the samphire-sea barley grass interface. The XRD 

analysis shows the change from clay to sandy soils along the transect. Soil analysis results 

for all transect soil samples are shown in Figure 2-12. 

Distance 

from 

saltpan 

(m) 

Depth Description 

Gravimetric 

water content 

(θ θ θ θ m) 

pH 
EC1:5 

(dS/m) 

XRD Mineralogical 

Composition 

0 Surface 
Black soil, high 

clay 
50.0 8.02 10.00 

Dominant smectite, minor 

gypsum, quartz, kaolin, trace 

halite, albite, Mg-calcite, mica

110 Surface 

Very dark grey 

soil, increasing 

sand  

18.8 5.9 0.19 
Dominant quartz, trace kaolin, 

albite, orthoclase and mica 

250 Surface 
Brown sandy 

soil  
6.2 6.4 0.07 

Dominant quartz, trace albite 

and orthoclase 
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Figure 2-12 Soil analysis along transect extending out from saltpan at Site A. EC values, 

soil moisture and pH decreased away from the samphire-sea barley grass interface (0 m) 

indicating the change from high salinity to non-saline soils. 

2.4.2 Vegetation symptoms of salinity  

Saline areas with a good cover of vegetation were evident at Point Sturt. Perennial and 

annual halophytes that indicate varying levels of salinity were best observed at different 

times of year. 

In the dry season, perennial halophytes were easily identified amongst a background of 

dry grass (Figure 2-10 c and d). Vast dense samphire patches usually were easily 

recognisable surrounding saltpans (Figure 2-10 e). Samphire is a low, dense, succulent, 

native shrub with numerous woody stems and short, segmented branchlets made up of 

small succulent beaded leaves. The shrub can appear green or change to red in highly 

saline areas, tolerating soils with EC1:5 values greater than 16 dS/m (Department of 

Primary Industries, 2004) and survives partial inundation for several months over winter 

(Barrett-Lennard, 2003). Saltpans surrounded by samphire were characteristic of the 

main study areas Site A, in the central lowlying clay aquifer discharge site, and along 

the coast at Site B.  

In summer and early autumn, annual halophytic grasses could not be readily be 

identified because few seed heads remained on the senesced plants. September, October 

and November were the best months to observe annual grasses because at this time of 
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year seed heads were well formed. During these wetter months, sea barley grass 

(Critesion marinum also known as Hordeum marinum) was observed to be a dominant 

halophytic plant species other than samphire in the area (Figure 2-13). Sea barley grass 

is an introduced annual grass species found growing in a range of soils and can tolerate 

moderately saline soils, with EC1:5  values ranging from 4 to over 16 dS/m (Department 

of Primary Industries, 2004; Maschmedt, 2000; Maschmedt, 2001; van Gool and 

Moore, 1998). By September, sea barley grass had reached maximum growth phase. 

Sea barley grass and brome grass (Bromus sp.) were easily identifiable.  

  

Figure 2-13 Dense large zones (left) of sea barley grass (Critesion marinum) with well 

developed seed heads (right) were evident during spring (September 2004) 

 

Different halophytic species are indicators of different levels of soil salinity. The change 

in species and corresponding change in salinity levels was observed at Site A. Here 

there was a change in soil salinity along the soil transect (Figure 2-9) that extended 

north from the edge of the main saltpan. At the pan edge, samphire was the only 

halophyte growing in waterlogged black soil with an EC value of 10 dS/m (Table 2-1).  

The high salinity and water content at this location is likely to be due to shallow 

groundwater. Away from the samphire edge, as soil salinity and soil water content 

decrease there is a corresponding change in plant species. Just 10 m away, sea barley 

grass dominates where salinity falls to 5.3 dS/m (moderately saline). As salinity levels 
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decrease further, sea barley grass is replaced by non-halophytic grass such as brome 

grass (Bromus sp.) and silver grass (Vulpia sp.).  

Through November as the seasonal rains abated, a larger variety of halophytic annual 

grass species could be identified and were observed to be in various stages of 

senescence. By the end of November, homogenous patches of sea barley grass appeared 

to be greener than other senescing grasses at the main study area (Sites A, AA, B and 

Site F in the north). Sea barley grass appeared greener than other grasses toward the end 

of November because it occupied the low-lying, wetter soils (Hugh Longbottom, Rural 

Solutions, SA, pers. comm.).  The various stages of senescence could be clearly seen at 

Site AA (Figure 2-14). Here symptoms of moderate salinity levels included bare patchy 

ground, sea barley grass and curly rye grass (Parapholis incurva). The site was 

surrounded by non-halophytic species such as brome grass (Bromus sp.), silver grass 

(Vulpia sp.) and wheat (Triticum sp.). In midwinter (early August), sea barley grass and 

other annual grasses were found to be immature with underdeveloped seed heads. Sea 

barley grass plants were sparsely distributed and therefore unsuitable for remote 

mapping at this time of year.  

 

Figure 2-14 Moderately saline area at Site AA (November 2003). Green sea barley grass 

(a) and curly rye grass (b) have colonised the lowlying saline soil.  Silver grass and brome 

grass (c and d) surround the pan. Close-up images of the 4 major grass species are inset. 

Zonation of sea barley grass was particularly evident in moderately saline areas where it 

grew in dense homogeneous patches. Therefore in terms of spatial distribution, the 

optimum time of year to map sea barley grass would be from September to November 

before drying off. In terms of spectral information, it appeared that November would be 

c)  d)  

a)  b)  
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the preferred time of year to discriminate later senescing sea barley grass from non-

halophytic grasses. During the spring flush and senescence many areas containing 

halophytic and non-halophytic grasses had been grazed, leaving little plant material for 

discrimination.  

Other vegetation salinity symptoms observed throughout the landscape included small 

patches of pigface and sparse curly rye grass, one large coastal stretch of marine couch 

and isolated dead trees associated with a low lying area in the north (Figure 2-10). 

During spring in September, there was no evidence of decline in crop vigour due to 

salinity in the few irrigated pastures.  

2.5 Conclusion 

In the central groundwater discharge area, measured EC1:5 values were greater than 20 

dS/m within the bare saltpans, confirming the extreme salinity of the site. XRD analysis 

determined that the main evaporite minerals in the saltpans and saline soils were halite 

and gypsum. Similarly, Site B saltpan was found to contain dominant halite and a trace 

of gypsum. Calcite and clay minerals were found to be minor constituents in most of the 

soil samples. Adjacent the saltpans, changes in soil salinity were associated with 

corresponding changes in plant species. The abrupt transition from samphire to sea 

barley grass was associated with a sharp drop in EC1:5 values from 10 dS/m, at the pan 

edge, to 5.3 dS/m just 10 m away. .  

Site visits established that the dominant halophytic plants growing in these areas were 

samphire (Halosarcia pergranulata) and sea barley grass (Critesion marinum). Table 

2-7 summarises the salinity symptoms at Point Sturt. Saltpans and samphire were 

suitable candidates for remote mapping in the dry season because of their spatial 

distribution and their contrasting appearance to dry grass background. Adjacent to the 

extremely saline areas at Point Sturt, sea barley grass, an important early indicator of 

salinity, was also observed to grow in large homogeneous areas.  

In high to extreme saline areas at Point Sturt, halitic and gypsic saltpans, exposed soils 

due to plant dieback and samphire were selected as the best salinity candidates for 

hyperspectral mapping during the dry season. In moderately salt affected areas, sea 

barley grass is the best annual halophytic species to map during “spring flush” 

(September) or senescence (November).  
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Table 2-7 Summary of salinity symptoms at Point Sturt and their suitability for mapping 

with hyperspectral imagery 

Salinity 

Level 

Salinity 

symptom 
Distribution 

Suitability for mapping with remote 

sensing 

Waterlogging Surface water on saltpans 
Possible surface water – for subsurface 

use radar 

Salt 

encrusted 

pans 

Most pans are dry during summer 

field visits 

Possible spectral features due to 

minerals & soil colour 

Extreme 

salinity 

Coastal mud 

flats and pans 
Coastal large 

Possible spectral features due to 

minerals & soil colour 

Samphire 
Large extent around most salt pans - 

green and red phase 

Dense patches and perennial, not very 

green, SWIR features 

Pigface Only patchy small areas <1m
2
 Not suitable 

Bare patchy 

ground 

Bare patches in field approx 1-3m 

wide over 1 hectare 
Good extent, dry surface 

High to 

very high 

Dead trees Individual trees have spatial extent Not suitable 

Crop stress None evident at 3 irrigated sites Not suitable  

Sea barley 

grass 

In summer, difficult to identify, good 

cover in spring. In November appears 

greener than non-halophytes 

Good distribution but not suited when 

dry, best time may be “spring flush” or 

during senescence 

Marine couch Large dense zone but only one site 
Only one patch observed not for 

widespread mapping 

Moderate 

salinity 

Curly rye 

grass 
Sparse at one site Not suitable 

Although a set of vegetation indicators have been identified at Point Sturt, these same 

species may not be reliable indicators in other regions. Perennial halophytes are good 

indicators for mapping during the dry season, although it is worth noting that in some 

salt affected catchments, perennials such as saltbush are increasingly being introduced 

for stock grazing and to assist in ameliorating saline land (Barrett-Lennard, 2003) and 

may therefore be mapped as salt affected land. Furthermore, grazing of halophytic 

grasses, as occurred at Point Sturt, can reduce the ability to discriminate indicator 

species with remote sensing. Finally, single symptoms such as sea barley grass are not 

always a definitive indicator of salinity: a combination of several symptoms provides a 

more reliable diagnosis (Department of Primary Industries, 2004; NSW Department of 

Natural Resources, 2005).  
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3 SPECTRAL CHARACTERISATION OF SALINITY 

3.1 Introduction and aims 

Of fundamental importance to hyperspectral salinity mapping is an understanding of the 

spectral characteristics of soil and vegetation salinity symptoms. Hyperspectral imagery 

may allow for discrimination of salt tolerant plants and certain properties related to 

saline soils. Hyperspectral sensors have the potential to map saline areas with good 

cover of salt tolerant species that are difficult to map with multispectral satellite 

imagery (Furby et al., 1998; Furby et al., 1995; Wheaton et al., 1992).  

Overall spectral shape and discrete absorption features (particularly in the SWIR) are 

important in explaining soil properties (Ben-Dor et al., 1999). Even though halite has an 

essentially featureless spectrum (Hunt et al., 1971) some studies have been successful in 

identifying spectral features pertaining to saline soil mineralogy. Some spectral 

properties of irrigation induced saline soils have been identified by Dehaan and Taylor 

(2002B). Dehaan and Taylor reported that increasing salinity could be inferred from the 

reduced intensity of the 2200 nm hydroxyl feature, a reflection high at 800 nm and 

features at 980 and 1180 nm. Therefore saline soil mapping could be based on 

distinguishing either spectral shape or well-defined saline mineral absorption features. 

To successfully map vegetation salinity symptoms their reflectance must differ from 

that of the surrounding vegetation. To ascertain whether different species have the 

potential to be discriminated and mapped with hyperspectral imagery, comparisons can 

be made between field or laboratory acquired reflectance spectra of the target species 

and surrounding vegetation (Schmidt and Skidmore, 2001; Schmidt and Skidmore, 

2003). The reflectance spectra of plants adapted to arid or saline environments may 

contain distinguishing biochemical absorptions (Lewis et al., 2000). The spectra of salt 

tolerant shrubs contain traces of leaf coating, cellulose and lignin absorptions in the 

VNIR and SWIR regions. The visible and NIR regions are also important due to 

accessory pigments and leaf structures (Dehaan and Taylor, 2002B). Therefore, high 

spectral resolution imagery has the potential to discriminate halophytic vegetation from 

non-halophytes because they have spectral properties associated with adaptations to 

saline environments. 

Schmidt and Skidmore (2001) found that field spectra of various African grass species 

showed significant statistical difference over the red part of the visible spectrum and in 
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the region of 1300 nm. Thenkabail (2004) studied reflectance spectra from shrubs, 

grasses, weeds, and agricultural crop species and recommended 22 narrow bands in the 

visible, NIR and SWIR to discriminate different types of vegetation. The narrow visible 

wavebands at 655 and 675 nm may vary significantly due to changes in leaf area index 

(LAI), biomass, nitrogen, soil background, canopy structure, cultivars types and 

moisture and were therefore the most sensitive to contrasts between vegetation and soil.  

Early signs of plant stress were associated with a shift in the red edge to shorter 

wavelengths (Elvidge, 1990). During late senescence, spectral changes would be 

expected in the NIR and SWIR regions. In these wavelength regions spectral differences 

are due to changes in moisture, biomass and plant structure (Elvidge, 1990; Gates et al., 

1965; Knipling, 1970; Schmidt and Skidmore, 2001; Thenkabail et al., 2004). Therefore 

from these previous studies, it appears that most spectral regions have a role to play in 

discriminating between plant species, particularly those in variable stages of 

senescence. Furby (1998) indicated that the low accuracies of multispectral salinity 

maps could be improved by exploiting seasonal differences between crops and 

halophytic species.  

In the previous chapter, samphire, saltpans and sea barley grass were identified as the 

most suitable candidates for mapping with remote sensing imagery. This section aimed 

to determine which salinity symptoms were spectrally suited to mapping with 

hyperspectral imagery and to identify the optimum time of year for mapping each target 

symptom, especially areas with a good cover of salt tolerant vegetation. Of particular 

interest was sea barley grass (Critesium marinum) because it is often the first salt 

tolerant plant species to colonise soils with developing salinity and, in conjunction with 

other salinity symptoms, is a useful indicator of moderately salt affected soils in 

agricultural areas. Statistical comparisons between the reflectance spectra of sea barley 

grass and other species aimed to determine whether the species has the potential to be 

discriminated and mapped with hyperspectral imagery.  

3.2 Methods  

Field and laboratory reflectance spectra were collected from a representative range of 

soil and vegetation landcovers and salinity symptoms. The spectra of salinity symptoms 

were collected from previously identified salt affected study sites at Point Sturt and at 

different times of year. A range of soil and vegetation spectra were collected initially to 
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identify distinguishing spectral characteristics of soil and vegetation salinity symptoms. 

In addition, a selection of grass spectra were collected at different times of year to 

evaluate whether sea barley grass could be distinguished from other annual grasses.  

3.2.1 Spectral collection sites 

Soil and vegetation spectra were collected at previously identified study sites located in 

the major discharge region where the clay aquifer terminates (Sites A, AA and F) and at 

Site B along the southern coast. At each site, spectra were collected from a 

representative range of nonsaline landcovers and salinity symptoms, including 

samphire, sea barley grass and saltpans. Locations of ground-sampling sites were taken 

with a differential GPS, offering better than 5-metre accuracy.   

3.2.2 Time of year 

Different salinity symptoms were best observed at different times of the year (Chapter 

2). In high to extreme saline areas, saltpans and samphire were selected as the best 

salinity candidates for hyperspectral mapping during the dry season. Therefore, spectra 

of saltpans and vegetation, including samphire were collected in February (2003). In 

moderately salt affected areas, the optimum time of year to map sea barley grass was 

determined to be either “spring flush” (September) or senescence (November), when 

sea barley grass appeared greener than other grasses because it occupies the low-lying, 

wetter soils. Therefore, multiple spectra of annual grasses were collected in September 

and in November to statistically compare the spectra of sea barley grass to other annual 

grasses.  

3.2.3 Collection of soil and vegetation spectra 

Field and laboratory spectra were collected with the portable Analytical Spectral 

Devices (ASD) FieldSpec Pro spectrometer (Figure 3-1). The instrument internally 

combines three spectrometers to cover the visible and near infrared (VISNIR) and two 

shortwave infrared (SWIR) wavelength regions, which provides a full range of 350 to 

2500 nm with 1 nm spectral sampling.   

Soil spectral measurements were taken of soil samples that were collected from saltpans 

at Site A and Site B and transported to the laboratory for salinity measurements and 

XRD analysis. The soils were air-dried for at least 24 hours prior to taking spectral 

measurements because drier soils maximise the depth of soil mineral absorption features 
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(Lobell and Asner, 2002). Because oven-drying may alter the mineralogy of some salts 

and clays (Dehaan and Taylor, 2002B), air-drying was therefore considered the best 

method for removing soil moisture whilst preserving major absorption features that 

were diagnostic of dominant soil minerals. 

Plant spectra were collected at two different scales: 1) plot scale in the field (Figure 3-1) 

and (Figure 3-2) and 2) foliage scale in the laboratory under controlled conditions 

(Figure 3-3). Plot-scale spectral measurements were acquired at 10 cm above patches of 

the grasses and recorded reflectance from a plot of approximately 5 cm in diameter 

(Figure 3-2). For foliage scale spectral measurements, fresh plant samples were 

harvested and immediately stored in sealed plastic bags, placed in insulated ice-cooled 

containers for transportation, such that the laboratory spectral measurements were 

completed within 3 hours of collecting the fresh plants samples (Figure 3-3). The 

foliage scale spectral measurements were acquired with a low intensity light source to 

minimise plant wilting (Figure 3-3).  

 

Figure 3-1 Collecting spectra in the 

field with the portable spectrometer 

 

Figure 3-2 Schematic diagram of the field 

of view (~5cm) of the spectrometer 
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Figure 3-3 Method for collecting spectra from soil 

and plant samples in the laboratory  

In September, in situ plot scale reflectance spectra and fresh samples were collected of 

sea barley grass and brome grass (Bromus sp.) (Table 3-1). At the time of senescence in 

November, more species were readily identifiable because seed heads had matured. 

Field and laboratory spectra were collected of sea barley grass and curly rye grass 

(Parapholis incurva), and non-halophytic senescing plants brome grass and silver grass 

(Vulpia sp.) and wheat (Triticum sp.) (Table 3-2).  

Table 3-1 Species and number of samples of spectra collected in September (spring flush). 

Some samples were not analysed because of excessive noise * 

Plant Species  
Number of in situ 

field spectra  

Number of 

laboratory spectra  

Sea Barley Grass (Critesium marinum)  14 (not used)* 
 

8 

Brome Grass (Bromus sp.) 11 (not used)* 11 

 

Table 3-2 Species and number of samples of spectra collected in November. The field 

spectra of wheat were not used because insufficient good quality spectra were collected* 

Plant Species  
Number of in situ 

field spectra 

Number of 

laboratory spectra 

Sea Barley Grass (Critesium marinum) 35 61 

Brome Grass (Bromus sp.) 25 18 

Silver Grass (Vulpia sp.)  12 - 

Curly Rye Grass (Parapholis incurva)  15 20 

Wheat (Triticum sp.)  3 (not used)*
 

21 

Some field spectra contained noisy regions particularly in the SWIR. Therefore, 

processing of some spectra was required to reduce noise. For each target material, forty 
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spectra were collected at 1-second intervals. These forty spectra were averaged and the 

bands with the highest standard deviation, corresponding to the three regions where the 

individual spectrometers joined, were removed. The averaged spectra were also 

smoothed in Spectra Solve (Lastek Pty. Ltd.) using the Savitzky-Golay least squares 

algorithm, which was superior to the Box-Smoothing method for preserving the depth 

and shape of absorption features (Savitsky and Golay, 1964). 

3.2.4 Statistical analysis 

In order to determine whether sea barley grass has the potential to be mapped with 

hyperspectral imagery, the spectra of sea barley grass were statistically compared to 

other grass species in September and in November. A standard series of two-group t-

tests were performed to test the hypothesis that there is no significant difference 

between the mean of sea barley grass and other grass species. Specifically, at each 

wavelength the t-test compared the set of sea barley grass spectra to the spectra of a 

different species to determine whether the mean reflectance values were significantly 

different from each other in any wavelength region. For computational efficiency, 

statistical comparison was only performed at every second wavelength.  

The means of two species were considered significantly different if their t-values were 

greater than the critical t-value equivalent to probabilities of less than 0.05. T-values 

were calculated assuming pooled variance (rather than separate variance) because the 

numbers of spectral samples were different for each species group and their variances 

were unequal. Unequal variances at each wavelength were verified by means of 

standard F-statistic tests.  

3.3 Results and discussion 

3.3.1 Spectral characteristics of saline soils 

The individual spectra from the main saltpan at Site A were characterised by broad 

water absorption features at 1450 and 1950 nm. The spectra contain a steep visible 

ramp, a broad shoulder near 800 nm, distinct doublet absorption feature with peaks 

centred at 2200 and 2270 nm, a single 1755 nm feature and a triple feature at near 1500 

nm (Figure 3-4). Inferring soil mineral content from the 2200 nm absorption feature is 

problematic because both gypsum and clay spectra contain features in this region. The 

diagnostic gypsum features were emphasised in continuum-removed soil spectra, where 
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each spectra is normalised using a continuum defined by local spectral maxima (Better 

Solutions Consulting, 1999). The conspicuous feature at 1755 nm and the triple feature 

were shown to be consistent with USGS spectral library gypsum spectra (Figure 3-5). 

XRD analysis (Chapter 2) confirmed the dominant presence of halite, quartz and 

gypsum. The USGS spectra of both halite and quartz were essentially featureless with 

high albedo at all wavelengths so were difficult to detect spectrally, although, increasing 

salinity may be inferred from the reduction of intensity of the 2200 nm hydroxyl feature 

and precipitation of halite may be related to a reflection high at 800 nm. 

The spectrum collected from the coarse thick white salt crust Site B was characterised 

by a brighter flatter visible/NIR region, and shallow absorption features at 2200 nm and 

1755 nm (Figure 3-4). The 1755 nm feature suggests the presence of gypsum but the 

shallow nature of both features indicates low gypsum content. The shallow features 

together with the bright flat visible/NIR slope compared to the other saltpan spectra, 

may suggest crystalline halite. The spectra from site A and B do not show any 

significant iron oxide absorption at 870 nm, consistent with the lack of red hues in the 

soil colour. Some samples display slight concavity between 600-700 nm, which may be 

indicative of small traces of iron oxide or more likely to be residual vegetation pigment, 

such as chlorophyll (at 664 nm). 
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Figure 3-4 Comparison of salt crust spectra 

from Site A and Site B 
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Figure 3-5 Continuum removed salt crust 

spectra from Site A, Site B and USGS 

gypsum spectra. 
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3.3.2 Spectral characteristics of perennial species 

The individual spectra of samphire were collected from representative green and red 

plants at the saline study sites (Figure 3-6, Figure 3-7 and Figure 3-8). The samphire 

spectra contain discontinuities because wavelength regions that were overly affected by 

noisy artefacts (950 nm region, where the spectrometer sensors overlap, and the two 

water absorption regions at 1400 and 1900 nm) were not displayed. The plant spectra 

were dominated by photosynthetic vegetation characteristics such as the chlorophyll 

absorption, a red edge increase and a high NIR plateau containing deep water 

absorption features.  

 
Figure 3-6 Field spectra of green samphire 

 
Figure 3-7 Field spectra of red samphire 
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Figure 3-8 Detail showing green and red 

samphire reflectance peaks 
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Figure 3-9 Comparison of dryland lucerne 

and samphire spectra 
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The spectra of green samphire, often seen with red tips, exhibit peaks in both green and 

red wavebands and not surprisingly red samphire spectra contain a significant 

reflectance peak in the visible red wavelength region (Dehaan and Taylor, 2002B). 

Samphire spectra have additional features of note, including a sloping red edge shoulder 

and cellulose-lignin features at 2100 nm and 2300 nm, possibly due to stalks or leaf wax 

coating (Elvidge, 1990; Lewis et al., 2000). The sloping red edge is most prominent in 

the red phase spectra. Spectral features beyond 2300 nm were not considered because 

they were likely to be overly affected by instrument noise and spectral smoothing.  

The spectrum of dryland lucerne differs from samphire spectra in the visible/NIR and in 

the SWIR regions (Figure 3-9). Dryland lucerne spectra have a deeper chlorophyll 

absorption, higher NIR plateau and featureless SWIR. 

3.3.3 Statistical comparisons of grass species 

The laboratory spectra of sea barley grass and brome grass were collected at the time of 

“spring flush” (September). The mean spectra of both species appear similar at this time 

of year (Figure 3-10). The spectra are characterised by typical green vegetation features 

such as chlorophyll absorption at 680 nm (less well defined in the field spectra) and a 

steep rise in reflectance around 700 nm (the red edge).  

 

Figure 3-10 Mean spectra of sea barley grass and brome grass at the time of maximum 

growth or “spring flush” (September) 

 

The standard t-test results showed there were no significant differences (t-values < t-

critical) between the mean spectra of sea barley grass and brome grass at any 

wavelengths (Figure 3-11).  
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Laboratory Spectra collected in September

T-test comparing Sea Barley Grass to Brome Grass 
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Figure 3-11 “Spring flush” t values by wavelength for pairs of comparisons between mean 

spectra of sea barley grass and brome grass. There is no significant difference at any 

wavelengths 

 

The field and laboratory mean spectra of sea barley grass were compared to mean 

spectra of four other plant species, collected in November (Figure 3-12). The most 

obvious difference between the field and laboratory spectra is the difference in overall 

brightness or albedo. The lower field reflectance can be attributed to the reflectance 

including a mix of background soils and shadow (Kipling, 1970) and to differences in 

illumination source. The background soil, together with the presence of more dry plant 

material in the field, may also account for the subtle SWIR structures in the spectra of 

brome and sea barley grass (Figure 3-12).  

Figure 3-12 Mean spectra acquired at the time of senescence (November) of four grass 

species: a) field spectra; b) laboratory spectra 
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Results of statistical comparison between sea barley grass and other plant reflectance 

are shown in Figure 3-13. There are broad wavelength regions where sea barley grass 

differs from other species in both field and laboratory spectra. The field and laboratory 

spectra of sea barley grass consistently demonstrated significant differences (t-values > 

t-critical) from other plant species in both the NIR and SWIR regions.  

In November, the reflectance of sea barley grass was significantly different from every 

other species in the region from 1170-1298 nm, for both field and laboratory acquired 

spectra. The green (560 nm) and red (680 nm) part of the visible spectrum was also 

found to be significantly different when comparing field-acquired spectra, but 

comparisons of laboratory spectra failed to identify this region as significant. The 

narrow red edge region near 700 nm is the only region with no significance for any 

species pairs. The red edge is where significant differences are expected to occur 

between early senescing and non-senescing vegetation (Elvidge, 1990). However, there 

are two possibilities to explain the lack of spectral difference in the red edge region. 

Either senescence had advanced in all species such that the red shift had already 

occurred, or that the t-test could not find a significant difference between the means 

because of spectral variation within species. 

The importance of the NIR and SWIR regions for discriminating plants at various stages 

of senescence is consistent with known spectral changes that occur in plants as they 

reach the end of their growing season. Internal biochemical and structural changes result 

in distinct spectral modifications in the NIR, notably the collapse of the NIR shoulder 

and increase reflectance in the SWIR (Elvidge, 1990). In the November field spectra 

(Figure 3-12 a), spectral differences can be seen in these regions when comparing the 

greener halophytic grasses to the non salt-tolerant species. The mean spectra of non-

halophytes (brome and silver grass) have collapsed NIR shoulder and higher reflectance 

in the SWIR, where fine spectral features related to dry plant materials such as cellulose 

and lignin are becoming evident. On the other hand, halophytic grasses have higher NIR 

reflectance for both field and laboratory acquired spectra (Figure 3-12 a and b 

respectively). The expected changes in the visible and SWIR reflectance are not as 

evident in the laboratory mean spectra, which suggests that in the field other factors 

influence reflectance including the presence of more dry plant material, background 

soils and shadow (Kipling, 1970).  
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Figure 3-13 T-values by wavelength comparing the mean spectra of sea barley grass to 

non-halophytic grass species. The spectra differ significantly where t>t critical, equivalent 

to a probability=0.05. There are consistently significant differences at most wavelengths 

except at the red edge around 700 nm.  

 

The significance of the 1170-1298 nm region and the absence of significant differences 

in the red edge, corroborates the results of Schmidt and Skidmore (2001 and 2003), who 

found that the narrow region around 1300nm and the red part of the visible region to be 

the most important wavelengths for species separation and the red edge to be the least 

important. The t-tests inability to identify significant differences in this region suggest 

Field Spectra 

T-test comparing Sea Barley Grass to Brome Grass 

0

2

4

6

8

10

12

14

16

456 756 1056 1356 1656 1956 2256
wavelength (nm)

t 
v

a
lu

e

t-value

t critical
(Prob=0.05)

Laboratory Spectra

T-test comparing Sea Barley Grass to Brome Grass 

0

2

4

6

8

10

456 756 1056 1356 1656 1956 2256

wavelength (nm)

t 
v

a
lu

e t-value

t critical
(Prob=0.05)

Field Spectra 

T-test comparing Sea Barley Grass to Curly Rye Grass 

0

2

4

6

8

10

456 756 1056 1356 1656 1956 2256
wavelength (nm)

t 
v

a
lu

e t-value

t critical
(Prob=0.05)

Laboratory Spectra 

T-test comparing Sea Barley Grass to Curly Rye Grass 

0

2

4

6

8

10

456 756 1056 1356 1656 1956 2256
wavelength (nm)

t 
v

a
lu

e

t-value

t critical
(Prob= 0.05)

Laboratory Spectra

T-test comparing Sea Barley Grass to Wheat 

0

2

4

6

8

10

456 856 1256 1656 2056 2456
wavelength (nm)

t 
v

a
lu

e

t-value

t critical
(Prob=0.05)

Field Spectra 

T-test comparing Sea Barley Grass to Silver Grass 

0

2

4

6

8

10

456 856 1256 1656 2056
wavelength (nm)

t 
v

a
lu

e t-value

t critical
(Prob=0.05)



 SPECTRAL CHARACTERISATION OF SALINITY - 55 - 

 

that for senescing species there is a larger variation in “greenness” within each species 

than between species, particularly sea barley grass because the spectra were acquired 

from all three field sites.   

3.4 Conclusion 

At Point Sturt, distinguishing spectral characteristics were found in both soil and 

vegetation symptoms of salinity, including sea barley grass, samphire and extremely 

saline soils.  

The spectra of saltpan soils contain spectral features consistent with gypsum such as the 

broad absorption feature at 2200 nm, a single 1755 nm feature and a triple feature near 

1500 nm. The presence of gypsum was also confirmed by XRD analysis (see results 

presented in Chapter 2). The spectra of the coarse thick white salt crust collected at Site 

B are characterised by a brighter flatter visible/NIR region, and shallow absorption 

features at 2200 nm and 1755 nm (Figure 3-4). The 1755 nm feature suggests the 

presence of gypsum but the shallow nature of both features indicate low gypsum 

content. XRD analysis confirmed the crystal crust to be halite. 

The individual spectra of green and red samphire are dominated by photosynthetic 

vegetation characteristics such as the chlorophyll absorption, a red edge and NIR 

plateau containing deep water absorption features. The spectra of green samphire, often 

seen with red tips, exhibit peaks in both green and red wavebands and not surprisingly 

red samphire spectra contain a significant reflectance peak in the visible red wavelength 

region (Dehaan and Taylor, 2002B). Samphire spectra have additional features of note, 

including a sloping red edge shoulder and cellulose-lignin features at 2100 nm and 2300 

nm, possibly due to stalks or waxy cuticle coating the succulent beaded leaves (Elvidge, 

1990; Lewis et al., 2000).  

Late in the dry season, saline soils at Point Sturt contained less moisture. The lack of 

surface moisture meant that spectral features pertaining to soil properties could be 

maximised in field spectral measurements (Lobell and Asner, 2002). Therefore, late in 

the dry season is an ideal time to exploit the soil and saltpan spectral characteristics for 

hyperspectral salinity mapping. Furthermore, the dry season appears to be a suitable 

time of year to distinguish homogenous patches of samphire from the senesced annual 

grasses, which dominate the landscape, and native mallee vegetation. However at this 
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time, fewer halophytic species are available to map because annual grasses have 

senesced and are indistinguishable on the ground.  

November appears to be as the optimum month in this environment to exploit spectral 

differences between the variable rates of senescence between halophytic grasses and 

other annual species. Multiple reflectance spectra were collected of sea barley grass and 

other annual plant species such as curly rye grass, silver grass, brome grass and wheat, 

during spring and senescence in September 2004 and November 2003. The 2-group t-

test results show that there were no significant differences between sea barley grass and 

brome grass during “spring flush”. However during senescence, there were broad 

wavelength regions where sea barley grass differs significantly from other species for 

both field and laboratory spectra. Broad visible, NIR and SWIR regions were identified 

where sea barley grass differs significantly from other species. The red edge did not 

show significant differences most likely due to the considerable variation in reflectance 

within each senescing species, which corroborates the results of Schmidt and Skidmore 

(2001). 

Selected dryland salinity symptoms have distinctive spectral properties, making them 

potentially suitable for mapping with hyperspectral imagery acquired over dryland 

agricultural landscapes. Plant species adapted to saline environments, highly saline soils 

and senescing halophytic grasses all have discriminating spectral features in the visible, 

NIR and SWIR wavelength regions. Sensors that incorporate all these regions include 

HyMap and AVIRIS airborne scanners and the Hyperion satellite-borne scanner. These 

sensors would therefore be suited to mapping various salinity symptoms. The CASI 

scanner was available to fly surveys over the study area when annuals vegetation were 

in the late stages of senescence (November). CASI airborne scanner operates over the 

NIR spectral range, a spectral region that exhibited significant spectral differences 

related to the varying rates of senescence of sea barley grass and non-halophytic brome 

grass. Analysis of CASI data may therefore be able to distinguish sea barley grass from 

non-halophytic grasses and was considered an appropriate sensor for mapping sea 

barley grass during senescence, even without the SWIR spectral region.  
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4 MAPPING SALINITY SYMPTOMS WITH HYMAP 

HYPERSPECTRAL IMAGERY 

4.1 Introduction and aims 

Although satellite imagery has the advantage of being able to map salinity at catchment 

and regional scales, its spatial and spectral resolutions are limited. These limitations 

may be overcome by the high spectral and spatial resolution of airborne hyperspectral 

imagery. Mapping over larger areas, such as those captured by single satellite scene, is 

problematic for hyperspectral airborne scanners due to the relatively small areas 

covered by narrow, high spatial resolution image swaths. Therefore, mapping 

significant areas with airborne imagery requires integration of data from many flight 

lines. If dryland salinity mapping could be readily achieved across multiple image 

swaths, then high spatial and high spectral resolution imagery would have the 

significant advantage of fine scale mapping over catchments. Improved salinity maps 

would provide a valuable tool for land managers and landcare groups to target 

amelioration plans and evaluate remediation projects, such as saltland pasture 

implementation (Barrett-Lennard, 2003) or necessary large-scale native revegetation 

programs (Pannel, 2001).  

Hyperspectral analysis of single image swaths has been applied to mapping native 

vegetation types (Chewings et al., 2000; Lewis, 2002; Lewis et al., 2000; McGwire et 

al., 2000; Roberts et al., 1993) and has proven particularly valuable in geological 

mapping (van der Meer, 1998). Mineral mapping has involved both full spectral mixture 

analysis, which maps all the scene components (Kruse and Boardman, 2000; Chabrillat 

et al, 2000; Resmini et al, 1997) and partial unmixing methods, which targets specific 

compontents of interest. Various partial unmixing methods that are widely used include 

matched filtering (Harsanyi and Chang, 1994), Mixture Tuned Matched Filtering 

(Boardman 1998) and least-squares spectral band fitting (Clark et al, 1990). Various 

studies have shown that partial unmixing methods are suitable for geological mapping 

(Kruse et al., 1999); Kruse and Boardman, 2000; Kruse et al, 2000; Chabrillat et al, 

2000), mapping clay soils (Chabrillat et al., 2002) and evaporite minerals (Crowley, 

1993).   

Recent research has focussed on evaluating different hyperspectral processing methods 

for soil and vegetation separation and even plant species discrimination. Most studies 
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have been conducted in arid and semi arid ecosystems although quantitative monitoring 

of vegetation in these areas is challenging due to the relatively low vegetation cover and 

the resulting spectral mix of exposed rock, soil and plant litter (Chen et al., 1998). 

However, Asner et al. (2000) demonstrated that green foliage, wood, standing litter and 

bare soil had distinctive spectral properties using first derivative spectra. These 

distinctive spectral properties were utilised by linear unmixing, also known as spectral 

mixture analysis (SMA), one of the most promising hyperspectral processing methods 

(Sommer et al., 1998) for scene component abundance mapping. SMA is a complete 

mixture model which assumes each pixel spectrum is a weighted linear mixture of 

spectral endmembers such as vegetation, soil and shadow, which can be selected either 

from a spectral library (field or laboratory) or by deriving end-members from the purest 

pixels in the image. The set of image end-members should describe all spectral 

variability for all pixels (Sommer (1998) refers to Adams et al. (1989) and Smith et al. 

(1990)). Partial unmixing methods including spectral angle mapping and mixture tuned 

match filtering have been applied to mapping invasive weeds (Mundt et al., 2005; 

Williams and Hunt Jr., 2002).  

A study in the arid regions of central Australia found pure soil pixels were more easily 

extracted than pure spectral signatures of sparse trees and shrub canopies and actively 

growing and senescing vegetation (Chewings et al., 2000). SMA has also been shown to 

readily discriminate green vegetation, shade and soil endmembers (Roberts et al., 1993) 

and green vegetation, non-green vegetation and shade (Gamon et al., 1993) in AVIRIS 

hyperspectral data.  

Further studies have successfully discriminated more subtle spectral characteristics 

associated with vegetation species. The importance of VNIR and SWIR features for arid 

plant species discrimination was emphasised by Lewis et al (2000). They found 

automated unconstrained spectral unmixing of Airborne Multispectral Scanner images 

in the VNIR wavelength region typically produced vegetation endmembers which 

correlated to field components, namely Eucalypts, other trees, relatively sparse 

understorey shrubs and herbs, dry plant litter and soil encrusting lichens. Lewis 

attributed the success of SWIR regions for vegetation discrimination to cellulose-lignin 

and other biochemical absorption features near 2100-2200 nm and 2310 nm, originally 

identified by Elvidge (1990).  
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Significantly, a preliminary study by Dehaan and Taylor (2002A) has specifically 

investigated mapping soil and vegetation indicators of irrigation-induced salinity by 

image analysis of a single airborne hyperspectral swath. The most successful mapping 

methods were found to be MTMF and spectral feature fitting, although the resultant 

salinity maps were not statistically assessed for accuracy.  

The overall aim of this part of the study was to determine whether accurate maps could 

be produced of dryland salinity symptoms over larger areas covered by multiple HyMap 

image swaths. Mapping larger areas with high resolution airborne imagery is 

problematic because of the need to manage multiple image swaths. There is a general 

lack of information in literature regarding multiple strip processing, even though there is 

research being conducted in this field (pers. comm. Dr. Peter Hausknecht, HyVista 

Corporation (2005)).  Multiple strip processing is nontrivial and requires consistent 

radiometric calibration across and between swaths, accurate strip georegistration and 

time consuming processing of large data volumes. Analysing hyperspectral data is 

computationally intensive, therefore the same reference spectra should be used to map 

symptoms across multiple strips in order to process the large data volumes efficiently. 

This study aimed to develop an efficient and consistent processing procedure for 

mapping salinity across the multiple image swaths using commercially available image 

processing techniques, like Dehaan and Taylor (2002A), such that if these methods 

proved successful, catchment managers could readily apply hyperspectral imagery to 

baseline salinity mapping and monitoring.  

Finally, this study also aimed to assess whether the dry season was suitable for mapping 

dryland salinity symptoms and to develop a practical strategy to validate the salinity 

maps across subdivided agricultural land where a proportion of landholdings were not 

accessible. 

4.2 HyMap imagery  

The HyMap sensor (HyVista Corporation) is an airborne scanner that scans the earth’s 

surface line by line, and records radiance over the visible NIR and SWIR wavelength 

regions. The HyMap sensor is mounted in a gyro-stabilised platform to minimise 

distortions due to aircraft pitch, roll and yaw motions. The instrument is designed to 

operate between 2000 to 5000 m above ground level to achieve typical ground 

resolution between 3 to 10 m. In-flight, the data is corrected for dark current/electronic 
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offsets, and converted to radiance using laboratory and on-board radiometric calibration 

information. The HyMap sensor delivers a good signal to noise ratio of greater than 

500:1 and a spatial accuracy of 4.5 m (Cocks et al., 1998).  

The Point Sturt HyMap imagery was acquired on 14 March 2001.  The 126 band data, 

at 10-20 nm spectral resolution, spanned a wavelength range from 430 to 2486 nm. The 

HyMap imagery consisted of 6 overlapping swaths that were obtained during parallel 

flights (Figure 4-1), covering an area of approximately 140 km
2
 at 3m ground resolution 

(Figure 2). Large fields of yellow dry grass dominate the true colour composite image 

(Figure 1) because the data was acquired in early autumn, before the winter rains. These 

dry grass fields are interspersed with greener irrigated areas, dryland lucerne pasture 

(Medicado sativa), lake fringing marshes and remnant native mallee (Eucalyptus sp.) 

stands. Bright areas of exposed soil, such as dry saltpans, small quarries and sand dunes 

are clearly visible in the centre of the image.  

 

Figure 4-1 Mosaic of six parallel hyperspectral image strips displayed in true colour, 

covering approximately 140 km
2
. The locations of study Sites A & B are also displayed. 
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The image strips were acquired during the dry season. Only one major rainfall event fell 

in the months prior to image acquisition (Figure 4-2). Highly saline soils, saltpans and 

samphire are most suited to mapping during the dry season, as they have spectrally 

distinguishing features in a background of dry grass (Chapter 2 and 3). These saline 

soils are often exposed and the halophytic species exhibit zonation, which means that 

these species are ideal candidates for mapping with remote sensing imagery. A key 

image analysis task entailed spectrally distinguishing the saline from non-saline sand 

hills and quarries and also distinguishing perennial halophytic vegetation while 

excluding other perennial vegetation (dryland lucerne and native vegetation) in a 

background of dry grass. With the absence of recent rains, image spectra associated 

with exposed soil would be relatively unaffected by soil moisture.  
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Figure 4-2 Daily rainfall prior to the acquisition of HyMap imagery on 14 March 2001. 

There was only one major rainfall event one month before. 

 

4.3 Hyperspectral processing and mapping 

The analysis of hyperspectral imagery provides a powerful tool for mapping different 

landcover types. A common mapping approach is referred to as unmixing. The basic 

assumption of unmixing is that in a natural landscape each pixel spectrum contains 

reflected radiation from a mixture of landcovers such as vegetation, dry plant material 

and background soil. Unmixing separates out the spectral information of these sub-pixel 

elements (Boardman et al., 1995). 
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Before proceeding with unmixing, preprocessing is required to correct for 

environmental conditions at the time of image acquisition, and within image variation 

due to the acquisition configuration. The subsequent unmixing processing ultimately 

produces maps of target materials.  

4.3.1 Preprocessing: atmospheric and cross track illumination correction 

There are three approaches available for atmospheric correction of hyperspectral 

imagery 1) image based methods such as log-residuals 2) empirical methods, which 

require ground measurements, and 3) model-based correction, which require no ground 

data and is the most widely used. Model based software such as ACORN (Atmospheric 

Correction Now, ImSpec LLC) and FLAASH (Fast Line-of-sight Atmospheric Analysis 

of Spectral Hypercubes, RSI) converts the radiance recorded by the hyperspectral 

sensor to surface reflectance, thus enabling comparisons between image spectra and 

field or laboratory derived spectra.  

Radiance to reflectance calibration involves correcting for the solar irradiance curve and 

solar irradiance variations, particularly variations in sun angle, and accounts for 

atmospheric absorptions, scattering and reflection and atmospheric path effects. These 

software programs are based on the MODTRAN4 algorithm, which predict atmospheric 

composition and effects from meteorological data, relevant to the time of image 

acquisition, and from water absorption bands such as 940 nm and 1100 nm. 

MODTRAN models follow the radiative transfer models described by Gao and Goetz 

(1990) as follows: 

Lsensor(λ)=Lsun(λ) T(λ) R(λ) cos(θ) + Lpath(λ)  

Where  

λ= wavelength 

Lsensor(λ)=radiance at sensor 

Lsun(λ) = Solar radiance above atmosphere 

T(λ) = total atmospheric transmittance 

R(λ) = surface reflectance 

θ =incidence angle 

Lpath(λ) = path scattered radiance (single and multiple scattering) 

However, current atmospheric correction programs do not apply the topographic (cos(θ) 

term) correction because typically this information is not available. Therefore the land 
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surface is assumed to be horizontal with Lambertian reflectance. The end result is called 

“apparent reflectance”, which can be converted to surface reflectance if the surface 

topography is known (Kruse, 2004). 

ACORN atmospheric correction software was suited to HyMap data because it 

corrected for variations in solar irradiance and absorption by atmospheric water vapour 

and gases over the 350 to 2500 nm spectral range. Therefore, ACORN was used to 

convert HyMap data from radiance to apparent surface reflectance (ImSpec LLC, 2002). 

Variations in across-swath illumination are mainly due to variations of sunlight angle 

and intensity that occur over the course of an airborne acquisition survey. The solar 

variations generally result in a systematic increase in pixel brightness, toward the edge 

of the image swath. If such variations are accounted for, then there may still be 

radiometric discontinuity between strips.  

Across-track illumination effects were corrected by calculating mean brightness values 

for all bands in each pixel across-track and these values were then displayed as a series 

of curves (ENVI Software, (Better Solutions Consulting, 1999)) A polynomial function 

was then fitted to each of these curves to remove the across-track variation. The lake 

water was masked out in each of the strips to reduce the effect of low water reflectance 

on the strip spectral statistics. The cross-track correction was not applied to the two 

remaining water dominated strips because the process was found to exaggerate across 

track effects.  

4.3.2 Hyperspectral image analysis 

Further processing aimed to produce distribution maps of spectrally distinct salinity 

symptoms, such as samphire and saltpans, through standard hyperspectral processing 

techniques as described by Kruse (1999). These techniques involved data noise 

reduction, locating spectrally pure pixels, endmember extraction and interpretation, 

followed by partial unmixing mapping of salinity symptoms. Partial unmixing was 

selected for this study over complete linear unmixing because it is most suited to 

mapping selected scene components (Boardman, 1995) such as targeted salinity 

symptoms.  

Noise reduction in hyperspectral processing is based on the maximum noise fraction 

transformation, MNF, described by (Green et al.,1988; Lee et al., 1990)). Maximum 

noise fraction calculates an orthogonal set of components from a multivariate image, to 
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maximise signal to noise ratio, instead of maximising variance as in the case of 

principal component analysis (Lee et al., 1990). The output MNF data is a series of 

uncorrelated bands in terms of increasing signal-to-noise (i.e. the first component 

contains the maximum noise). A variant of this method is employed in ENVI (RSI Inc.) 

software (Bhargava et al., 1999) but is called minimum noise fraction and is given the 

same acronym MNF. In this case the data is transformed in terms of SNR, but the 

components or new bands are instead organised in reverse order of decreasing SNR. In 

other words, the transformed data is a series of uncorrelated bands with the first band 

maximising signal and the last band containing maximum noise. A number of desirable 

bands were selected and the data transformed back into hyperspectral image space for 

further analysis.  

From the MNF transformed data, the most spectrally pure pixels were then extracted 

using the “Pixel Purity Index” (PPI) (Harsanyi and Chang, 1994). PPI found the most 

spectrally pure pixels by repeatedly projecting n-dimensional scatter plots onto a 

random unit vector and selecting the extreme pixels in each projection (Boardman et al., 

1995). Automated cluster analysis then extracted endmember spectra from the spectrally 

pure pixels located at the apices of the n-dimensional data clouds. After this first cut 

selection, manual endmember selection was performed to cull unwanted noisy 

endmembers and to select additional useful endmembers. The resulting endmembers 

were identified through interrogation with ENVI Spectral Analyst and comparison to 

field data. Image-derived and field spectra were compared to USGS library spectra. The 

USGS spectral library was suitable for mineral mapping but not suitable for vegetation 

mapping because it did not contain any pertinent Australian or halophytic vegetation 

spectra.  

A partial unmixing method was sought that would minimise processing time and 

produce salinity symptom maps across several image swaths. The ideal method should 

be able to employ a single reference spectrum, either a pure endmember from one image 

strip or an external spectrum, to map target symptoms across multiple image strips, 

thereby ensuring consistency of discrimination and reducing endmember extraction 

processing.  

Partial unmixing methods such as matched filtering and least-squares band fitting 

(spectral feature fitting or SSF) were suitable for mapping soils with well-defined 

spectral absorption features pertaining to saline minerals. Matched filtering maximises 
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the response of each reference spectrum pixel by pixel and minimises the response of 

the unknown unwanted background signatures (Harsanyi and Chang, 1994). Mixture 

Tuned Matched Filtering (MTMF) was described by Boardman (1998) as the superior 

matched filtering method. MTMF, though related to MF, has the advantage of 

highlighting pixels significantly different from background pixels but which do not 

match the reference spectra (Boardman, 1998). The MTMF, matched filtering and least-

squares band fitting methods are able to use a single reference spectra to map across 

multiple image swaths.  

Various partial unmixing mapping techniques were tested to determine the best method 

for mapping saltpan soils and samphire. The tests were performed on image swath that 

covered the main saline discharge region (swath 03) where the clay aquifer flow 

terminates. To determine the optimum method for mapping saltpans, three matched 

filtering tests were performed using reference spectra subset to include different 

wavelength ranges; 1) SWIR1 and SWIR2, 2) SWIR 2 only and 3) 1670-1790 nm. The 

SWIR1 and SWIR2 corresponded to wavelength regions that contained fine, diagnostic 

mineral absorption features. The wavelength range that produced the most accurate 

saltpan map was then compared to mapping with spectral feature fitting using the 

equivalent range.  

Preliminary partial unmixing tests established that MF was not an ideal candidate for 

discriminating and mapping vegetation symptoms. MTMF has been used successfully to 

map non-halophytic vegetation (Williams et al., 2002) and results from previous studies 

also showed the potential of this method for mapping halophytic vegetation (Taylor et 

al., 2001; Dehaan and Taylor, 2002A). Therefore, even though separate processing of 

each strip was required to produce pure endmembers, MTMF was nonetheless selected 

as the method most appropriate for mapping vegetation salinity symptoms. Because 

MTMF technique requires MNF transformed data internal image reference spectra 

samphire reference spectra were either endmembers extracted from the PPI results or 

mean spectra extracted from regions of interest spanning known homogenous areas of 

particular surface salinity symptoms.  

Matched filtering and mixture tuned matched filtering output maps were grey scale 

images, where bright pixels are an indication that the pixel spectrum is close match to 

the reference spectrum. For MTMF results, a ratio of the “score” image band over the 

“infeasibility” band was used for the final samphire maps. The grey scale output maps 
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were thresholded to select areas closely matching the samphire reference spectrum. The 

selected threshold values were based on two criteria 1) to coincide with the break of 

slope on the distribution histogram of brightness values and 2) a priori knowledge of 

the extent of some saline areas. Threshold values corresponded to brightness values in 

the 99.5 to 99.9 percentile histogram intervals. The values were conservatively chosen 

to underestimate rather than overestimate the extent of the mapped features.  

All partial unmixing was carried out on raw image strips and the threshold maps were 

subsequently georeferenced using the inflight geographical lookup tables (GLTs). The 

georeferenced threshold maps were exported as themes into geographical information 

systems (GIS) software for accuracy assessment. Within GIS software (ArcMap 9.0) a 

neighbourhood filter was applied to smooth the edges of the mapped features in order to 

partly compensate for the conservative extent of the salinity symptom maps. Additional 

georeferencing was carried out using ground control points (GCP) to finetune the 

alignment of each strip for more accurate groundtruthing.  

4.4 Accuracy Assessment 

To assess the accuracy of the salinity maps, nearly 100 groundtruthing sites were 

randomly selected using GIS software. Initially, only a limited number of random 

sampling sites fell within saline areas, therefore further stratified random sampling was 

also performed to augment the samples with additional sites corresponding to saline 

areas. Fifty-five sites situated within the area covered by swath 03 were available for 

accuracy assessment of the partial unmixing soil mapping tests. The groundtruthing data 

for accuracy assessment were collected in March 2004.   

The sampling sites were all located within a 500 m buffer from the road network to 

allow for visual inspection of those sites that fell inside inaccessible paddocks. Remote 

sampling sites could be located from the direction and distance indicated by the 

differential GPS. However, these inaccessible sample sites were only included if they 

could be clearly sighted and the presence or absence of samphire or saltpans identified 

with certainty. For example, expansive, upward-sloping hillsides with a uniform 

coverage of only dry grass were common in the area. These slopes could be 

unambiguously described as not containing samphire and saltpans. To take into account 

GPS and georegistration errors, a 7.5m radius buffer was also created around each 
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sampling point to approximately enclose an area equivalent to 3x3 m pixels (i.e. 9x9 

metres on the ground). 

The presence or absence of each salinity symptom was recorded within an approximate 

7.5m radius of each GPS location. Samphire was scored as present if cover was greater 

than 10%. Only obvious pans and exposed soils containing extremely salt tolerant plant 

species, such as samphire, were labelled as saltpans. Exposed soil and the presence of 

sparse sea barley grass were not considered saline areas severe enough to be considered 

saltpans. 

The error matrix method of accuracy assessment, as described by Congalton (1991), 

was applied to each salinity map. The samphire and saltpan maps were assessed in 

separate error matrices because they had been independently derived using partial 

unmixing. The two symptoms were not mutually exclusive classes, as in traditional 

thematic maps, but could both be observed at the same site. Subsequent Kappa analysis 

was performed to produce KHAT statistic values. The KHAT correlation value, which 

ranges from 0 to +1 in this case, is a measure of how well the salinity symptom map 

agrees with the field data (i.e. whether the maps represent results better than a random 

classification). Congalton (1991) assigns KHAT values into three levels where  
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4.5 Results and Discussion 

Two image strips, encompassing the major discharge areas, proved the most successful 

for producing the widest range of soil and vegetation endmembers and the fewest noisy 

endmembers (Figure 4-3).  

Soil endmembers were compared to USGS mineral spectra and field and laboratory 

spectra. In general, spectral characteristics identified were associated with gypsum and 

calcite (absorption feature centred at 2343 nm) and kaosmectites, dry grass, irrigated 

pasture, and water. Reduced spectral or spatial range datasets also produced samphire 

endmembers. The clay and gypsum spectra were primarily associated with saltpans, 

while the calcite spectra were associated with dirt roads characterised by exposed 

calcrete bedrock. 
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Figure 4-3 Selection of endmembers extracted from one image strip. Similar endmembers 

from the same landcover types (for example more irrigated and dry vegetation) were not 

displayed. 

 

The samphire endmembers extracted from two strips contained the same features seen 

in the field spectra: the collapsed red edge shoulder; shallow chlorophyll absorption and 

finer cellulose-lignin features in the 2100-2200 nm range (Figure 4-4). Unfortunately, 

samphire endmembers were unable to be generated using automated endmember 

selection procedures from every image strip, even though samphire was present. 

Therefore samphire reference spectra had to be created from image regions of interest 

(ROI) that spanned known homogeneous, dense samphire patches with minimal soil 

exposure. Even though the ROI spectra were likely to be a mixture of samphire and 
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some background soil, the similarity in spectral properties between samphire 

endmember, field samphire spectra and ROI spectra suggested that mean spectra from 

each strip were suitable reference spectra for partial unmixing mapping (Figure 4.4).  

 

Figure 4-4 Comparison of samphire endmember (dashed) and samphire mean spectrum 

(solid). The ROI spectrum was generated from a region that encompassed a known 

samphire patch. 

 

Samphire and saltpans, the best candidates for salinity mapping, appeared to have 

defining spectral characteristics. In the case of the saltpans, the conspicuous gypsum 

absorptions were selected as the best features to exploit in partial unmixing mapping of 

saltpans (Figure 4-5). The image and field saltpan spectra did not contain any distinct 

absorption features pertaining to saline minerals other than gypsum.  
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Figure 4-5 Detail of soil image-derived endmember spectra. The absorption features 

correspond to USGS minerals spectra of a) gypsum b) calcite 3) montmorillonite or 

kaosmectite  

 

MF saltpan mapping tests using an image-derived endmember with gypsum features 

found that the SWIR2 region and the SWIR1 and SWIR2 regions combined produced 

unreliable saltpan maps. The SWIR1 and SWIR2 regions spanned both the 1750 and 

2200 nm gypsum absorption features. These regions failed to map a number of saltpans 

and incorrectly commissioned unsealed roads and sand dunes as saltpans (Table 4-1). 

Mapping based on the broad 2200 nm gypsum feature (SWIR2) alone was unreliable 

because it coincided with the 2200 nm clay hydroxyl feature (Figure 4-5), corroborating 

the gypsum mapping result of Crowley (1993). MF saltpan mapping was most 

successful when the selected wavelength ranges of the image data and reference spectra 

encompassed the 1750 nm gypsum absorption feature (1670-1790 nm) (Table 4-1). 

Matched filtering using the 1750 nm feature successfully mapped most saltpans and the 

highly saline soils with some samphire cover, whilst excluding the exposed non-saline 

soil on vegetated dunes, dirt roads and roadside quarries. Matched filtering was 
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therefore selected as the preferred soil mapping method because of the results of the 

mapping tests and because a single reference spectrum could be used for mapping 

multiple image swaths. 

Table 4-1 Partial unmixing mapping tests on image swath 03. Matched filtering produced 

the most accurate maps (KHAT=0.67) when using the gypsum 1750 nm feature. 

Mapping method Wavelength range Type of accuracy Map class Accuracy KHAT 

Saltpan 0.43 Producers Accuracy  

 No Saltpan 0.85 

Saltpan 0.50 
450 - 2450 nm 

Users Accuracy  

 No Saltpan 0.81 

0.29 

Saltpan 0.21 Producers Accuracy  

 No Saltpan 0.95 

Saltpan 0.60 
SWIR1 & SWIR2 

Users Accuracy  

 No Saltpan 0.78 

0.21 

Saltpan 0.36 Producers Accuracy  

 No Saltpan 0.95 

Saltpan 0.71 
SWIR2 

Users Accuracy  

 No Saltpan 0.81 

0.37 

Saltpan 0.57 Producers Accuracy  

 No Saltpan 1.00 

Saltpan 1.00 

MF 

1670-1790 nm 
Users Accuracy  

 No Saltpan 0.87 

0.67 

Saltpan 0.57 Producers Accuracy  

 No Saltpan 0.93 

Saltpan 0.73 
SFF 1670-1790 nm 

Users Accuracy  

 No Saltpan 0.86 

0.54 

 

MF unmixing with an endmember extracted from one strip effectively mapped saltpans 

in four other image strips. The georeferenced mosaic combining all image strips is 

shown in  Figure 4-6. The bright areas indicating high gypsum abundance coincide with 

the location of known saltpans throughout the peninsula. The most significant area 

mapped is the central lowlying plain where the clay aquifer flow terminates (Site A). 

Here numerous bright areas coincide with the known location of saltpans and highly 

saline exposed soils. Other areas of high gypsum abundance correspond to coastal 

saltpans including the salt encrusted pan at Site B. Unmapped dark areas within saltpans 

are due to some remnant surface water that masks the mineral absorption features in the 

image spectra.  
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 Figure 4-6 MF gypsum map where bright areas, indicating areas of high gypsum 

abundance, coincide with the location of known saltpans 

 

The samphire maps produced were equivalent to maps produced with an image-

extracted endmember, therefore ROI spectra generated from within each image strip 

were deemed suitable reference spectra for MTMF mapping. Preliminary partial 

unmixing tests were carried out to compare the suitability of mapping using reduced 

datasets over various wavelength ranges. The unmixing tests indicated that optimum 

data range for MTMF mapping samphire encompassed the entire visible to SWIR 

region (455-2500). 

A ratio of the MTMF “score” image over the infeasibility image was used as the final 

samphire maps. The georeferenced mosaic of samphire maps, produced from four 

image strips, is shown in Figure 4-7. Strip 01 was not processed because no significant 

patches of samphire could be located in the area. The maps reveal high abundance areas 

of samphire surrounding the numerous saltpans and fringe some coastal areas. As 

expected, MTMF proved capable of discriminating areas of samphire from irrigated 

pasture and perennial dryland lucerne and native vegetation stands.  
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Figure 4-7 Samphire map comprising georeferenced MTMF results of 4 image strips. 

Bright pixels indicated areas of high abundance. 

 

The highest MF and MTMF scores in the images were thresholded to create the salinity 

symptom maps. Because these high abundance areas were spatially continuous and well 

defined, the cutoff values could be determined through an iterative fine tuning 

processing to produce maps that coincide with the extent and location of known 

samphire patches and saltpans. The threshold values were chosen to underestimate 

rather than overestimate the extent of the saltpans areas. The threshold maps were 

exported into GIS software and a neighbourhood filter applied to smooth the mapped 

features (Figure 4-8).  
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Figure 4-8 Saltpans were mapped at Site A and B with HyMap imagery. Matched filtering 

discriminated the highly saline soils of the saltpan from the non-saline dunes and 

quarries. 

 

Figure 4-9 Samphire was mainly mapped along the coast and surrounding the major 

saltpan at Site A and in the central discharge area. 
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The optimum processing flow for samphire and saltpans followed the same 

preprocessing and standard hyperspectral image analysis procedures which produced 

maps for accuracy assessment (Figure 4-10). The difference between the two flows was 

the choice of MTMF for samphire vegetation mapping and reference spectra derived 

from each image swath using a priori knowledge of the location of samphire patches. 

 

Figure 4-10 Optimum processing flow for mapping multiple HyMap image swaths 
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Standard error matrices were constructed for the samphire and saltpan maps (Tables 1a 

and 1b). Separate matrices were required for the samphire and saltpans because the two 

symptoms were mapped independently over a different number of hyperspectral image 

strips and hence utilised a different number of sampling sites. In each error matrix there 

are only two mutually exclusive categories: the presence or absence of a particular 

symptom at each field site.  

Table 4-2 a) Error Matrix for the samphire 

map (129 sample sites over 4 image strips) 

Table 4.2 b) Error Matrix for the saltpan map 

(137 sampling sites over 5 image strips) 

Field 
Samphire  

Error Matrix Present Absent 
Total 

Present 17 4 21 Image 

Absent 12 96 108 

Total 29 100 129 

Total accuracy………….88 

Producer's accuracy (%) 

Present………………….59 

Absent………………….96 

Users accuracy (%) 

Present………………….81 

Absent………………….89 

KHAT………………….0.61 

Field 
Saltpan  

Error Matrix Present Absent 
Total 

Present 17 2 19 Image 

Absent 16 102 118 

Total 33 104 137 

Total accuracy………….87 

Producer's accuracy (%) 

Present………………….52 

Absent………………….98 

Users accuracy (%) 

Present………………….89 

Absent………………….86 

KHAT…………………..0.58 

 

The overall accuracies of both samphire and saltpan maps, 88% and 87% respectively, 

are high and the maps show a moderate agreement with the field observations, as is 

evident from the calculated KHAT values of 0.61 and 0.58 respectively (Table 4-2 a 

and b).  

Pixels within native mallee vegetation stands were sometimes mistakenly mapped as 

saltpans. This misclassification is most likely due to the native vegetation spectra 

containing shallow absorption features between 1720 and 1760 nm, coinciding with the 

gypsum absorption feature centred at 1750 nm. Absorption features in the 1700 nm 

region in the mallee vegetation are most likely due to non-green plant components like 

dry leaves, bark  (Elvidge, 1990) and characteristics more typical of species adapted to 

arid environments (Elvidge, 1990; Lewis et al., 2000). Some errors also occur because 

the threshold values used to produce the maps from the MF and MTMF outputs were 
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chosen to underestimate rather than overestimate the extent of the saltpans areas. 

Decreasing the threshold values would increase the areal coverage of the actual saltpans 

and samphire but would evoke more errors by mapping more native vegetation. Overall, 

subjective fine-tuning of threshold values may improve the accuracy of maps but 

ideally, a generalised, objective and consistent method for optimising threshold values 

to produce accurate maps needs to be established. Currently, on the ground expert 

knowledge of one or more areas where the salinity symptoms appear is essential to 

enable the selection of reasonable threshold values. 

4.6 Conclusion  

At Point Sturt, saltpans and samphire were found to be the most spectrally distinctive 

dryland salinity symptoms and may therefore be suitable candidates for mapping 

salinity with hyperspectral imagery acquired over other dryland agricultural areas. 

Samphire and highly saline soils were successfully mapped across multiple image 

swaths from a single date airborne survey with no ancillary data. Both soil and 

vegetation salinity symptom maps were produced using readily available software and 

standard hyperspectral processing methods. Multiple swath processing was effectively 

dealt with through successful atmospheric correction, across track illumination 

correction and fine tuning georegistration to GPS locations. Matched filtering appears to 

be a suitable partial unmixing method to minimise the processing multiple parallel 

images. Finally a practical strategy was devised across to validate the salinity maps 

across the large study area, which included many inaccessible landholdings. 

A single image derived endmember was used as reference spectrum for mapping 

extremely saline soils across 5 image swaths. These saline soils containing gypsum 

were most effectively mapped with a reduced dataset spanning the 1750 nm absorption 

feature. Non-saline soils such as quarries, dirt roads and sand dunes were successfully 

excluded. The major sources of error in mapping saltpans were firstly the omission of 

pixels around the saltpan fringes (threshold underestimation) and secondly errors of 

commission from native perennial vegetation, whose spectra contain absorption features 

associated with non-green plant components throughout the SWIR region. However, 

these encouraging results suggest that other soil minerals associated with salinity may 

also be mapped with hyperspectral imagery through the judicious isolation of absorption 

features or combinations of absorption features.  
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The samphire image spectra contained distinguishing properties such as a gently sloping 

red edge, shallow chlorophyll absorption and a subtle double reflectance peak in the 

visible green and red wavelengths. These features are consistent with samphire spectra 

collected with a narrow-band field spectroradiometer. MTMF exploited these spectral 

properties, successfully mapping ground validated samphire patches whilst exclusive of 

perennial dryland lucerne pasture and native mallee. The most successful maps were 

produced using the entire spectral range, suggesting the importance of the SWIR region 

for mapping halophytic chenopods with scleromorphic characteristics. However, unlike 

MF mapping, MTMF is unable to utilise one reference spectrum to map multiple strips, 

therefore each strip required an intrinsic spectrum to map samphire. The inability to 

extract samphire endmembers from every strip was addressed by extracting ROI mean 

spectra from known dense samphire patches.  

In both salinity symptom maps, KHAT values of approximately 0.6 showed that there 

was a moderate agreement between the image maps and the field observations. The 

absence of an objective, automated procedure for threshold value selection means that 

threshold optimisation requires sufficient groundbased knowledge of a detailed area 

within each image strip.  

During the dry season, soils were found to contain less surface moisture and saline 

seepage (Chapter 2) in dryland farming areas and drier soils maximised the depth of soil 

mineral absorption features (Chapter 3). Evidence of soil mineralogy can also be found 

in spectra derived from HyMap imagery acquired in the dry season. Furthermore, the 

dry season appears to be a suitable time of year to distinguish homogenous patches of 

samphire from the senesced annual grasses that dominate the landscape and native 

mallee vegetation. However, fewer halophytic species are available to map because 

annual grasses have senesced and are indistinguishable on the ground.  
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5 MAPPING SALINITY SYMPTOMS WITH HYPERION 

SATELLITE IMAGERY 

5.1 Introduction and aims 

Airborne hyperspectral acquisitions have considerable advantages over multispectral 

satellite missions not only because of their possible higher spatial and spectral 

resolution but also because the user can influence the time of acquisition and flight path 

orientation. However, airborne hyperspectral image processing involves increased 

complexity due to multiple swaths. Space-borne hyperspectral sensors have the 

potential to redress the spectral limitations of multispectral satellite imagery whilst 

having the satellite advantage of repeatability over larger areas.  

The Hyperion sensor is an experimental hyperspectral instrument on the Earth-

Observing 1 (EO-1) satellite, which was launched in 2000 (Pearlman et al., 2001). The 

instrument is a pushbrooom scanner, measuring an entire row of the image and the two 

detector arrays simultaneously measure the complete wavelength range. The spectral 

resolution however is far superior to multispectral satellite imagery, with 10 nm spectral 

bandwidth and 242 wavebands over 400 to 2500 nm range. The wavelength range is 

consistent with HyMap data and ASD field spectrometers. The spatial resolution is 

equivalent to Landsat satellite images, with each ground resolution of approximately a 

30 x 30 m.  

A range of northern and southern hemisphere studies was conducted in the first years of 

Hyperion operation, as part of the instrument validation process (Ungar, 2002). 

Hyperion imagery was applied to agricultural assessment (Eckert and Kneubuhler, 

2001); (Van Niel et al., 2001), environmental (Cetin, 2004; Chewings et al., 2002) and 

mineral mapping (Crowley et al., 2003; Cudahy et al., 2001). The Hyperion validation 

report for the Australia sites (Jupp and Datt, 2004) highlighted the problem with poor 

signal to noise (SNR) performance. In particular, there was low SNR in the visible/NIR 

regions, below about 500 nm and above about 900 nm, and in the two SWIR regions. 

The signal to noise ratio has been estimated at 50:1 in the SWIR for Hyperion, versus 

over 500:1 for the airborne sensors (Kruse and Boardman, 2002).  

To compound the noise problem, the data beyond 2300 nm was reported to be poor, 

which significantly impedes the reliable detection of many useful minerals and is 
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therefore a major limitation for Hyperion mineral mapping applications. However, in 

general spectral smoothing was not recommended because it may remove finer spectral 

features located in noisy regions of the spectrum but which are not impossible to 

discern. Further difficulties were highlighted in the validation report, especially in the 

instrumental overlap between the arrays near 950 nm and the overlap between water 

vapour and CO2 absorption near 2000 nm.  

Another issue that arose during the validation phase was the problem of the variable 

spectral response function of each detector (a function of the centre wavelength, CWL, 

and full width at half maximum, FWHM) across the 256 pixels of a line. The variable 

CWL and FWHM, also know as the “spectral smile”, resulted from the dispersion of an 

image slit across the two detector arrays (Jupp et al., 2002). The smile effects are most 

significant in the VNIR and negligible in the SWIR. Prior to June 2002, the CWL and 

FWHM were standardised by using the values for pixel 128 (TRW method), however 

since then, a better response has been produced by calculating average values over all 

256 pixels (ECD method) (Quigley, 2004). The main effect of the smile is to make 

some of the atmospheric absorption areas unstable.   

Despite the inherent data noise, initial results established that Hyperion data from the 

SWIR spectrometer could be used to produce useful mineralogical information. 

Minerals such as dolomite, chlorite, and muscovite could be distinguished and mapped 

(Cudahy et al., 2001; Kruse and Boardman, 2002). At Mount Fitton, Cudahy et al. 

(2001) determined that “with appropriate pre-processing” and good environmental 

conditions, mineral spectral features could be identified in the SWIR. However, in the 

Cudahy study only a limited number of mineral endmembers were extracted using 

automated procedures, consequently, recognisable mineral spectral were instead 

extracted from regions of interest using a priori knowledge of mineral deposits.  

In arid and semi-arid regions, spatially meaningful abundance maps were produced of 

photosynthetic vegetation (PV), non-photosynthetic vegetation (NPV) and soil 

(Chewings et al., 2002). These preliminary results were achieved using the visible and 

NIR wavelength regions. Broad groups of woody vegetation could be separated using 

vegetation indices based on the red edge features. Some spectrally distinct agricultural 

crops have been classified with some degree of success but the overall mapping results 

were disappointing (Eckert and Kneubuhler, 2001). The study pointed to major 
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problems being the time of year for image acquisition and the small size of the fields in 

the intensively farmed study area, rather than the low SNR of Hyperion data.  

Therefore, even though Hyperion data is noisy, these studies indicate that hyperspectral 

satellite imagery is suited to mapping minerals using absorption features in the SWIR 

but not beyond 2300 nm. Broad vegetation groups can also be separated out such as PV, 

NPV, woody vegetation and even some spectrally distinct crops, if the agricultural area 

is not subdivided for intensive farming. The spatial resolution has the same moderate 

resolution as Landsat TM satellite imagery and is suited to dryland agricultural areas 

where the major landuse is broad scale cropping and grazing such as at Point Sturt. 

Asner and Heidebrecht (Asner and Heidebrecht, 2003) compared Hyperion to AVIRIS 

imagery for SMA mapping of deserts in Argentina and found that at 30m resolution PV 

for both imagery were statistically similar but Hyperion achieved lower accuracies for 

NPV and soil cover estimates. These lower accuracies were attributed to poor signal to 

noise performance in the SWIR region.  

To date, no study has evaluated high spectral resolution satellite imagery for mapping 

dryland salinity. Following the achievement of HyMap image analysis and salinity 

mapping, this part of the study aimed to exploit the high spectral resolution of Hyperion 

imagery to map soil and vegetation symptoms of dryland salinity at Point Sturt in South 

Australia. In particular, image analysis aimed to discriminate saline soils from non-

saline and to distinguish halophytic vegetation, like samphire, from other perennial 

vegetation, such as native mallee vegetation and other perennial species.  

Being an experimental instrument, the fundamental challenge with processing Hyperion 

imagery is the high noise content in the data. Other than noise reduction methods, image 

analysis aimed to follow HyMap procedures to allow for direct comparisons between 

the output salinity symptom maps of both types of hyperspectral sensor. 

5.2 Analysis of Hyperion imagery 

5.2.1 Hyperion data 

The EO-1 satellite has a sun synchronous orbit at an altitude of 705 km and crosses the 

equator at 10.01am local time, 1 minute behind Landsat ETM. The Hyperion scanner 

acquires imagery covering a region 7.65 km cross-track and 185 km along-track. The 

ground resolution is 30 x 30 m. The instrument has two spectrometers that acquire data 
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over two separate wavelength regions, the VNIR (400 to 1000 nm) and the SWIR (900 

to 2500 nm).  

The Hyperion image swath was supplied by the Bureau of Rural Sciences, Australia 

(Figure 5-2). The imagery was supplied as calibrated radiance Level 1B data and the 

VNIR and SWIR data components had been spatially co-registered. The data was 

acquired on 18 February 2002. The image was therefore acquired during summer, 

around the same dry time of year that the HyMap survey was flown (but 1 year later). 

Again, low rainfall was measured in the area prior to image capture (Figure 5-1).  
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Rainfall at Point Sturt prior to Hyperion data capture

 

Figure 5-1 Daily rainfall prior to the acquisition of Hyperion imagery on 18 February 

2002. There is only one major rainfall event one month before.  

 

The full data strip of 93.84 km was acquired over an area well beyond the limits of the 

study site extending 65 km north of Point Sturt area, into the Mount Lofty Ranges. Like 

the HyMap imagery, the southern half of the scene covering the study site is dominated 

by dry vegetation, with some central bright areas corresponding to saltpans. Small areas 

of exposed soil such as sandhill ridges, roadside quarries and dirt roads were not clearly 

visible because of the coarse spatial resolution of the image. The green lake fringes are 

evident but there are less conspicuous green irrigated areas where compared to HyMap.  
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5.2.2 Specialised image pre-processing for Hyperion imagery 

Hyperion image analysis involved preprocessing to reduce noise and 

atmospheric correction followed by standard hyperspectral image analysis 

and mapping procedures (Figure 5-5).  

Hyperion data preprocessing was performed using the CSIRO’s Mineral 

Mapping Technologies Group (MMTG) A-List Hyperspectral Processing 

Software, supplied as an ENVI extension. The software is a series of 

modules which are applied in a prescribed sequence as set out in the 

guidelines devised by Quigley et al. (2004) and in the MMTG-A 

processing manual (Mason, 2002). The processing sequence involves 

interpolating pixel data coinciding with bad sensor detector cells, 

normalising columns to reduce image striping and masking out remaining 

problem pixels for the following stages of image analysis.   

The full data strip was therefore spatially subset to restrict the data to the 

study site (Figure 5-3). Spectral subsetting was performed to remove the 

first bands 1-7 and last bands 225-242 as they contained non-calibrated 

null values. Other bands removed were bands 8-10 (wavelengths 427-447 

nm) and bands 221-224 (wavelengths 2365-2395) to ensure removal of 

any extra noisy bands. Other bands excluded were bands 58-78 

(wavelengths 936- 1058 and 852-922) to account for the spectral overlap 

between the two detectors. A total of 189 bands remained (53 removed).  

The data was then spatially subset to exclude the deep water region in the 

west prior to statistical calculations in the noise reduction procedures 

(Quigley, 2004). Remaining water pixels were also masked out by 

selecting a region of interest to cover the remaining lake water with a 5 

pixel buffer zone to eradicate noisy pixels in the lake and along the lake 

fringes.   

 

Figure 5-2 Hyperion raw image swath 
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Figure 5-3 Hyperion strip spatially subset to the Point Sturt area (georegistered true 

colour) 

The next processing steps were designed to reduce the significant noise, inherent in the 

Hyperion data by masking out “bad pixels” throughout the scene due to instrument 

anomalies (Mason, 2002). Tests showed that a Legendre Polynomial correction was not 

required, so only a standard deviation window (min=50, max=25001) was applied 

which found 22 outlier pixels in the Hindmarsh Island lake area. The mask was applied 

prior to the next processing steps of replacing bad cells with interpolated values from 

neighbouring cells. Significantly bad detector cells are identified according to standard 

deviation (of +/- 4 in this case) of an entire detector array-row. A small number of bad 

cells found, followed by visual inspection in the detector array and manual deselecting 

of wrongly identified good cells.  

Striping is a significant problem in Hyperion imagery, caused by variations in the 

calibration of cells in the cross-track direction (Mason, 2002). Destriping is a less 

aggressive bad cell removal that calculates gain and/or offset corrections for each 

detector cell in the 2-dimensional detector array, the values were applied to normalise 

the columns in the single band image thereby reducing image striping.   
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Atmospheric correction was applied to the noise-reduced Hyperion scene. Although the 

recently developed HATCH model was designed to compensate for the inadequate 

CWL calculations in Hyperion, it has been shown to produce smoother reflectance 

spectra but still requires model development (Goetz et al., 2003). In any case, with the 

reasonable results of ACORN attained by Quigley et al (2004), it was therefore selected 

as the preferred atmospheric correction method for Hyperion data in this study. 

ACORN requires input parameters such as time of acquisition, coordinates, elevation, 

sensor flying height and visibility. Only the 1140 nm region was used to derive water 

vapour because the 940 nm channel is located within the NIR/SWIR overlap region 

(Quigley, 2004). All artefact suppressions were turned on to maximise noise reduction. 

For quality control, the atmospherically corrected data was visually examined. The 

water regions were badly dealt with by ACORN, with water spectra containing 

extremely high amplitude noise over all channels. Overall, high levels of noise persisted 

in the image spectra and the undesirable CO2 absorptions, around 2000 nm, were still 

evident. In general, the noise was most prominent in the NIR plateau between 900 nm 

and 1150 nm overlap region and the SWIR2. Random image spectra were examined to 

find common spectral characteristics pertaining to exposed soil and photosynthetic 

vegetation. Small areas of exposed soil such as sandhill ridges, roadside quarried and 

dirt roads were not easily located because of the coarse spatial resolution of the image. 

Very few mineralogical absorption features were apparent in the noisy SWIR2 region 

even in the large saltpans which extend over several pixels. Typical green vegetation 

spectra were present in irrigated areas, though they appeared particularly noisy in the 

NIR plateau between 900 nm and 1150 nm and the SWIR2. 

 To reduce the noise, the 189 band reflectance data was MNF transformed. The MNF 

bands with corresponding high eigenvalues (eigenvalues>3) were retained leaving 30 

bands, and noisy bands rejected. The noise-reduced dataset was then ready for 

endmember extraction and partial unmixing. The next phase of MMTG processing 

involved pure pixel extraction similar to the standard ENVI PPI method except that it 

had the added advantage of identifying spectrally extreme “outlier” pixels that are 

usually undesirable man-made materials (Mason, 2002). These outlier pixels can 

dominate the n-dimensional visualiser data clouds and are dealt with in HypPPI by 

being preferentially selected in a first pass “mini-PPI”, excluded in the main processing 
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pass and restored in the final stage with extremely high scores, so they can be manually 

excluded if required.   

5.2.3 Standard hyperspectral processing methods  

Endmembers were extracted from HypPPI using automated cluster analysis. Visual 

inspection excluded noisy unusable endmembers from further analysis. The spectra 

were all identified by comparison with field, HyMap and USGS spectra and using 

detailed field based knowledge of the landcover at each pixel location.  

Because the image was acquired at a similar time of year as the HyMap imagery, the 

same salinity symptoms were targeted for mapping with Hyperion imagery. Salinity 

symptoms were successfully mapped using a combination of standard hyperspectral 

image analysis methods. With Hyperion satellite imagery, the superior MTMF 

unmixing was suitable using either an endmember or ROI reference spectrum. Both 

types of reference spectra were examined for their suitability. For MTMF mapping, the 

water absorption regions were excluded from analysis (1356-1467 nm and 1800-2082 

nm). The wavebands from 1971-2082 nm were excluded because they included the 

prominent doublet CO2 absorption features that were not accounted for during 

atmospheric correction.  

All MTMF mapping was then performed on the georegistered MNF data to avoid the 

need to georegister each partial unmixing result. Nearest neighbour resampling was 

used to warp the image because this method transfers values of the nearest pixel to the 

warped image without interpolation, thereby preserving the original pixel reflectance 

values.  

As with the HyMap unmixing results, the MTMF “Score” band was divided by the 

“Infeasibility” band to produce grey scale images. High values from these images were 

selected using threshold values and directly exported to GIS for accuracy assessment. 

Again the threshold values were determined from extensive field knowledge.  

No filtering was applied to the maps in GIS because of the large pixel size. Mapping 

accuracies employed the identical method used to assess the accuracy of the HyMap 

saltpan and samphire maps. Over 100 random field sites were available within the 

extent of the Hyperion scene. Again, standard error matrix and Kappa analyses, as 

described by Congalton (1991), produced KHAT statistic values.   
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Figure 5-4 A representative selection of endmembers extracted from the Hyperion image. 

Noisy endmembers are not displayed 

5.3 Results 

Thirty-one endmembers were extracted using automated cluster analysis. Visual 

inspection showed that there were many noisy unusable endmembers associated with 

unmasked water pixels along the coastline. Subsequent manual removal of these 

undesirable spectra left 15 useable endmembers. Image spectra of representative 

landcovers are displayed in Figure 5-1. The endmembers were all identified by 

comparison with field, HyMap and USGS spectra and using detailed field based 

knowledge of the landcover at each pixel location. Seven endmembers were associated 

with soils but did not contain any soil diagnostic mineralogical absorption features, 
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except Class 17 from the dark mud pan near Site B. Class 25 and Class 14 were 

identified as saltpan and possible samphire endmembers respectively. No endmembers 

had obvious gypsum features in the SWIR at 1750 or 2200 nm. 

 

Figure 5-5 Processing flow for Hyperion data. 

 

The endmember spectra contained substantial noise in the NIR plateau between 900 nm 

and 1150 nm and to a lesser degree in the SWIR2 region. The apparent uniqueness of 
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the endmembers was likely to be noise related rather than caused by legitimate soil or 

vegetation features. The SWIR2 region contained few mineralogical features and those 

that were observed could not be confidently attributed to soil minerals and may instead 

be noise artefacts. The noise is unlikely to be related to high soil water content because 

little rain fell in the area prior to image acquisition. Therefore, endmembers were 

rejected as candidates for partial unmixing mapping. With the success of samphire 

mapping with HyMap ROI spectra, this method was chosen as the preferred option for 

deriving samphire and saltpan reference spectra. The added benefit of selecting 

reference spectra in this manner was the reduced noise levels due to the averaging over 

several pixel spectra. The noise problem also seemed to substantiate the use of MTMF, 

the most robust partial unmixing method. The optimal image analysis flow, involves 

noise reduction, atmospheric correction MTMF mapping and subsequent accuracy 

assessment (Figure 5-5). 

The samphire reference spectra originated from the dense samphire zone at Site A. The 

reference spectrum for saltpan mapping was not generated from the largest saltpan in 

the region at site A because the reflectance in the SWIR wavebands was low with few 

absorption features and significant noise, suggesting the presence of significant amounts 

of soil moisture. Instead, the reference spectrum was derived from a large pan at Site 

AA, just south of Site A. The soil spectra from Site AA appeared to have higher 

reflectance in the SWIR and less noise.  

The MTMF results are displayed in Figure 5-6 and Figure 5-7. Bright areas are areas of 

high abundance of samphire around at the Site A discharge, along the lake coastline and 

at Site B in the south. Other incorrectly mapped areas of subdued brightness occur in 

the remnant mallee vegetation stands. The saltpans scattered throughout the discharge 

regions are successfully mapped. Bright areas coincide with some areas at Site A, 

interdunal pans in the south, exposed soils at site F, and some coastal pans. The main 

areas incorrectly mapped as saline soils are some exposed soil in northern fields and 

Clayton urban areas. As expected, the main saltpan at Site A was not mapped because 

of low reflectance and noise in the SWIR2 wavelength region.  
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Figure 5-6 MTMF result using mean 

samphire reference spectrum. The 

samphire around the central saltpans (red 

square) and along the coast was 

successfully mapped. 

 

Figure 5-7 MTMF result using mean saltpan 

reference spectrum. Bright saltpans are 

dispersed throughout the central and coastal 

discharge areas. The main Site A pan is not 

clearly mapped. 

 

The final maps were produced by selecting pixels with high values above thresholds of 

95.5% for samphire, and 96.5% for saltpans. In other words, threshold values were 

selected in order to isolate less than 5% of the total image area. The maps were 

imported into GIS for groundtruthing (Figure 5-8). 

The overall mapping accuracies were 0.82 for samphire (a) and 0.79 for saltpans (b). 

Although these values appear high they are not adequate indicators of the true quality of 

the maps. A better indicator is the KHAT values of 0.50 and 0.38. The KHAT values 

reflect the fact that partial unmixing failed to map all saltpan and samphire areas. For 

the saltpans in particular, the most prominent omission is the large central saltpan at Site 

A. The main commission errors are those pixels wrongly identified as saltpans in the 

township of Clayton and scattered throughout dry fields. The main commission errors in 

the samphire maps were the misclassification of native vegetation as samphire. 
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Figure 5-8 Saltpan (top) and samphire (bottom) maps are displayed in GIS layout. Several 

saltpans throughout the discharge regions are also successfully mapped. The central and 

coastal samphire areas are well defined. 
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Table 5a) Error Matrix for the samphire map, 

where a KHAT value of 0.50 show a moderate 

agreement with field data 

Total accuracy………….82 

Producer's accuracy  

  Presence………………57 

  Absence………………91 

Users accuracy 

  Presence………………67 

  Absence………………87 

KHAT………………….0.50 

Field  Samphire  

Error Matrix Presence Absence Total 

Presence 16 8 24 

Absence 12 78 90 Image 

Total 28 86 114 

Table 5b) Error Matrix for the saltpan map, 

where KHAT value of 0.38 show a poor 

agreement with field data 

Total accuracy………….97 

Producer's accuracy  

  Presence………………40 

  Absence……………….93 

Users accuracy  

  Presence………………67 

  Absence………………81 

KHAT………………….0.38 

Field  Saltpan  

Error Matrix Presence Absence Total 

Presence 12 6 18 

Absence 18 78 96 Image 

Total 30 84 114 

 

5.4 Conclusions 

Endmembers derived from the Hyperion image contained significant noise particularly 

in the far NIR region and lacked diagnostic absorption features in the SWIR. The 

spectral region around 2000 nm was excluded from mapping because an adequate 

atmospheric correction could not be achieved. Therefore, the samphire and saltpan maps 

were produced with MTMF partial unmixing using MNF-transformed ROI generated 

reference spectra. KHAT values of 0.50 and 0.38 were calculated for the samphire and 

saltpans maps respectively. Saltpan maps also showed a moderate agreement with field 

data but poor accuracies were achieved for samphire maps.  

Hyperion salinity maps had lower accuracies compared to HyMap samphire and saltpan 

maps, with KHAT values of 0.61 and 0.58 respectively (Table 5-1). The low mapping 

accuracy of the saltpans and samphire maps was primarily due to the high level of 

Hyperion data noise that masked important, subtle, spectral features related to soil and 

vegetation. Although data noise was the primary factor adversely influencing mapping 

accuracy, the 30 m spatial resolution was also a contributing factor. At this ground 

resolution, there were more boundary and mixed pixels, adding to classification 

confusion (Quattrochi and Goodchild, 1997). In particular, the poor mapping accuracy 

of the samphire maps may be affected by data noise in the NIR and SWIR wavelength 

regions. The reflectance in the NIR region is related to moisture and leaf structure, 
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associated with succulence, and the SWIR region contains important spectral properties 

related to woody stalks and halophytic adaptations (Elvidge, 1990; Lewis, 2002).  

Table 5-1 Comparison of Hyperion and HyMap salinity mapping accuracies. Saltpans 

maps from both sensors showed a moderate agreement with field data however, Hyperion 

samphire maps showed poor agreement compared to HyMap  

Hyperspectral sensor  (platform) 
Salinity 

symptom 

Accuracy 

(KHAT) 

Saltpans 0.58 
HyMap  (airborne) 

Samphire 0.61 

Saltpans 0.50 
Hyperion (satellite) 

Samphire 0.38 

 

The major advantage of the Hyperion imagery is the high spectral resolution that is 

equivalent to HyMap data. The other advantage is that the along-swath coverage is 

equivalent to other satellite imagery and the 7.5 km swath-width is over 5 times the 

width of a single airborne swath (with ground resolution of 3 m). However, the 

disadvantage of multispectral and Hyperion satellite imagery is the coarse ground 

resolution of 30 m which is equivalent to Landsat and contributes to the lower mapping 

accuracies. 

If future high spectral resolution satellites have significantly higher SNR performance 

similar to airborne sensors, then the salinity mapping has enormous potential for 

improvement. High spectral resolution satellite imagery could successfully discriminate 

halophytic species that inhabit large zones encompassing several 30x30 m pixels. 

During the dry season, samphire is ideal candidate for mapping problematic saline areas 

with a good cover of perennial vegetation. At this time of year, hyperspectral imagery 

could also isolate spectral features relating to soil mineralogy to distinguish large areas 

of exposed saline soils from non-saline exposed soils. Because satellite imagery covers 

larger areas and has the advantage of regularly passing over the same area, 

hyperspectral satellites are well suited to monitoring salinity over medium sized 

catchments. Imagery from other times of year needs to be evaluated to determine 

whether halophytic annual vegetation can be mapped. 
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6 MAPPING SALINITY SYMPTOMS WITH CASI AIRBORNE 

IMAGERY 

6.1 Introduction and aims 

Results presented in previous chapters indicate that hyperspectral imagery is capable of 

mapping salinity indicators such as samphire and saltpans during the dry season. The 

dry season proved an ideal time to map these symptoms because the lack of soil water 

and the ability to discriminate perennial halophytic samphire from background of dry 

annual grasses. This time of year, however, is not suited to mapping other salinity 

symptoms, in particular, annual vegetation. Furthermore, the extensive wavelength 

range may not necessary for mapping those symptoms that exhibit distinctive spectral 

properties in the visible and NIR wavelength regions. 

Sea barley grass is a widespread, important indicator of emerging salinity. Spectral 

discrimination analysis of laboratory and field spectra suggests that spring-summer 

senescence may be the optimum time of to distinguish sea barley grass from other grass 

species in more advanced stages of senescence (Chapter 3). The end of the “spring 

flush” and beginning of the dry season was selected as the optimal time of year for 

mapping sea barley grass with hyperspectral imagery. Sections of the visible and NIR 

regions proved to be significant in discriminating regions, therefore a hyperspectral 

imaging scanner that encompassed this wavelength region had the potential for mapping 

sea barley grass.  

The Compact Airborne Spectrographic Imager, CASI (ITRES Research Limited) is an 

airborne imaging scanner that acquires hyperspectral imagery in the visible and near 

infrared wavelengths. CASI imagery is therefore well suited to water quality assessment 

because of the continuous optical wavelength range between 400 to 1000 nm and the 

flexibility of programmable bands (Dekker and Bukata, 2002). Studies of coastal 

environments and water quality have focussed on chlorophyll, turbidity, algae, 

suspended materials and seagrass (Thomson et al, 1998; Clark et al, 1997; Thomson et 

al. 2003; Green et al, 1998).  

A common application of CASI imagery is vegetation mapping because the VISNIR 

region is associated with leaf pigments (Gates et al., 1965) and leaf structure (Gausman 

and Allen, 1973). VISNIR airborne scanners have been applied to the determination of 
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canopy coverage in Northern hemisphere forests (Leckie et al, 2005; Blackburn and 

Milton, 1997; Fernandes et al, 2004; Haboudane et al, 2004). Blackburn and Milton felt 

hyperspectral VISNIR imagery was necessary to resolve some subtle changes in canopy 

reflectance due to variations in leaf pigment concentration (Blackburn and Milton). 

CASI imagery has also been used to determine leaf chlorophyll content as a measure of 

crop health in precision agriculture studies (Zarco-Tejada, 2000).  

Of greater relevance to this study, is the application of CASI imagery for mapping 

grasslands. Grassland communities in Denmark were mapped with CASI using standard 

classification methods (Jacobsen et al, 2000). Mapping degraded grasslands was also 

investigated using simulated spectra that emulated the wavelength range and resolution 

of CASI scanner (Yamano et al, 2003). Discrimination analysis was performed on the 

simulated spectra. The fourth derivative reflectance spectra around 670 nm and 720 nm 

were found to be effective discriminators for distinguishing grass species which were 

indicators of degraded areas. Schmidt and Skidmore (2001) compared the laboratory 

spectra of grass species in Africa to CASI image spectra. Although not stated, the 

imagery appeared to be collected at the time of year when the reflectance curves of the 

grass species had characteristics of typical green vegetation. The image spectra were 

extracted from pixels dominated by a specific species.   

The VISNIR region has been rarely used to map soils presumably because there are few 

spectral features in the region pertaining to soil mineralogy. However, there have been a 

few studies that have mapped soils based on soil colour and its intimate relationship 

with iron oxide content. In VISNIR region, soil colour has been associated with soil 

type and soil properties such as organic matter (Ben-Dor et al., 1997; Palacios-Orueta 

and Ustin, 1998; Post et al., 2000), iron oxide (Ben-Dor, 2002; Ben-Dor and Banin, 

1994; Palacios-Orueta and Ustin, 1998) and iron mineral content is primarily observed. 

Recently, the CASI-48 imager has been shown to reliably map soil rubification, or iron 

oxide formation, in coastal sand dunes in Israel (Ben-Dor et al., In Press). Skidmore et 

al (1997) used eucalypt forest as surrogate for soil properties and found that soil 

phosphorus and pH correlated with CASI data. Furthermore, the shape of the NIR 

shoulder has also been linked to salinity status of soils (Dehaan and Taylor, 2002B).  

In Chapter 5, sea barley grass was found to be spectrally distinguishable from other 

annual grasses across broad wavelength regions because it appeared to senesce later in 

the season. During senescence, the VISNIR spectral region is most responsive to 
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changes in plant pigment content, particularly changes in chlorophyll content, and leaf 

structure. Grassland mapping maybe further be enhanced by the judicious choice of 

time of year for image acquisition.  

The primary aim of CASI image analysis was to produce maps of sea barley grass. 

From results presented in Chapter 3, spectral analysis found November to be as the 

optimum month in this environment to exploit spectral differences between the variable 

rates of senescence of sea barley grass and other annual species. Spectral differences 

occur across broad spectral regions because sea barley grass stays greener longer in 

lowlying wetter areas than surrounding non-halophytic annual grasses. Therefore, CASI 

imagery acquired during spring senescence has the potential to discriminate and map 

sea barley grass. To evaluate the imagery further, image analysis aimed to produce 

samphire and saltpan maps to allow for direct comparisons to the HyMap salinity 

symptom maps.  

6.2 CASI survey and data specifications 

Plant spectral properties change over relatively short periods of time (Schmidt and 

Skidmore, 2002), particularly during senescence so that the time of year for image 

acquisition is important. In October and November 2004, a number of visits to Point 

Sturt confirmed that sea barley grass was still quite green at this time of year and many 

other non-halophytic annual grasses, such as brome and silver grass, appeared to be in 

more advanced stages of senescence. However, it was also noted that some crops and 

wild pastures also maintained a level of greenness, which could contribute to errors 

when mapping sea barley grass with the imagery acquired at this time. Nonetheless, mid 

to late November was selected as the ideal time to acquire imagery to optimise sea 

barley grass mapping.  

The CASI-2 survey was flown on 25 November 2003. The flight paths were designed to 

run east-west to follow the length of the peninsula thereby minimising the number of 

swaths required to cover the study area. Seven parallel image swaths were acquired 

(Figure 6-1). The data was delivered as radiometrically corrected to at sensor radiance 

and geocorrected in WGS84 UTM projection, Zone 54 south. The scanner was 

programmed to capture the wavelength spectral range from 413 to 959 nm using 48 

bands at 11.7 nm bandwidth. 
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Figure 6-1 Mosaic of seven CASI image swaths 

In the weeks prior to data acquisition, seasonal rains were abating which heralded the 

onset of senescence in the region (Figure 6-2). With the absence of recent rains, surface 

soil moisture would be declining and thus have a reduced effect on image spectra 

associated with exposed soils. 
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Rainfall at Point Sturt prior to CASI data capture

 

Figure 6-2 Daily rainfall six months prior to the acquisition of CASI imagery on 25 

November 2003. There are fewer rainfall events in November.  

6.3 CASI data pre-processing methods 

The first stage in pre-processing was atmospheric correction preferably using ACORN 

software, which had successfully corrected the HyMap data. However, the CASI data 
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only extended to 959 nm, such that the image spectra did not encompass both sides of 

the 940 nm water vapour absorption feature (pers. com. Research Systems Inc.). In fact, 

ACORN tests produced output reflectance data with a steep rise in reflectance around 

900nm, indicating that calculations were severely overcorrecting the data (Figure 6-3).  

 

Figure 6-3 CASI image spectra before (left) and after (right) ACORN atmospheric 

correction. The spectrum on the right clearly shows the prominent overcorrection around 

940 nm. 

Both ACORN and FLAASH (Fast Line-of-sight Atmospheric Analysis of Spectral 

Hypercubes) algorithms are based on the MODTRAN-4 algorithms, FLAASH, with the 

CASI 820 nm options, seems to be more suited to atmospherically correcting CASI data 

(pers. com. Research Systems Inc.). FLAASH proved more successful, significantly 

reducing the over correction calculation around 940 nm, without eliminating it 

altogether (Figure 6-4). The disadvantage of FLAASH was the appearance of low 

amplitude spikes at 740 nm at the NIR shoulder, which could not be eliminated through 

spectral polishing.  
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Figure 6-4 Example of CASI spectra after atmospheric correction with FLAASH. In the 

saline soil spectra note the small 740 nm peak and the smaller overcorrection rise around 

940 nm. 

In HyMap processing, across track variations in brightness could be accounted for by 

applying across track illumination correction to the raw image swaths. However, across 

track corrections could not be applied to the CASI data because the image swaths were 

supplied already geocorrected and with no GLT translation files. Therefore, across track 

illumination correction could not be used in this case. An alternate procedure was 

therefore required to account for the undesirable across track illumination effects that 

can adversely affect mapping continuity within and between image swaths.   

6.4 Salinity symptom mapping with CASI imagery 

All further image analysis was performed on georegistered, atmospherically corrected 

image swaths. Image analysis closely followed the effective HyMap mapping 

procedures because the partial unmixing mapping of selected salinity symptoms was 

already tested and proved successful. Employing similar mapping procedures also 

allowed for direct comparisons between CASI and HyMap salinity symptom maps. 

The data was MNF transformed, noisy bands removed, pure pixels identified and 

endmembers extracted from these pure pixels. Noisy bands beyond MNF band 20, 

where the eigenvalues fell below 2.0, were removed for subsequent pure pixel 

extraction and partial unmixing mapping. However in each MNF dataset, some high 

eigenvalue bands appeared to contain the expected strong, across-track illumination 
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effects. Unfortunately these bands appeared to contain scene information other than just 

the across track effects, so removing them in further processing was considered 

inappropriate. 

The problem was investigated using MNF transformed data from swath 708, which 

contained 3 bands with strong across track effects: bands 2 (dark edge effects), 3 (bright 

edge effects), and noisy band 17 (less pronounced edge darkening). These three bands 

were removed and an inverse-MNF image produced. Image spectra from the inverse 

image with 3 MNF bands removed contained a comparatively higher reflectance around 

the chlorophyll absorption features then image spectra with no MNF bands removed 

(Figure 6-5). Evidently removing both MNF bands 2 and 3 with high eigenvalues 

discarded too much valuable spectral information between 600 and 700 nm pertaining 

to vegetation (Figure 6-5). Similarly, an inverse-MNF was performed that excluded 

MNF bands 2 and 17 but retaining MNF band 3. In this case, the inverse MNF scene 

had undesirable bright edge effects consistent with the bright edges of the removed 

MNF band 3.   

 

Figure 6-5 Two irrigated vegetation spectra 1) inverse-MNF spectra with MNF bands 

2&5 excluded showing the increase in red reflectance (dotted) and 2) inverse-MNF 

spectra with no across track illumination bands removed (solid line) 

Therefore, no ideal options were available for correcting across track illumination 

effects. Either high eigenvalue bands could be removed to reduce the across track effect 

or the bands could be removed which would reduce the effectiveness of mapping across 
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image swaths. Ultimately a compromise solution was to remove MNF band 2 because it 

contained the most pronounced across track effects. 

6.4.1 Endmember extraction 

Again, endmembers were sought to use as reference spectra for partial unmixing 

mapping. A total of 20 MNF bands (excluding band 2) were input in to PPI and 

endmembers were then extracted. The endmembers extracted were similar to those 

derived from the HyMap imagery and were again dominated by unwanted spectra 

associated with manmade structures. In general, the desirable endmembers extracted 

from each image strip included soils, saltpans and green vegetation spectra.  

6.4.2 Partial unmixing mapping of sea barley grass and samphire  

No sea barley grass endmembers were identified and samphire spectra were only 

extracted from only two image strips. MTMF mapping was conducted using mean 

reference spectra derived from a region of known sea barley grass and samphire in each 

mage swath. 

The location of sea barley grass patches were recorded with GPS during a number of 

field trips in August, October and November, when the sea barley grass field spectra 

were collected. These sea barley sites were then located in the CASI image swaths and 

image reference spectra collected for partial unmixing mapping.  

For samphire maps, the reference spectra were, wherever possible, taken from the same 

sites as the HyMap samphire regions. Some sites on the edge of CASI strips were not 

used because mapping biased the edges. Again, samphire was not mapped in the 

northern most swath because no samphire patches had been found in this area.   

6.4.3 Saltpan partial unmixing mapping methods 

Most saltpan endmembers contained noisy data between 650-750 nm or were mixed 

spectra with vegetation and water characteristics. The endmember selected for MF 

mapping was Class 7 extracted from swath 710 (Figure 6-6). Class 7 was a smooth 

bright spectrum that was associated with a large saltpan at Site A.  
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Figure 6-6 Endmember spectra from swath 710 

 

Saltpans were also mapped with MTMF for comparison to the MF maps. Matched 

filtering unmixing was attempted to map across multiple image strips using a single 

image-derived reference spectrum. This approach was unable to separate saltpans from 

dirt roads and exposed sandy soil in other strips. To improve saltpan mapping an 

alternate strategy was needed, therefore it was decided to produce maps with the MTMF 

method that had proved more successful in vegetation mapping (samphire). To derive 

image reference spectra, groundbased knowledge was used to select regions of interest 

that corresponded to saltpans in each of the image swaths. This targeted reference 
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extraction process was preferable to image derived endmembers because many pixel 

spectra in saltpans were noisy or had low reflectance indicating the presence of water.  

A ratio of the MTMF “score” band over the infeasibility band produced grey scale 

images from which thresholds were applied to create salinity symptom maps. For 

consistency among image swaths, a threshold value was selected that corresponded to 

the 99th percentile in each image histogram. The 99% thresholds value was considered 

appropriate because they were comparable to the HyMap map thresholds.   

6.5 Accuracy Assessment 

The saltpan, samphire and sea barely grass threshold maps were exported as themes into 

geographical information systems software for accuracy assessment. Within GIS 

software (ArcMap 9) a neighbourhood filter was applied to smooth the mapped features.  

6.5.1 Samphire and saltpan maps 

Over 100 random field sites were available for groundtruthing the salinity maps. The 

samphire maps required fewer sites because the northern-most swath was not mapped. 

Standard error matrix and Kappa analyses, as described by Congalton (1991), produced 

KHAT statistic values.   

6.5.2 Sea barley grass maps 

Unfortunately, the accuracy assessment method devised for HyMap maps could not be 

applied to the sea barley grass maps. There were few field sites where the occurrence of 

sea barley grass had been documented because groundtruthing was completed in 

February/March to coincide with the season when the HyMap survey was flown. At this 

time late in the dry season, the seed heads of annual grass had dispersed making grass 

species impossible to identify. 

The sea barley grass maps were statistically compared to the saline and nonsaline 

landscaped units in the PIRSA soil maps to establish whether these moderately saline 

areas were distributed within previously defined salt affected zones. The PIRSA maps 

were considered suitable data to perform a more generalised form of map validation 

because expert knowledge involved interpreting aerial photographs and soil soluble salt 

levels (electrical conductivity measurement) (Maschmedt, 2000; Maschmedt, 2001).  
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The salinity induced by watertable attribute (described in Chapter 2) was divided into 

saline and nonsaline classes (Table 6-1). Within GIS software, zonal statistics calculated 

the percentage area of sea barley grass pixels mapped in saline and nonsaline areas.  

Table 6-1 PIRSA SLU attribute “salinity induced by watertable” is assigned 8 classes A-G 

(after (PIRSA, 2001A)).  

Salinity induced by watertable class Salinity level 

A Nonsaline (negligible salinity) 

B C D E F G Saline (slight to extreme salinity) 

 

6.6 Results of partial unmixing mapping 

Samphire, saltpans and sea barley grass were mapped with partial unmixing of CASI 

hyperspectral imagery. The optimum processing flow for sea barley grass, samphire and 

saltpans followed the HyMap preprocessing and hyperspectral image analysis 

procedures (Figure 6-7) using reference spectra derived from each image swath using a 

priori knowledge of the location of samphire patches. 

Partial unmixing successfully mapped the highly saline soils where in saltpans and 

highly saline exposed soils where samphire dominated. The saltpans and samphire were 

predominately mapped in well-defined patches in the central and coastal saline 

discharge areas. Sea barley grass was mapped in less well defined patches but is 

predominately associated with the saltpan and samphire mapped areas (Figure 6-8). 

However, the sea barley grass maps are more sparsely distributed, and are particularly 

evident along the interface between image swaths.   

 



- 106 - MAPPING SALINITY SYMPTOMS WITH CASI 

 

 

Figure 6-7 Salinity symptom mapping flow  
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Figure 6-8 CASI salinity symptoms map at Point Sturt. Many mapped saltpans (blue) and 

samphire (cyan) were confined to the central and coastal saline areas. Sea barley grass 

(yellow) mapped areas were more sparsely distributed adjacent saline areas.  

 



- 108 - MAPPING SALINITY SYMPTOMS WITH CASI 

 

KHAT values showed that the samphire and saltpan maps were in moderate agreement 

with field data. The KHAT values for the samphire and saltpan maps were 0.48 and 

0.51 respectively (Table 6-2 and Table 6-3). The saltpan maps showed a slightly higher 

agreement with the field data than the samphire maps. The main sources of errors in the 

saltpans and samphire maps were errors of omission where only 14 out of 29 samphire 

field sites and 17 out of 33 saltpan sites were mapped. These field sites were generally 

mixed sites with a proportion of samphire cover and exposed soil.  

Table 6-2) Error Matrix for the samphire 

map (133 sample sites over 6 image swaths) 

Total accuracy     0.84 

Producer's accuracy (Omission error) 

Present………………….0.48 

Absent………………….0.94 

Users accuracy (Commission error) 

Present………………….0.70 

Absent………………….0.87 

KHAT………………….0.48  

Field  Samphire  

Error Matrix Presence Absence Total 

Presence 14 6 19 

Absence 15 98 113 

Im
a

g
e 

 

Total 29 104 133 

Table 6-3) Error Matrix for the saltpan 

map (138 sample sites over 7 image swaths)  

Total accuracy     0.84 

Producer's accuracy (Omission error) 

Present………………….0.52 

Absent………………….0.94 

Users accuracy (Commission error) 

Present………………….0.74 

Absent………………….0.86 

KHAT………………….0.51 

Field  Saltpan  

Error Matrix Presence Absence Total 

Presence 17 6 23 

Absence 16 99 115 

Im
a

g
e 

 

Total 33 105 138 

 

Salinity symptoms mapped with CASI imagery are overlain with the PIRSA soil 

landscape unit polygons. Partial unmixing successfully mapped samphire and saltpans 

in the designated saline soil landscape units. 

Zonal statistics confirms that more sea barley grass appeared to be mapped in the 

nonsaline western slopes and high ground on the peninsula compared to saltpan and 

samphire maps. A higher percentage of sea barley grass (4.8%) was mapped in 

nonsaline areas compared to the samphire (2.7%) and saltpan  (1.6%) maps (Figure 

6-10). The PIRSA designated nonsaline areas are associated with the western slopes and 

the higher ground on the peninsula in the east.  
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Figure 6-9 Detail of salinity symptom maps overlain with the PIRSA SLU polygons. The 

black dotted line shows a discontinuity in mapping saltpans across 2 image swaths 

 

Figure 6-10 Zonal statistics showing the % area of sea barley grass, samphire and 

saltpans mapped in nonsaline and saline areas defined in the PIRSA SLU maps 
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6.7 Discussion and Conclusions 

CASI imagery was acquired during November in order to distinguish late-senescing sea 

barley grass, a dominant halophytic plant species at Point Sturt, from a background of 

other annual non-halophytic grasses. Image analysis not only produced maps of sea 

barley grass but also samphire and saltpans for comparisons to similar maps produced 

from other forms of imagery.  

Analysis of the CASI imagery followed the processing flow devised for mapping 

salinity symptoms with HyMap imagery. One major modification to the CASI flow was 

the replacement of ACORN with FLAASH atmospheric correction because ACORN 

could not use the 820 nm feature for calculating water vapour corrections. Another 

difference was the removal of MNF band 2 to account for across track illumination 

affects. The mosaicked maps contain stronger evidence of discontinuities across swath 

boundaries than HyMap, which suggests that residual across track effects were still 

present. The final difference was the choice of mixture tuned matched filtering over 

matched filtering for mapping soils. MF was unable to distinguish saline soils from non-

saline soils when mapping across multiple image strips with a single image endmember.  

Zonal statistics showed that higher proportion of sea barley grass was mapped in 

nonsaline areas compared to the samphire and saltpan maps. The comparatively higher 

proportion of sea barley grass in these non-saline areas suggests that the sea barley grass 

mapping was less reliable than saltpan and samphire mapping with CASI imagery. The 

better accuracy of the samphire and saltpan maps is reflected in the KHAT values of 

0.48 and 0.51 respectively, both values indicate a moderate agreement with field data. 

The main source of errors in the samphire and saltpan maps was the omission of field 

sites with samphire cover and exposed background soil. These omission errors suggest 

that significant differences in reflectance over the visible near infrared region alone may 

not be able to distinguish samphire from other vegetation.     

The main error in the sea barley grass maps is associated with the similarity in spectra 

between senescing sea barley grass and other grasses and pastures in the area. Sea 

barley grass stays greener longer in lowlying wetter areas, however other plant species 

in nonsaline areas may also senesce at different rates depending on position in the 

landscape, spatially varying soil moisture and individual species response to these 

conditions. Near surface water would vary from year to year depending on climatic 
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conditions and, to an extent, changes in landuse, such as irrigation, cropping and 

grazing practices. Because the rate of senescence is dependent on these environmental 

conditions, it is difficult to identify a precise time that would maximise sea barley grass 

mapping from year to year.  

The saltpans were mapped at the same accuracy as the HyMap maps. This is perhaps an 

unexpected result because the CASI spectra of saline soils do not contain well-defined 

absorption features in the visible near infrared wavelength region pertaining to 

mineralogy. Therefore, the most significant distinguishing characteristic of saline soil 

was related to spectral shape. The presence of halite and low organic matter produces 

high albedo in saline soils (Ben-Dor et al., 1997; Drake, 1995). However in situ saline 

soils at Point Sturt were affected by soil moisture, which produces lower spectral 

response (Lobell and Asner, 2002). Therefore, the distinguishing feature of CASI image 

spectra was lower albedo and the shape of the visible near infrared wavelength region, 

as identified by Dehaan and Taylor (2002B).   

The limited wavelength range of 418–953 nm also had repercussions for allowing 

successful atmospheric corrections. When commissioning the surveys, it is important to 

ensure the wavelength range encompasses both sides of the 940 nm water absorption 

feature from 870-1020 nm. An improved range may result in less noise and no over 

correction around 940 nm. 

Ultimately, CASI image analysis produced samphire and saltpan maps that showed 

moderate agreement with field data.  However, samphire maps had a lower mapping 

accuracy compared to HyMap (KHAT value of 0.61). This lower accuracy and the 

difficulties in mapping sea barley grass suggests that the CASI imagery has a reduced 

capability for mapping vegetation symptoms of salinity, particularly those species that 

contain spectrally distinguishing characteristics in the SWIR. More precise vegetation 

mapping may require the SWIR regions as indicated in the spectral discrimination 

analysis and HyMap samphire mapping.  





 COMPARISON OF SALINITY MAPS - 113 - 

 

7 COMPARISON OF HYPERSPECTRAL AND CONVENTIONAL 

SALINITY MAPS  

7.1 Introduction and aims 

Ground validated samphire and saltpan maps were produced from unmixing HyMap 

multiple airborne image swaths (Chapter 4), Hyperion satellite imagery (Chapter 5) and 

CASI multiple swaths (Chapter 6). Moderately saline areas were also mapped by 

unmixing CASI imagery using senescing sea barley grass reference spectra, although 

these maps were not validated with ground data. HyMap image analysis produced the 

most accurate salinity maps compared to the other hyperspectral imagery. 

In this chapter, the hyperspectral salinity maps are compared to previous Point Sturt 

salinity maps that were introduced in Chapter 2. Previous salinity maps include 

conventional maps based on aerial photography interpretation, such as the National 

Land and Water Resources Audit (NLWRA) salinity maps from 2000 and the PIRSA 

salinity induced by watertable attribute map, and the map of severely saline areas based 

on Landsat ETM imagery (Thomas, 2001). These comparisons aimed to assess the 

benefits and limitations of each method for mapping salinity. 

7.2 Methods 

The PIRSA salinity induced by watertable maps were compiled by assigning classes to 

each soil landscape unit according to a combination of the levels of salinity of the 

landscape as a whole, and the extent of land affected by highly saline seepage 

(Maschmedt, 2000). Saline seepage occurs where saline groundwaters rise near to the 

land surface (Maschmedt, 2000) and highly saline seepage is assumed to refer to 

seepages with high salinity levels over 16 dS/m (Table 2.1). SLU polygons were 

defined on the basis of a range of soil and landscape attributes.    

Within GIS software, zonal statistics calculated the area of samphire, saltpan and sea 

barley grass mapped per SLU salinity class. In the zonal statistic plots, salinity classes 

associated with each class were labelled simply “slight” through to “extreme” for 

convenience (Table 6-1). Sea barley grass was expected to occur in moderate to highly 

saline areas (Classes C to E) (Table 6-1). Samphire was expected to occur in high to 

extreme levels of salinity (classes F and G) whereas saltpans were expected to be 

associated with extremely saline areas (Class G) (Table 6-1).  
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Table 7-1 Expected salinity symptoms associated with each PIRSA SLU “salinity induced 

by watertable” class (after (PIRSA, 2001A) and Maschmedt, 2001).  Sea barley grass 

would be mainly expected to occur in moderate to high levels of salinity and samphire in 

the high to extreme areas (Classes F and G). *Class E was not represented at Point Sturt. 

Salinity 

class 

Name of salinity levels  

(names adopted for convenience, to 
Dominant salinity symptoms expected in 

each salinity class at Point Sturt A None None 

B Slight  Negligible 

C Moderate  Sea barley grass  

D Moderately high  Sea barley grass  

E * Moderately high to high Sea barley grass, samphire and bare areas 

F High  Samphire and bare areas 

G Very high to extreme  Samphire, bare areas and salt encrusted 

 

The National Land and Water Resources Audit mapped the extent of dryland salinity in 

SA (Salinity 2000 maps) by identifying seeps, scalds and other indicators of salt 

affected areas from aerial photographs
6
 (Barnett, 2000). These maps were also 

qualitatively compared to the HyMap saltpan and samphire maps by overlaying them in 

a GIS program. 

The Land Condition Monitoring study (2001) mapped severely saline areas in the Point 

Sturt area based on Landsat ETM imagery and spatial data integration (Thomas, 2001). 

In this chapter, the severely saline areas map is compared to the HyMap saltpan and 

samphire maps. The Landsat based map was initially georeferenced to the HyMap 

mosaic (presented in Chapter 4) before importation into GIS software. The severely 

saline area maps was then overlain with the HyMap saltpan and samphire themes.   

7.3 Results 

7.3.1 Comparison to PIRSA salinity maps 

The SLUs with saline attributes have been overlain with salinity maps produced from 

HyMap multiple airborne image swaths, Hyperion satellite imagery and CASI multiple 

swaths (Figure 7-1 a, b and c). The hyperspectral salinity maps predominately coincide 

with SLUs assigned saline classes in the central discharge region and along the coastal 

areas. As expected, the samphire and saltpan areas are mainly associated with high 

                                                 

6
 The dates of the aerial photographs used in mapping were not specified in the South Australian NLWRA 

report.  
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(class F) to extreme (class G) saline areas. The CASI and Hyperion salinity maps are 

associated with more non-saline SLUs than the HyMap.  

Zonal statistical analysis quantifies these observations. For each hyperspectral dataset, 

zonal statistics plots show that symptoms of different salinity levels were, in general, 

mapped in the appropriate SLU salinity class. For each hyperspectral dataset, samphire 

and saltpans were predominately mapped in high to extreme SLUs (Classes F and G) 

(Figure 7-2, Figure 7-3 and Figure 7-4).  

The HyMap plot (Figure 7-2) shows that samphire and saltpans were mapped in 21.5% 

of the high salinity SLUs  (class F) and 13.7% of the very high to extreme salinity SLUs 

(class G). Zonal statistics appear to corroborate the high accuracy of the HyMap salinity 

maps because the lowest proportion of samphire and saltpans are in the nonsaline areas. 

The Hyperion plots (Figure 7-3) shows that samphire and saltpans were mapped in 26% 

of the high saline class (class F) and 24.8% of the very high to extremely saline class 

(class G).  More saltpans and samphire were mapped in the high and low saline classes 

compared to HyMap. 

The CASI zonal statistics plot (Figure 7-4) show that samphire and saltpans were mapped in 

20.6% of the highly saline areas and 15.9% of the very high to extremely saline areas, similar 

proportions to HyMap. The highest proportion of sea barley grass was mapped in the 

moderately saline class. Sea barley grass is expected in classes assigned moderate to 

high levels of salinity (C to F, but Class E is not represented at Point Sturt) but perhaps 

over a reduced area in the higher classes because of the higher proportion of land 

affected by highly saline seepage. A comparatively higher proportion of sea barley grass 

(4.9%) was mapped in the non-saline class (western slopes and high ground on the 

eastern tip). These areas were observed to be non-saline during field visits, which 

suggests that non-saline landcovers were incorrectly mapped as sea barley grass.  

Detail of the SLU maps with overlaid saltpan and samphire maps is displayed in Figure 

7-5. This area is the main discharge zone at the interface between the clay and limestone 

aquifer system. In this region, the saline SLUs are mainly assigned saline classes 

associated with moderate (classes C and D), high (class F) to extreme levels of salinity 

(class G) and a percentage of the land affected by highly saline seepages. In this 

mapping representation, soil is treated as being homogeneous within each unit. 
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 In contrast, the fine spatial resolution of the HyMap salinity maps takes into account 

the spatial heterogeneity of soils within the saline SLUs, as image analysis successfully 

mapped highly saline (samphire) and extremely saline (saltpans) soils. These high-

resolution raster based salinity maps provide a more realistic representation of the 

variability of soil salinity by mapping the areas that actually display the highest 

salinities, rather than the SLUs that contain the higher salinities. 
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Figure 7-1 PIRSA salt affected areas overlaid with the salinity maps produced from a) 

HyMap, b) Hyperion and c) CASI hyperspectral data (with image extent outlined in red). 
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Figure 7-2 HyMap: Samphire and saltpans 

were mapped in 21.5% of the high salinity 

SLUs (class F) and 13.7% of the very high 

to extreme salinity SLUs (class G).  
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Figure 7-3 Hyperion: samphire and 

saltpans were mapped in 26% of the high 

saline areas (SLUs class F) and 24.8% of 

the very high to extremely saline (SLUs 

class G).  More saltpans and samphire 

were mapped in low saline SLUs 

compared to HyMap 
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Figure 7-4 CASI: samphire and saltpans 

were mapped in 20.6% of the highly saline 

areas and 15.9% of the very high to 

extremely saline areas. The highest 

proportion of sea barley grass was mapped 

in moderately saline areas. A high 

proportion of sea barley grass was also 

mapped in non-saline areas. 



 COMPARISON OF SALINITY MAPS - 119 - 

 

 

Figure 7-5 Detail of HyMap salinity symptom (Site A) overlaid with PIRSA Soils 

Landscape Units attribute of salinity induced by watertable 

7.3.2 Comparison to NLWRA dryland salinity map 

The differences between the NLWRA Salinity 2000 maps and the HyMap salinity 

symptom maps are illustrated in Figure 7-6. Both mapping approaches were able to map 

exposed saline soils, although a number of saltpans were not identified in the HyMap 

maps. The spectra of unmapped pans were most likely either adversely affected by 

surface moisture or lacked well-defined gypsum absorption features because their 

surface soils were instead dominated by halite. However, more saltpans identified by 

fieldwork were mapped in the Salinity 2000 maps. Partial unmixing of HyMap data was 

able to map samphire growing along the northeast and southern coasts. These areas 

were not delineated through by the aerial photograph interpretation. Therefore, 

unmixing of HyMap data was more successfully able to map saline land with a good 

cover of samphire vegetation.     

Detail of the HyMap and Salinity 2000 maps is displayed in Figure 7-7. The HyMap 

maps depict the spatial variability of salinity within the Salinity 2000 boundaries by 

mapping high salinity (samphire) and extremely saline soils (saltpans) pixel by pixel, to 

provide a more realistic representation of soil variability rather than delineating units 

that contain saline areas.   
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Figure 7-6 NLWRA dryland salinity 2000 map overlain with the HyMap samphire and 

saltpans maps. 

 
Figure 7-7 Detail of the NLWRA dryland salinity 2000 map and the HyMap salinity maps 

overlying the true colour HyMap image. The HyMap image analysis was better able to 

map saline land with a good cover of samphire vegetation along the central and southern 

coasts. 

7.3.3 Comparison to Landsat based salinity maps 

The Landsat based map of severely saline areas (Thomas, 2001) predominately 

identified areas of exposed saline soils associated with the central and coastal discharge 

zones (Figure 2-7). The map was produced through image analysis of multitemporal 
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Landsat imagery with the success of the maps being partially attributed to the 

integration of watertable information from the PIRSA soil landscape units map. The 

Landsat-based salinity maps are compared to the HyMap samphire and saltpan maps in 

Figure 2-7b. The HyMap saltpan map has mapped similar extent of exposed soils in 

saline areas and has successfully excluded nonsaline exposed soils in fields, quarries 

and on sand dunes.  

The main difference between the Landsat based and HyMap salinity maps was the 

increased extent of highly saline areas mapped. HyMap image analysis successfully 

mapped salt affected areas with a good cover of samphire vegetation particularly along 

the eastern central lake fringe and along the southern coast.  A key advantage of HyMap 

image mapping was the use of single date imagery compared to Landsat-based 

mapping, which required multitemporal data combined with information from the 

PIRSA SLU attribute maps that were mainly based on extensive aerial photo 

interpretation and the expert knowledge of experienced field operators.   

7.4 Conclusion 

Saline classes from the PIRSA soil maps were compared to salinity maps produced 

from HyMap multiple airborne image swaths, Hyperion satellite imagery and CASI 

multiple swaths. Overall the trends in the zonal statistics plots were as anticipated for 

the three salinity symptoms. The hyperspectral samphire and saltpan maps, which are 

indicators of highly saline and extremely saline soils respectively, mainly coincided 

with SLUs assigned saline classes in the central discharge region and along the coastal 

areas. As expected, the samphire and saltpan areas are mainly associated with high 

(class F) to extreme (class G) saline areas. The CASI and Hyperion salinity maps are 

associated with more non-saline SLUs than the HyMap.  

As expected, zonal statistics showed that the highest proportion of sea barley grass was 

mapped in the moderately saline class. The least saline classes, A and B, contained the 

lowest proportion of land mapped as sea barley grass, although, the comparatively 

higher proportion of sea barley grass in the non-saline class suggests that a significant 

area of non-saline landcover was incorrectly mapped as sea barley grass.  
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Figure 7-8 a) Map of severely saline areas (red) based on Landsat ETM imagery (source 

(Thomas, 2001) previously presented in Chapter 2) b) compared to the HyMap saltpan 

and samphire maps (bottom).  

 

Compared to the NLWRA dryland salinity maps, the most obvious improvement in the 

HyMap maps is the ability to map samphire areas along the central and southern coasts 

that could not be mapped from aerial photograph interpretation.  The HyMap salinity 

mapping has the advantage over aerial photograph interpretation because the high-

resolution spectral information in the visible, NIR and SWIR regions, allows for 
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discriminating samphire vegetation, a common indicator of highly saline soil. However, 

the increase in spectral information has not provided an improved ability to map 

exposed saline soils, in the Point Sturt area. 

The combination of the HyMap samphire and saltpan maps has also provided an 

improvement to the problem of mapping saline areas with multispectral satellite 

imagery. HyMap image mapping has the significant advantage of using only single date 

imagery compared to Landsat-based mapping which required multitemporal data in 

combination with external PIRSA soils data that was derived from extensive aerial 

photo interpretation and the expert knowledge of experienced field operators. 

Overall, the advantage of the hyperspectral imagery is not only the higher spatial 

resolution but also higher spectral resolution which allows for mapping areas with a 

good cover of vegetation, in this case, highly saline areas covered with the salinity 

indicator species samphire. HyMap image analysis successfully mapped highly saline 

(samphire) and extremely saline (saltpans) soils within homogeneous soil units. Salinity 

maps produced from hyperspectral airborne imagery have the advantage of being fine 

resolution raster based maps that depict salinity as varying spatially within discrete 

boundary soil polygons of conventional mapping. The fine spatial resolution of these 

hyperspectral salinity maps provides a more realistic representation of the variability of 

high to extremely salt affected land at a farm scale. These maps are capable of 

enhancing currently available soil maps and allow salinity management programs to be 

more precisely targeted in the landscape. The HyMap samphire and saltpan maps would 

also provide suitable input data to the more recent digital soil mapping models that are 

using various forms of raster data to improve soil mapping.  
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8 DISCUSSION AND CONCLUSION 

Given the magnitude of the dryland salinity problem in Australia and the limitations of 

current remote sensing methods, this study aimed to determine whether hyperspectral 

image analysis has the capability to improve the mapping of surface symptoms of 

dryland salinity. Improved mapping would primarily mean the ability to map saline 

areas with a good cover of vegetation (Furby 1995; Howari, 2003) and to distinguish 

exposed saline soils from non-saline soils, without the need to integrate ancillary soil 

and terrain data.  

In particular, this study aimed to evaluate hyperspectral imagery with differing spectral 

and spatial resolutions for their ability to map surface symptoms of salinity. In the case 

of airborne hyperspectral sensors, HyMap and CASI, an important objective was to deal 

with the nontrivial problem of processing multiple image swaths, such that an efficient 

and consistent analysis procedure was developed for mapping symptoms of salinity 

across broad areas. Space-borne hyperspectral imagery has the potential to redress the 

spectral limitations of multispectral satellite imagery while having the satellite 

advantage of frequent repetition over larger study areas. In the case of the Hyperion 

imagery, a principal objective was to reduce noise levels to maximise salinity symptom 

mapping for comparison to airborne sensors.  

As a precursor to mapping salinity, this study initially aimed to identify salinity 

symptoms that were spatially and spectrally suited to mapping with hyperspectral 

imagery and to identify the optimal time of year to map each salinity symptom, 

especially saline areas supporting dense halophytic vegetation cover.  

8.1 Review of results 

8.1.1 Surface symptoms of dryland salinity selected for mapping with hyperspectral 

imagery 

Fieldwork identified salinity symptoms that were homogeneous over significant areas 

and were spatially suitable for mapping with remote sensing imagery. The symptoms 

that satisfied these spatial and spectral requirements were saltpans, samphire 

(Halosarcia pergranulata) and sea barley grass (Critesion marinum). Saltpans are 

indicators of extreme saline areas. Samphire is a common indicator of high to very high 
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salinity, whereas sea barley grass dominates moderate to moderately high levels of 

salinity.  

The field spectra of saltpan soils contained spectral features consistent with gypsum 

such as a broad absorption feature at 2200 nm, a single 1755 nm feature and a triple 

feature near 1500 nm. XRD analysis of the dried salt crusts from the central discharge 

area identified dominant halite and quartz with sub-dominant gypsum. The spectra of 

the coarse, thick, white salt crust, from the southern coastal pan, were characterised by a 

brighter and flatter visible/NIR region, and shallow absorption features at 2200 nm and 

1755 nm. The 1755 nm feature suggested the presence of gypsum at Site B but the 

shallow nature of both features indicated low gypsum content. XRD analysis confirmed 

the crystal crust to be halite. 

The individual spectra of green and red samphire were dominated by photosynthetic 

vegetation characteristics such as chlorophyll absorption, a red edge and NIR plateau 

containing deep water absorption features. Like those reported by Dehaan and Taylor 

(2002B), the spectra of green samphire, often seen with red tips, were found to contain 

peaks in both green and red wavebands and, not surprisingly, red samphire spectra 

contained a significant reflectance peak in the visible red wavelength region. Samphire 

spectra have additional features of note, including a sloping red edge shoulder and 

cellulose-lignin features at 2100 nm and 2300 nm, possibly due to woody tissue or 

saline adaptations such as waxy leaf coating and succulent leaves (Elvidge, 1990; Lewis 

et al., 2000).  

Samphire and extremely saline soils associated with saltpans were selected as the best 

salinity symptoms for mapping with hyperspectral imagery because of their spatial 

distribution and distinguishing spectral features.  

8.1.2 Optimum time of year for mapping 

Late in the dry season appeared to be the optimum time of year to exploit the spectral 

differences between saline soils and non-saline soils and between samphire and the 

background dry grasses that dominate the landscape. At this time of year, soil moisture 

is at a minimum, which means that spectral features pertaining to soil properties could 

be maximised (Lobell and Asner, 2002) for partial unmixing mapping. Even though the 

dry season was a suitable time of year to distinguish perennial halophytic vegetation, 
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there were fewer halophytic species available to map at this time because all annual 

vegetation had senesced and appeared indistinguishable on the ground.  

In moderately salt affected areas, sea barley grass was the dominant halophytic species. 

The optimum time of year to map sea barley grass was expected to occur between 

“spring flush” (September) or senescence (November) because during this period 

because annual grasses were readily identifiable from the mature seed heads and grew 

in extensive, dense, homogeneous zones. Results showed that there were no significant 

differences between the spectra of sea barley grass and brome grass during “spring 

flush”, however, during senescence, sea barley grass differed significantly from other 

annual species across broad visible, NIR and SWIR wavelength regions. The red edge 

reflectance did not appear to be significantly different between senescing species, which 

corroborates the results of Schmidt and Skidmore (2001) but contradicts the findings of 

Thenkabail et al. (2000 and 2004). Therefore, late November was identified as the 

optimum time to exploit spectral differences between the varying rates of senescence of 

sea barley grass and other annual species. 

8.1.3 Comparison of different hyperspectral imagery  

Senescing halophytic grasses and plant species adapted to saline environments, highly 

saline soils had distinguishing spectral features in the visible, NIR and SWIR 

wavelength regions. These vegetation symptoms of salinity grew in dense homogeneous 

patches, making them suitable for mapping with hyperspectral imagery. Imagery from 

three hyperspectral sensors of differing spectral and spatial resolutions were compared 

for their ability to map these salinity symptoms (Table 8-1). HyMap and Hyperion 

sensors incorporate the visible, NIR and SWIR wavelength regions and were most 

suited to mapping soil and vegetation symptoms of salinity. HyMap airborne imagery 

and Hyperion imagery was acquired during the dry season, which was suitable for 

mapping dryland salinity symptoms of samphire and saline soils.  

The CASI airborne sensor was an appropriate sensor for mapping sea barley grass, 

because the spectral range spanned the visible and NIR regions which are important for 

plant discrimination. In fact, discrimination analysis showed that throughout this 

wavelength region, field spectra of sea barley grass exhibited significant differences 

from non-halophytic grasses.  
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Table 8-1 Hyperspectral imagery was acquired from 3 different sensors: 2 airborne and 

one satellite instrument. The HyMap and Hyperion data was captured during the dry 

season and the CASI imagery was captured during spring senescence. 

Hyperspectral 

sensor  

(platform) 

Spatial 

resolution 

Spectral 

resolution 
Spectral range Date of capture 

Season 

description 

HyMap  

(airborne) 
3 m 10-20 nm 450 - 2500 nm 14 March 2001 End of dry season 

Hyperion 

(satellite) 
30 m 2 nm 450 - 2500 nm 18 February 2002 Mid dry season 

CASI 

(airborne) 
3 m 10-15 nm 450 960 nm 25 November 2003 

End of spring 

senescence 

 

8.1.4 Analysis of multiple image swaths 

To deal with analysis of multiple swaths of airborne image data, an efficient and 

consistent processing procedure was sought for mapping salinity symptoms. 

Commercially available image processing techniques were employed such if these 

methods proved successful, catchment managers could readily apply hyperspectral 

imagery to baseline salinity mapping and monitoring. 

Multiple-swath calibration of HyMap and CASI data was effectively dealt with through 

MODTRAN based atmospheric correction (ACORN and FLAASH) and fine-tuning 

georegistration to GPS locations. In HyMap data, systematic variations in across track 

illumination were corrected using standard polynomial correction function. For CASI 

pre-georegistered swaths, variations in across track brightness were accounted for by 

removing strongly affected MNF bands. 

Partial unmixing tests found matched filtering to be the optimal partial unmixing 

method because it not only produced accurate maps but also minimised processing of 

multiple swaths. A single image-derived endmember could be used as reference 

spectrum for mapping extremely saline soils across five image swaths. Those saline 

soils containing gypsum were most effectively mapped with a reduced dataset spanning 

the 1750 nm absorption feature. Non-saline soils such as quarries, unsurfaced roads and 

sand dunes were successfully excluded. However, matched filtering was not suitable for 

vegetation mapping.  

MTMF exploited the spectral properties of samphire successfully by mapping ground 

validated samphire patches whilst excluding perennial dryland lucerne pasture and 
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native mallee. The most successful maps were produced using the entire spectral range 

(450-2500 nm), suggesting the importance of the SWIR region for mapping halophytic 

chenopods with scleromorphic characteristics. However, unlike MF mapping, MTMF is 

unable to utilise one reference spectrum to map multiple strips, and therefore each strip 

required an intrinsic spectrum to map samphire.  

Endmembers pertaining to halophytic vegetation were not readily extracted from each 

image swath through the well-known pure pixel extraction procedure (Kruse, 1999). 

The ability to extract a variety of vegetation endmembers is limited because of the 

similarity between the spectra of different halophytic species and different senescing 

vegetation. Spectral discrimination analysis suggests that spectral differences between 

plants are based on relative differences in reflectance across broad spectral bands rather 

than well-defined diagnostic absorption features (Lewis, 2001). A more reliable method 

for deriving vegetation reference spectra requires locating dense homogenous or “pure” 

patches of the target vegetation. This is a relevant strategy for halophytic vegetation 

because these species exhibit zonation based on their preferred soil conditions and 

topographic features (Barrett-Lennard, 2003). 

Samphire and extremely saline soils associated with saltpans were successfully mapped 

across multiple image swaths from a single date airborne survey with no ancillary data. 

Both soil and vegetation salinity symptom maps were produced using readily available 

software and standard hyperspectral processing methods. Analysis of the CASI imagery 

followed the processing flow devised for mapping salinity symptoms with HyMap 

imagery. One major modification to the HyMap flow was the replacement of ACORN 

with FLAASH atmospheric correction because ACORN could not use the 820 nm 

feature for calculating water vapour corrections. The other main difference was the 

choice of mixture tuned matched filtering over matched filtering for mapping soils with 

CASI data. MF was unable to distinguish saline soils from non-saline soils when 

mapping across multiple image strips with a single image endmember.  

The mosaicked CASI maps contained stronger evidence of discontinuities across swath 

boundaries than HyMap. The between strip differences may be due to residual 

variations in brightness across each CASI image swath. 
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8.1.5 Mapping salinity with Hyperion satellite imagery 

The high spectral resolution of Hyperion imagery is comparable to HyMap and the 30 

m ground resolution of the sensor is equivalent to Landsat. The advantage of a Hyperion 

scene is that although the along-swath coverage that is equivalent to other satellite 

imagery, the 7.5 km swath-width is over 5 times the width of a single airborne swath 

(with ground resolution of 3 m). However, the Hyperion scanner is only an 

experimental instrument and as such it has image quality problems associated with poor 

signal to noise ratio. Endmembers derived from the Hyperion image contained 

significant noise particularly in the far NIR region and lacked diagnostic absorption 

features in the SWIR. The spectral region around 2000 nm was excluded from mapping 

because ACORN was unable to adequately correct for atmospheric CO2 absorption 

features. To maximise samphire and saltpan mapping, the superior MTMF partial 

unmixing was used with a MNF transformed ROI-generated reference spectrum.  

8.1.6 Mapping accuracies  

HyMap image analysis produced the most accurate samphire and saltpan maps 

compared to CASI and Hyperion imagery (Table 8-2). In HyMap saltpans and samphire 

maps, KHAT values of approximately 0.6 showed that there was a moderate agreement 

between the image maps and the field observations (Table 8-2). One of the major 

sources of error in mapping saltpans with HyMap imagery were errors of commission 

from native perennial vegetation, whose spectra contain absorption features associated 

with non-green plant components throughout the SWIR region (Elvidge, 1990). The 

absence of an objective, automated procedure for threshold value selection means that 

threshold optimisation requires sufficient groundbased knowledge of a detailed area 

within each image strip.   

Hyperion saltpans and samphire maps produced KHAT values of 0.50 and 0.38 

respectively (Table 8-2). The low mapping accuracy of the saltpans maps may be due to 

the high level of Hyperion data noise and therefore the lack of diagnostic soil mineral 

absorption features in the SWIR. The low mapping accuracy of the samphire maps may 

also be affected by data noise. Samphire mapping may also need the entire SWIR 

wavelength region because this region contains important spectral properties related to 

halophytic adaptations (Elvidge, 1990; Lewis, 2002). The coarser spatial resolution is 

also a contributing factor to the lower accuracy because coarser resolution reduces the 
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number of pure pixels. For small saltpans and patches of samphire (less than a few 

pixels wide) every pixel is a mixed boundary pixel.  

In CASI mapping, the saltpan maps showed a higher agreement with the field data than 

the samphire maps. Saltpans maps produced a KHAT value of 0.51, a comparable 

accuracy to HyMap maps, whereas samphire maps only managed a KHAT value of 0.48 

(Table 8-2). The higher saltpan accuracy is an unexpected result because CASI 

wavelengths incorporates the visible and near infrared wavelength regions that do not 

contain well-defined absorption features pertaining to soil mineralogy. The ability of 

CASI image analysis to map extremely saline soils effectively could instead be due to 

high albedo or the shape of the NIR shoulder (Dehaan and Taylor, 2002A and 2002B).  

When compared with previous soil landscape unit salinity mapping (PIRSA, 2001A), 

the CASI derived saltpan, samphire and sea barley grass maps showed distributions as 

expected.  The lowest proportion of saltpans was mapped in the non-saline Class A 

compared to samphire and sea barley grass, which also reflects the higher saltpan 

mapping accuracy.  The highest proportion of sea barley grass was mapped in Class C 

and Class D, which are characterised by moderate levels of salinity. A high proportion 

of sea barley grass in the non-saline class A could indicate that a significant area of non-

saline landcover was incorrectly mapped as sea barley grass. The main error in the 

CASI sea barley grass maps may be due to the similarity in spectra between senescing 

sea barley grass and non-halophytic senescing vegetation in non-saline areas such as 

hillsides. The allocation of sea barley grass pixels into known non-saline SLUs may 

also point to the need for the SWIR to improve discrimination of species in different 

stages of senescence. The importance of the SWIR region was also highlighted in the 

results of spectral discrimination analysis (Chapter 3), which found significant spectral 

differences occur across broad spectral regions in the visible, NIR and SWIR 

simultaneously.  

The main source of errors in the CASI samphire maps was large number of field sites 

with samphire cover that were left unmapped. These sites were generally mixed sites, 

containing a combination of samphire and soil. This result suggests that significant 

differences in the VISNIR region alone do not contain enough spectral information to 

distinguish samphire from other vegetation. The allocation of sea barley grass pixels 

into known non-saline SLUs may also point to the need for the SWIR to improve 

discrimination of species in different stages of senescence.  
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Table 8-2 Summary of salinity symptoms mapped with HyMap, CASI and Hyperion 

imagery.  Salinity levels are based on PIRSA classifications. 

Hyperspectral 

sensor  

(platform) 

Salinity 

symptom 

Time of  

year 

Important spectral 

characteristics for partial 

unmixing mapping 

Accuracy 

(KHAT) 
Salinity level 

Extremely saline 

soils 
Dry season 

VIS features due to soil colour 

& SWIR features due to saline 

soil minerals 

0.58 Extreme 

HyMap  

(airborne) 

Samphire Dry season 

VISNIR features due to plant 

pigments, leaf structure & 

SWIR features due to woody 

tissue and saline adaptations 

0.61 
High to very 

high 

Extremely saline 

soils 
Dry season 

VIS features due to soil colour 

& SWIR features due to saline 

soil minerals 

0.50 Extreme 

Hyperion 

(satellite) 

Samphire Dry season 

VISNIR features due to plant 

pigments, leaf structure & 

SWIR features due to woody 

tissue and saline adaptations 

0.38 
High to very 

high 

0.51 
Extremely saline 

soils 
Dry season 

VIS features due to soil colour 

& NIR shoulder due to salinity 

status  
Zonal 

statistics 

Extreme 

0.48 

Samphire Dry season 

VIS features due to plant 

pigments & NIR slope due to 

leaf structure 
Zonal 

statistics 

High to very 

high 

CASI 

(airborne) 

Sea barley grass Senescence 
VIS and NIR features due to 

senescence  

Zonal 

statistics 
Moderate 

 

The highest KHAT values and therefore highest mapping accuracies were achieved with 

HyMap imagery. To assess whether the differences in mapping accuracies between 

sensors were statistically significant, the KHAT values and variances were used to 

calculate standard pairwise Z-statistics (Congalton, 1998). Six pairwise Z-statistics were 

calculated, HyMap-Hyperion, HyMap-CASI and Hyperion-CASI for each salinity 

symptom. For pairwise comparisons, Z-statistic values of less than 1.96 indicate that the 

error matrices are not significantly different. The Z-statistics value were less than 1.96 

for all of the pairwise comparisons, indicating that the samphire and saltpan 

distributions maped by MyMap, Hyperion and CASI were effectively equivalent (Table 

8-3). However at this time, HyMap has the greatest potential for mapping a wider 
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variety of salinity symptoms because of the combination of good SNR and 

comprehensive wavelength range that incorporates the visible, NIR and SWIR regions. 

Table 8-3 Pairwise Z-statistic comparison of HyMap, CASI and Hyperion imagery.   

Pairwise comparison 
Z-statistic   

(samphire maps) 

Z-statistic   

(saltpan maps) 

HyMap-Hyperion 0.79 1.54 

HyMap-CASI 0.98 0.56 

Hyperion-CASI 0.18 1.00 

 

8.1.7 Optimum processing procedure for vegetation and soil symptoms of salinity 

On the basis of the findings of this research, the optimal sensors for mapping both soil 

and vegetation salinity symptoms are airborne sensors with high spatial and spectral 

resolutions that incorporate the 450 to 1450 nm wavelength range. For vegetation 

mapping, the optimal image processing flow (Figure 8-1a) utilised reference spectra 

extracted from known ‘pure’ areas on the ground. The soil mapping flow (Figure 8-1b) 

optimised processing efficiency by using a single reference spectrum and matched 

filtering to reduce the amount of multiple swath processing.  
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Figure 8-1 Comparing the optimum processing flow for mapping vegetation (a) and soil 

(b) symptoms of dryland salinity.  

8.2 Limitations 

The poor performance of vegetation mapping with CASI and Hyperion data may be 

attributed to the need to include SWIR regions as identified in the spectral 

discrimination analysis and HyMap samphire mapping. For CASI imagery, another 

contributing factor was the limited wavelength range available for atmospheric 

corrections that resulted in over corrected data in the 940 nm region. When 

commissioning the CASI surveys, the optimum wavelength range should encompass 

both sides of the 940 nm water absorption feature from 870-1000 nm. An improved 

wavelength range may result in less noise and no over-correction of image spectra in 
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this region. For Hyperion data, the most significant contributing factor to poor mapping 

performance was the noise inherent in the data.  

The most accurate maps were produced for symptoms of higher levels of salinity, 

although, there is potential for mapping areas that exhibit lower salinity levels where 

halophytic grasses dominate. However in these more marginal saline areas, the mapping 

of halophytic grasses appeared less accurate, which may be because discrimination and 

mapping was based on subtle spectral differences related to phenological changes. In 

addition, grazing by livestock limited the ability to discriminate salt-tolerant pasture 

grasses at certain time of the year, a factor that may hinder hyperspectral mapping in 

other grazing regions.  

8.3 Significance of findings  

This study assessed different forms of hyperspectral data and image analysis techniques 

for mapping salinity in a dryland agricultural region in South Australia. The Point Sturt 

area contained soil and vegetation symptoms of different levels of salinity that were 

spectrally and spatially appropriate for mapping with hyperspectral imagery. Sea barley 

grass (Critesion marinum), samphire (Halosarcia pergranulata) and saltpans were 

indicators of moderate, high and extreme levels of salinity respectively. 

8.3.1 Optimal time of year for mapping salinity 

An important aspect of this research was identification of the optimal time of year to 

map salinity symptoms through field observations and spectral discrimination of field 

and laboratory spectra. The dry season is the optimal time of year to map saltpans and 

perennial vegetation, including perennial halophytes such as samphire, because a 

contrasting background of dry annual grasses surrounds these symptoms. At this time, 

samphire spectra maintain distinguishing spectral properties related to photosynthetic 

characteristics and arid adaptations. At this time of year, extremely saline soils can also 

be mapped by extracting spectral features unencumbered by the adverse effects of soil 

moisture (Lobell and Asner, 2002). Isolating spectral features pertaining to saline 

mineralogy allows for the discrimination of exposed saline soils from non-saline 

exposed soils.  

A key finding was determination of optimum time of year to map sea barley grass, an 

important vegetation indicator of emerging salinity and established moderately saline 

land. At Point Sturt, sea barley grass appeared greener than other grasses toward the end 
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of senescence because it occupies the low-lying, wetter soils. Therefore, late senescence 

is the optimum growth stage to exploit spectral differences between the varying rates of 

senescence between sea barley grass and other annual species because sea barley grass 

differed significantly from other annual species across broad wavelength ranges in the 

visible, NIR and SWIR.  

8.3.2 Image analysis and multiple swath mapping  

Both soil and vegetation salinity symptom maps were mapped across multiple airborne 

image swaths using readily available software. Standard hyperspectral processing 

methods for HyMap included MODTRAN based atmospheric correction, polynomial 

correction of across track illumination effects and fine-tuning georegistration to GPS 

locations. For CASI pre-georegistered swaths, variations in across track brightness were 

accounted for by removing strongly affected MNF bands although this method proved 

less successful. A standard processing flow was devised for each type of hyperspectral 

data.  

8.3.3 Comparison of different sensors  

HyMap image analysis produced the most accurate samphire and saltpan maps (highest 

KHAT values) compared to CASI and Hyperion imagery. Although Z-statistics showed 

that HyMap, Hyperion and CASI imagery produce equivalent samphire and saltpan 

maps, at this time, HyMap has the greatest potential for mapping a wider variety of 

salinity symptoms because of the combination of low noise and comprehensive 

wavelength range that incorporates the VISNIR and SWIR regions. CASI data is 

restricted to the VISNIR and Hyperion data has poor SNR beyond 1000 nm and into the 

SWIR. In fact, few SWIR features were evident in the Hyperion data, even after 

preprocessing to reduce noise. The Hyperion saltpan maps had the lowest KHAT value  

of less than 0.4 which indicates a poor agreement to field data. CASI and Hyperion 

saltpan maps also showed a moderate agreement with field data but poorer accuracies 

for samphire maps. These results suggest that samphire mapping requires all three 

visible, NIR and SWIR wavelength regions because the SWIR region contains 

important spectral properties related to halophytic adaptations (Elvidge, 1990; Lewis, 

2002).  

The same conclusion may also be inferred from the results of mapping sea barley grass 

with CASI imagery. Zonal statistics indicated that CASI image analysis mainly mapped 
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senescing sea barley grass in soil landscape units assigned moderate to high levels of 

salinity, although, a comparatively higher proportion of sea barley grass was mapped in 

the non-saline classes. The presence of these three waveband regions allows for 

discrimination of not only saline soils but also saline land with a good cover of 

samphire vegetation. In the case of the Hyperion imagery, the coarse spatial resolution 

is a contributing factor to the lower mapping accuracies.  

8.3.4 Mapping saline areas with vegetation cover 

Mapping saline areas with a good cover of saline vegetation has been problematic for 

multispectral imagery because of the inability to discriminate salt-tolerant vegetation 

from other vegetation (Furby 1995; Howari, 2003). HyMap successfully mapped highly 

saline areas supporting dense samphire vegetation at Point Sturt because of the image’s 

high spatial and spectral resolution, without the use of multitemporal imagery or 

ancillary data such as topography or PIRSA soil attribute maps (Clarke, 2000; Thomas, 

2001). The difficulty of mapping areas with vegetation cover is also evident in the 

visual comparison within GIS software of the HyMap salinity symptom maps to the 

NLWRA Salinity 2000 maps. The aerial photography and Landsat based salinity maps 

were unable to delineate extensive areas with samphire cover.   

The CASI sea barley grass maps provided a less conclusive result regarding mapping 

moderately affected saline areas, although, the optimal time to map sea barley grass was 

found to be late November, when annual plant senesce. Results of this research suggest 

that mapping sea barley grass can be improved by using hyperspectral imagery that 

incorporates the visible, NIR and most importantly, the SWIR.  

8.3.5 Improvements on conventional salinity mapping   

The HyMap exposed saline soils maps were comparable to the NLWRA polygon based 

Salinity 2000 map and the Landsat based severely saline areas. However, this study has 

illustrated the advantage of the hyperspectral image analysis over these traditional soil 

maps. The HyMap salinity maps not only improved mapping of saline areas covered 

with samphire but also provided salinity maps that varied spatially within the Salinity 

2000 and the PIRSA soil landscape unit polygons. Like multispectral satellite imagery, 

hyperspectral imagery maps have the advantage of using raster format and are therefore 

able to depict spatial variations in salinity on a pixel-by-pixel basis rather than as a 

homogenous mapping unit that changes in attributes across a discrete boundary. The 3 
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m ground resolution of the airborne hyperspectral data also has the advantage of 

providing salinity maps suitable for use at a farm or paddock scale. Therefore, 

hyperspectral maps provides a more detailed, realistic record of the occurrence of highly 

salt affected land.  

8.4 Implications of hyperspectral salinity mapping 

Hyperspectral imagery has the spectral and spatial resolution capable of mapping a 

wider range of salinity symptoms including soils with saline mineralogy other than 

gypsum, crop stress and different species of halophytic vegetation. Further studies need 

to evaluate hyperspectral imagery for mapping a wider range of salinity symptoms over 

different salt affected landscapes. However, the most vital extension to this research 

would be evaluation of hyperspectral imagery spanning the 450-2500 nm wavelength 

range for mapping later senescing halophytic grasses. Even with imagery containing 

this expanded spectral range, the timing of image acquisition would still be important 

for optimising discrimination, in terms of maximising differences in rates of senescence. 

The ability to map sea barley grass would provide improved mapping of emerging 

salinity and moderately salt affected areas. Future research could also involve data 

integration to improve the accuracy of salinity maps, in particular integration with high-

resolution terrain models to limit salinity mapping to depressions and lowlying areas.  

This study has demonstrated that readily available software and image analysis 

techniques are capable of mapping indicators of varying levels of salinity. With the 

ability to map symptoms across multiple image strips, hyperspectral imagery has the 

potential for mapping larger areas covering sizeable dryland agriculture catchments, 

closer in extent to single satellite images. For farm scale mapping, hyperspectral 

airborne imagery is superior to aerial photography and multispectral satellite imagery 

for mapping the spatial variability of salinity within soil units, particularly in previously 

difficult to map areas with a high cover of vegetation. With the ability to produce maps 

across multiple airborne swaths, unmixing of high spatial and high spectral resolution 

imagery has a significant advantage of fine scale mapping over smaller catchments. 

Catchment managers could employ image analyst experts to directly apply 

hyperspectral imagery to baseline salinity mapping and monitoring.  

Hyperspectral salinity maps are capable of enhancing currently available soil maps. The 

samphire and saltpan maps would provide suitable raster based input data to the more 
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recent digital soil mapping approaches that are using raster data to improve soil 

mapping. The ability to map the spatial variability of salinity, in particular emerging 

saline areas and moderately affected areas with a good cover of vegetation would 

provide valuable data for digital soil modellers attempting to improve the resolution of 

soil mapping units. 

Even though airborne hyperspectral imagery and available processing methods are 

sufficient for broader scale salinity mapping, uptake of airborne technology may 

continue to be hindered by two factors identified by Spies and Woodgate (2004) 

including the perceived high cost of airborne image acquisition and the requirement for 

specialist in image interpretation. Indeed, uptake of hyperspectral salinity mapping is 

constrained by the need for 1) groundbased knowledge regarding potentially mappable 

salinity symptoms 2) expert knowledge of spectral properties of soil and plants to 

determine the scope for spectral mapping 3) high level hyperspectral image processing 

skills and 4) the cost of airborne surveys. Perhaps at this time, catchment managers may 

be most likely to commission airborne hyperspectral salinity mapping for targeted high 

value agricultural areas.  

With the advent of hyperspectral satellite-borne sensors, hyperspectral salinity mapping 

may provide an improved cost effective method for mapping and monitoring dryland 

salinity at regional or catchment scales. Because satellite imagery covers larger areas 

and has the advantage of regularly passing over the same area, hyperspectral satellites 

are best suited to monitoring salinity over medium sized catchments. If future high 

spectral resolution satellites have significantly improved SNR performance over 

Hyperion, then the salinity mapping has enormous potential. The European based 

EnMAP satellite equipped with the Hyper-spectral Imaging (HSI) system is currently 

proposed for launch in 2009 and 2012 (Stuffler et al, 2004). Future hyperspectral 

satellite scanners would be suited to partial unmixing and mapping of important salinity 

symptoms with distinguishing features in the SWIR, such as soils and vegetation with 

scleromorphic characteristics and symptoms that cover homogenous zones 

encompassing several image ground resolution elements. Hyperspectral satellite sensors 

would therefore be ideal imagery broad-scale salinity mapping and monitoring.  
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APPENDIX 1 

“Bad Bands” removed before processing HyMap and Hyperion data 

HyMap  Hyperion   2506.510 

446.6  356.370  2516.610 

1404.3  366.540  2526.710 

1418.7  376.710  2536.810 

1432.6  386.880  2546.910 

1803  397.050  2557.010 

1950.4  407.210  2567.000 

2470.39  417.380  2577.100 

2485.8  427.550  2577.100 

  437.720 

  936.020 

  946.190 

  956.360 

  966.530 

  976.700 

  986.870 

  997.040 

  1007.200 

  1017.370 

  1027.540 

  1037.710 

  1047.880 

  1058.050 

  852.000 

  862.090 

  872.180 

  882.270 

  892.350 

  902.440 

  912.530 

  922.620 

  2365.240 

  2375.340 

  2385.430 

  2395.530 

  2405.630 

  2415.730 

  2425.830 

  2435.930 

  2446.020 

  2456.120 

  2466.120 

  2476.220 

  2486.320 

  2496.420 
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APPENDIX 2 

 Atmospheric correction parameters 

ACORN input parameters for one HyMap swath 

Image format 

1 

 Integer format 

0 

 Bands, Samples, Lines, Offset 

         126         512        5306           0 

 latitude 

-35.51082 

 longitude 

138.9455 

 Day, Month, Year 

          14           3        2002 

 Day of year 

73 

 Hour, minute, second 

   6.000000       12.00000       3.000000     

 Decimal hour 

6.200833 

 Elevation 

1.86E-03 

 Altitude 

1.418 

 Model 

1 

 Derive water vapor 

3 

 Include path in water fit 

0 

 Visibility 

100 

 Estimate visibility 

1 

 Artifact suppression 

           1           1           0 
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ACORN gain and offset values  

Wavelength FWHM Offset Gain 

446.6 11.6 0 0.01 

455.5 15.5 0 0.01 

469.8 18.6 0 0.01 

485.8 17.5 0 0.01 

500.3 17.2 0 0.01 

515.4 17.7 0 0.01 

531.3 17.4 0 0.01 

546.8 17.5 0 0.01 

561.9 16.7 0 0.01 

576.9 17 0 0.01 

592.1 16.6 0 0.01 

607.5 17.5 0 0.01 

623.2 16.8 0 0.01 

638.4 16.7 0 0.01 

653.4 16.2 0 0.01 

668.4 16.4 0 0.01 

683.6 16.8 0 0.01 

699.1 16.7 0 0.01 

714.3 16.3 0 0.01 

729.3 16.1 0 0.01 

744.4 16.6 0 0.01 

759.6 16.5 0 0.01 

774.6 16.1 0 0.01 

789.5 16.3 0 0.01 

804.8 16.6 0 0.01 

820.1 16.5 0 0.01 

835.2 16.7 0 0.01 

850.4 17.1 0 0.01 

865.6 17.1 0 0.01 

880.7 17 0 0.01 

875.5 16.2 0 0.01 

891.8 18.1 0 0.01 

908.2 17.6 0 0.01 

924.5 17.4 0 0.01 

940.4 16.8 0 0.01 

956.3 17.3 0 0.01 

972.1 17 0 0.01 

987.8 16.9 0 0.01 

1003.6 16.6 0 0.01 

1019.2 17 0 0.01 

1034.9 16.6 0 0.01 

1050.3 16.3 0 0.01 

1065.6 16.4 0 0.01 

1080.8 16.3 0 0.01 

1095.9 16 0 0.01 

1110.8 15.7 0 0.01 

1125.9 16.4 0 0.01 

1140.7 15.6 0 0.01 

1155.3 15.6 0 0.01 

1169.9 16 0 0.01 
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1184.7 16.3 0 0.01 

1199.2 15.9 0 0.01 

1213.4 15.6 0 0.01 

1227.8 15.9 0 0.01 

1242.2 16 0 0.01 

1256.6 16 0 0.01 

1270.6 15.5 0 0.01 

1284.7 15.9 0 0.01 

1298.8 15.9 0 0.01 

1312.8 16 0 0.01 

1326.9 15.8 0 0.01 

1340.4 15.4 0 0.01 

1404.3 15.9 0 0.0025 

1418.7 16 0 0.0025 

1432.6 16.4 0 0.0025 

1446.7 16 0 0.0025 

1460.6 16.1 0 0.0025 

1474.6 15.9 0 0.0025 

1488.4 16.1 0 0.0025 

1502 16.2 0 0.0025 

1515.4 15.9 0 0.0025 

1528.7 16.1 0 0.0025 

1542.3 16.6 0 0.0025 

1555.6 16.5 0 0.0025 

1568.7 16.2 0 0.0025 

1581.6 16.2 0 0.0025 

1594.5 16.7 0 0.0025 

1607.5 16.3 0 0.0025 

1620.3 16.2 0 0.0025 

1633 16.5 0 0.0025 

1645.7 16.5 0 0.0025 

1658.2 16.3 0 0.0025 

1670.6 16.1 0 0.0025 

1682.9 16.3 0 0.0025 

1695.3 16.3 0 0.0025 

1707.7 16.1 0 0.0025 

1719.7 16 0 0.0025 

1731.8 16.3 0 0.0025 

1743.9 16.2 0 0.0025 

1755.9 15.9 0 0.0025 

1767.8 15.6 0 0.0025 

1779.5 16.1 0 0.0025 

1791.3 15.8 0 0.0025 

1803 15.2 0 0.0025 

1950.4 20.2 0 0.0025 

1969.4 21.2 0 0.0025 

1988.6 21.2 0 0.0025 

2007.5 21.3 0 0.0025 

2026.5 21.6 0 0.0025 

2045.5 21.9 0 0.0025 

2064.4 21.5 0 0.0025 

2082.8 21.1 0 0.0025 
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2101 20.7 0 0.0025 

2118.9 21.2 0 0.0025 

2136.8 21.9 0 0.0025 

2155 21.9 0 0.0025 

2172.7 21.4 0 0.0025 

2189.6 20.9 0 0.0025 

2207.2 23.1 0 0.0025 

2225.5 21 0 0.0025 

2242.4 21.9 0 0.0025 

2260.1 22.5 0 0.0025 

2277.3 21.5 0 0.0025 

2294.1 21.9 0 0.0025 

2310.7 21.8 0 0.0025 

2327 21.8 0 0.0025 

2343.4 22.6 0 0.0025 

2360.2 22.6 0 0.0025 

2376.2 22.3 0 0.0025 

2392.4 21.8 0 0.0025 

2408 22 0 0.0025 

2423.9 21.5 0 0.0025 

2439.3 21.6 0 0.0025 

2455.2 22.4 0 0.0025 

2470.4 22.7 0 0.0025 

2485.8 22.4 0 0.0025 
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Hyperion input parameters for ACORN 

Image format 

1 

 Integer format 

0 

 Bands, Samples, Lines, Offset 

         189         255        2532           0 

 latitude 

-35.46667 

 longitude 

138.95 

 Day, Month, Year 

          18           2        2002 

 Day of year 

49 

 Hour, minute, second 

  0.0000000E+00   2.000000       38.00000    

 Decimal hour 

4.39E-02 

 Elevation 

0.1 

 Altitude 

705 

 Model 

1 

 Derive water vapor 

2 

 Include path in water fit 

1 

 Visibility 

100 

 Estimate visibility 

1 

 Artifact suppression 

           1           1           1 
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Hyperion gain and offset values for ACORN 

Wavelength FWHM Offset Gain 

458.06 11.35 0 0.025 

468.23 11.35 0 0.025 

478.4 11.35 0 0.025 

488.57 11.34 0 0.025 

498.74 11.32 0 0.025 

508.91 11.28 0 0.025 

519.08 11.22 0 0.025 

529.25 11.16 0 0.025 

539.42 11.08 0 0.025 

549.59 10.99 0 0.025 

559.75 10.9 0 0.025 

569.92 10.81 0 0.025 

580.09 10.71 0 0.025 

590.26 10.62 0 0.025 

600.43 10.53 0 0.025 

610.6 10.46 0 0.025 

620.77 10.39 0 0.025 

630.94 10.33 0 0.025 

641.11 10.29 0 0.025 

651.28 10.27 0 0.025 

661.45 10.26 0 0.025 

671.62 10.27 0 0.025 

681.79 10.31 0 0.025 

691.96 10.37 0 0.025 

702.12 10.44 0 0.025 

712.29 10.51 0 0.025 

722.46 10.58 0 0.025 

732.63 10.64 0 0.025 

742.8 10.67 0 0.025 

752.97 10.69 0 0.025 

763.14 10.71 0 0.025 

773.31 10.77 0 0.025 

783.48 10.86 0 0.025 

793.65 10.97 0 0.025 

803.82 11.08 0 0.025 

813.99 11.18 0 0.025 

824.16 11.24 0 0.025 

834.33 11.26 0 0.025 

844.5 11.26 0 0.025 

854.66 11.27 0 0.025 

864.83 11.27 0 0.025 

875 11.28 0 0.025 

885.17 11.29 0 0.025 

895.34 11.3 0 0.025 

905.51 11.31 0 0.025 

915.68 11.31 0 0.025 

925.85 11.31 0 0.025 

932.72 11.17 0 0.0125 

942.81 11.17 0 0.0125 

952.89 11.17 0 0.0125 
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962.98 11.17 0 0.0125 

973.07 11.17 0 0.0125 

983.16 11.17 0 0.0125 

993.25 11.17 0 0.0125 

1003.37 11.17 0 0.0125 

1013.37 11.17 0 0.0125 

1023.47 11.17 0 0.0125 

1033.57 11.17 0 0.0125 

1043.67 11.17 0 0.0125 

1053.77 11.16 0 0.0125 

1063.86 11.15 0 0.0125 

1073.96 11.14 0 0.0125 

1084.06 11.13 0 0.0125 

1094.16 11.12 0 0.0125 

1104.26 11.1 0 0.0125 

1114.26 11.09 0 0.0125 

1124.35 11.07 0 0.0125 

1134.45 11.05 0 0.0125 

1144.55 11.03 0 0.0125 

1154.65 11.02 0 0.0125 

1164.75 11 0 0.0125 

1174.84 10.98 0 0.0125 

1184.94 10.96 0 0.0125 

1195.04 10.94 0 0.0125 

1205.14 10.93 0 0.0125 

1215.24 10.91 0 0.0125 

1225.24 10.89 0 0.0125 

1235.33 10.88 0 0.0125 

1245.43 10.87 0 0.0125 

1255.53 10.86 0 0.0125 

1265.63 10.85 0 0.0125 

1275.73 10.84 0 0.0125 

1285.83 10.83 0 0.0125 

1295.92 10.83 0 0.0125 

1306.02 10.82 0 0.0125 

1316.12 10.82 0 0.0125 

1326.12 10.82 0 0.0125 

1336.22 10.83 0 0.0125 

1346.32 10.84 0 0.0125 

1356.41 10.85 0 0.0125 

1366.51 10.86 0 0.0125 

1376.61 10.88 0 0.0125 

1386.71 10.9 0 0.0125 

1396.81 10.92 0 0.0125 

1406.9 10.95 0 0.0125 

1417 10.98 0 0.0125 

1427 11.01 0 0.0125 

1437.1 11.04 0 0.0125 

1447.2 11.07 0 0.0125 

1457.3 11.11 0 0.0125 

1467.39 11.14 0 0.0125 

1477.49 11.18 0 0.0125 
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1487.59 11.22 0 0.0125 

1497.69 11.26 0 0.0125 

1507.79 11.3 0 0.0125 

1517.89 11.34 0 0.0125 

1527.98 11.38 0 0.0125 

1537.98 11.42 0 0.0125 

1548.08 11.46 0 0.0125 

1558.18 11.5 0 0.0125 

1568.28 11.54 0 0.0125 

1578.37 11.57 0 0.0125 

1588.47 11.61 0 0.0125 

1598.57 11.64 0 0.0125 

1608.67 11.67 0 0.0125 

1618.77 11.7 0 0.0125 

1628.87 11.72 0 0.0125 

1638.86 11.75 0 0.0125 

1648.96 11.77 0 0.0125 

1659.06 11.78 0 0.0125 

1669.16 11.8 0 0.0125 

1679.26 11.81 0 0.0125 

1689.36 11.82 0 0.0125 

1699.45 11.82 0 0.0125 

1709.55 11.82 0 0.0125 

1719.65 11.82 0 0.0125 

1729.75 11.81 0 0.0125 

1739.75 11.8 0 0.0125 

1749.85 11.78 0 0.0125 

1759.94 11.76 0 0.0125 

1770.04 11.74 0 0.0125 

1780.14 11.71 0 0.0125 

1790.24 11.68 0 0.0125 

1800.34 11.64 0 0.0125 

1810.43 11.6 0 0.0125 

1820.53 11.56 0 0.0125 

1830.63 11.51 0 0.0125 

1840.63 11.47 0 0.0125 

1850.73 11.42 0 0.0125 

1860.83 11.37 0 0.0125 

1870.92 11.33 0 0.0125 

1881.02 11.28 0 0.0125 

1891.12 11.24 0 0.0125 

1901.22 11.19 0 0.0125 

1911.32 11.15 0 0.0125 

1921.42 11.11 0 0.0125 

1931.51 11.07 0 0.0125 

1941.61 11.04 0 0.0125 

1951.61 11.01 0 0.0125 

1961.71 10.99 0 0.0125 

1971.81 10.96 0 0.0125 

1981.9 10.95 0 0.0125 

1992 10.93 0 0.0125 

2002.1 10.93 0 0.0125 
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2012.2 10.92 0 0.0125 

2022.3 10.92 0 0.0125 

2032.4 10.92 0 0.0125 

2042.49 10.91 0 0.0125 

2052.49 10.9 0 0.0125 

2062.59 10.89 0 0.0125 

2072.69 10.88 0 0.0125 

2082.79 10.86 0 0.0125 

2092.89 10.84 0 0.0125 

2102.98 10.82 0 0.0125 

2113.08 10.8 0 0.0125 

2123.18 10.78 0 0.0125 

2133.28 10.75 0 0.0125 

2143.38 10.73 0 0.0125 

2153.38 10.7 0 0.0125 

2163.47 10.67 0 0.0125 

2173.57 10.65 0 0.0125 

2183.67 10.62 0 0.0125 

2193.77 10.6 0 0.0125 

2203.87 10.57 0 0.0125 

2213.96 10.55 0 0.0125 

2224.06 10.52 0 0.0125 

2234.16 10.5 0 0.0125 

2244.26 10.49 0 0.0125 

2254.26 10.47 0 0.0125 

2264.36 10.45 0 0.0125 

2274.45 10.44 0 0.0125 

2284.55 10.43 0 0.0125 

2294.65 10.43 0 0.0125 

2304.75 10.42 0 0.0125 

2314.85 10.42 0 0.0125 

2324.95 10.42 0 0.0125 

2335.04 10.42 0 0.0125 

2345.14 10.42 0 0.0125 

2355.24 10.42 0 0.0125 
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FLAASH input parameters for CASI  

 

 MODTRAN Parameters 

enviacc.modtran.visvalue = 40.0000 

enviacc.modtran.f_resolution = 15.0000 

enviacc.modtran.day = 25 

enviacc.modtran.month = 11 

enviacc.modtran.year = 2003 

enviacc.modtran.gmt = 5.1506 

enviacc.modtran.latitude = -35.4935 

enviacc.modtran.longitude = 138.9746 

enviacc.modtran.sensor_altitude = 2.2900 

enviacc.modtran.ground_elevation = 0.0010 

enviacc.modtran.view_zenith_angle = 180.0000 

enviacc.modtran.view_azimuth = 0.0000 

enviacc.modtran.atmosphere_model = 2 

enviacc.modtran.aerosol_model = 1 

enviacc.modtran.multiscatter_model = 0 

enviacc.modtran.disort_streams = 8 

enviacc.modtran.co2mix = 390.0000 

Image Parameters 

enviacc.img.nspatial = 6087 

enviacc.img.nlines = 1035 

enviacc.img.margin1 = 0 

enviacc.img.margin2 = 0 

enviacc.img.nskip = 0 

enviacc.img.ifov = 1.3439 

enviacc.img.sensor_name = CASI_82 

Analysis Parameters 

enviacc.ana.aerosol_scaleht = 2.0000 

enviacc.ana.output_scale = 10000.0000 

enviacc.ana.polishing_res = 9 

enviacc.ana.aerosol_retrieval = 0 

enviacc.ana.reuse_modtran_calcs = 0 
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CASI gain and offset values for FLAASH 

Wavelength FWHM Offset Gain 

418.1 11.4 0 0.01 

429.1 11.4 0 0.01 

440.2 11.4 0 0.01 

451.3 11.4 0 0.01 

462.4 11.4 0 0.01 

473.5 11.4 0 0.01 

484.6 11.4 0 0.01 

495.8 11.6 0 0.01 

507 11.6 0 0.01 

518.2 11.6 0 0.01 

529.4 11.6 0 0.01 

540.7 11.6 0 0.01 

552 11.6 0 0.01 

563.2 11.6 0 0.01 

574.6 11.6 0 0.01 

585.9 11.6 0 0.01 

597.2 11.6 0 0.01 

608.6 11.6 0 0.01 

620 11.6 0 0.01 

631.3 11.6 0 0.01 

642.7 11.8 0 0.01 

654.2 11.8 0 0.01 

665.6 11.8 0 0.01 

677 11.8 0 0.01 

688.5 11.8 0 0.01 

699.9 11.8 0 0.01 

711.4 11.8 0 0.01 

722.9 11.8 0 0.01 

734.4 11.8 0 0.01 

745.9 11.8 0 0.01 

757.4 11.8 0 0.01 

768.9 11.8 0 0.01 

780.4 11.8 0 0.01 

791.9 11.8 0 0.01 

803.4 11.8 0 0.01 

815 11.8 0 0.01 

826.5 11.8 0 0.01 

838 11.8 0 0.01 

849.6 11.8 0 0.01 

861.1 11.8 0 0.01 

872.6 11.8 0 0.01 

884.2 11.8 0 0.01 

895.7 11.8 0 0.01 

907.2 11.8 0 0.01 

918.7 11.8 0 0.01 

930.3 11.8 0 0.01 

941.8 11.8 0 0.01 

953.3 11.8 0 0.01 
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APPENDIX 3 

Groundtruthing field data used to compile error matrices 

HyMap saltpan (P=saltpan present) 
Field 

Site ID 
Easting Northing 

Field 

Cover 

Image 

 Map  

000 313066.42702 6075465.09656     

002 312456.66596 6071561.29565     

003 315081.71303 6071033.24763     

004 314304.00455 6073801.04102 P   

005 314863.30268 6071786.45888     

006 311261.35118 6075760.18189     

008 312111.32531 6070527.47856     

009 322316.69332 6069541.19391     

010 308654.26815 6073895.26906     

011 322371.54197 6069639.83116     

012 313732.74124 6075826.17585     

013 316140.71815 6070589.57341 P P 

017 320553.14556 6069013.17698     

020 313833.92456 6072608.61321     

021 321930.93246 6068863.37246     

022 310444.84300 6074344.21188     

023 318537.08270 6070609.40052     

024 309084.39952 6073235.99777     

025 309521.34292 6072645.33666     

026 313493.15389 6074995.25346     

027 317892.53862 6070589.62183     

028 321740.76990 6068566.41282     

029 310666.96228 6075231.25042     

030 314396.48888 6074680.52687     

031 314102.63798 6071467.76756     

034 310799.95167 6075282.32546     

035 320020.54283 6069815.80923     

036 310552.01084 6073082.57726     

037 313937.40102 6073800.09912 P   

038 318610.95136 6070396.08150     

039 308940.44234 6074282.42394     

040 311750.21244 6076040.33255     

041 320609.16121 6069100.21675     

042 313593.67278 6075173.15201     

044 308147.34823 6075939.63940     

048 322194.47124 6069563.08724     

049 310084.25657 6072661.19426     

050 315137.21903 6071608.40844 P P 

051 309270.66233 6074626.80715     

052 320494.00205 6069590.06268     

054 322055.28491 6069748.67563     

055 311339.61932 6074997.40101     

056 313925.59647 6070883.84827     

057 314469.09272 6073732.38979     

058 307499.88655 6075148.40138     
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059 320190.91565 6069575.38604     

060 309406.03068 6073298.94855     

061 320097.44145 6070221.56686     

062 313325.98921 6075493.66778     

064 310366.83986 6073173.27429     

065 313983.80902 6075435.98484     

066 310946.20124 6072874.86908     

067 313211.86274 6075799.12364     

068 314523.88908 6072439.65018     

069 314854.90346 6070792.93861     

071 319409.10410 6070321.68476     

072 314370.12490 6073190.51059  P   

073 312479.90041 6075438.92884     

076 313729.27580 6076412.41938     

078 311660.48093 6075254.29609     

079 312060.13617 6070551.48152     

080 310612.66359 6072559.18749     

081 320827.68226 6069121.45257     

084 308552.14167 6074890.99851     

085 313990.58488 6073168.30681     

087 311188.23466 6072760.80421     

088 319498.60705 6070533.58911     

089 315583.43231 6071104.89642     

096 310512.67006 6074319.02763     

097 314800.88444 6074001.99344     

099 308965.64853 6073633.44112     

100 313393.00000 6072021.00000     

101 313937.00000 6073040.00000     

103 313212.00000 6071360.00000  P   

104 314387.00000 6073982.00000     

107 314415.00000 6074559.00000     

108 313587.00000 6072512.00000     

109 314640.00000 6073257.00000     

110 316561.00000 6070413.00000  P P 

111 315454.00000 6071556.00000 P P 

112 314107.00000 6073143.00000  P   

113 314580.00000 6072746.00000  P   

114 313755.00000 6074901.00000  P   

116 314850.00000 6071725.00000  P P 

118 315273.00000 6071304.00000 P P 

119 314469.00000 6073027.00000     

120 314233.00000 6074823.00000     

121 314328.00000 6073764.00000  P P 

123 312768.00000 6072288.00000     

124 313649.00000 6074926.00000     

127 315145.00000 6071514.00000  P   

128 313288.00000 6071425.00000  P   

129 314446.00000 6074670.00000 P P 

130 314608.00000 6072534.00000     

131 316158.00000 6070697.00000     

134 312871.00000 6072165.00000     

135 314003.00000 6074759.00000     
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136 313920.00000 6073243.00000     

137 313910.00000 6072027.00000     

138 314439.00000 6072446.00000     

139 314366.00000 6073109.00000     

141 314321.00000 6074418.00000     

143 312701.00000 6071209.00000     

144 314408.60651 6073561.00000     

145 316491.00000 6070485.00000 P P 

146 315010.00000 6071731.00000 P  P 

147 314520.00000 6074361.00000  P   

149 314590.00000 6072760.00000  P   

151 313143.67180 6074786.15400     

155 311765.67505 6076484.94316     

156 318130.47150 6070547.50600     

158 315000.67380 6071665.34300 P   

159 315371.15230 6071519.71700 P P 

161 311342.12220 6072923.13400     

162 313997.25680 6073673.31100 P   

168 314305.36490 6073829.04200     

169 313982.21320 6071924.85200 P  P 

170 313152.53010 6071358.26000     

171 313167.72630 6075637.50700   P 

173 309672.83310 6072920.07500   P 

174 313232.54300 6075674.43700     

176 312477.83380 6071741.52300  P P 

179 311739.39750 6070693.57100     

180 313800.49600 6073124.13500  P   

181 314853.26480 6071695.61400     

183 314648.38230 6074224.77400     

185 314594.59160 6074247.63900     

186 314348.15180 6071621.57400     

187 312369.85100 6071760.03800  P   

188 315233.70440 6071501.54300 P P 

189 314418.87090 6074728.12900 P P 

190 311695.63340 6070547.27100     

191 312511.06610 6071660.64600 P   

192 314193.11650 6073919.49200  P P 

193 311691.43085 6076716.59856     

197 315313.68150 6071609.80000 P P 

198 314488.53080 6071580.18300     
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HyMap samphire (S=samphire present) 
Field 

Site ID 
Easting Northing 

Field 

Cover 

Image 

Map 

002 312456.66596 6071561.29565     

003 315081.71303 6071033.24763     

004 314304.00455 6073801.04102     

005 314863.30268 6071786.45888 S   

006 311261.35118 6075760.18189     

008 312111.32531 6070527.47856     

009 322316.69332 6069541.19391     

010 308654.26815 6073895.26906     

011 322371.54197 6069639.83116     

013 316140.71815 6070589.57341     

017 320553.14556 6069013.17698     

020 313833.92456 6072608.61321     

021 321930.93246 6068863.37246     

022 310444.84300 6074344.21188     

023 318537.08270 6070609.40052     

024 309084.39952 6073235.99777     

025 309521.34292 6072645.33666     

026 313493.15389 6074995.25346     

027 317892.53862 6070589.62183   S 

028 321740.76990 6068566.41282     

029 310666.96228 6075231.25042     

030 314396.48888 6074680.52687     

031 314102.63798 6071467.76756     

034 310799.95167 6075282.32546     

035 320020.54283 6069815.80923     

036 310552.01084 6073082.57726     

037 313937.40102 6073800.09912 S  S 

038 318610.95136 6070396.08150     

039 308940.44234 6074282.42394     

041 320609.16121 6069100.21675     

042 313593.67278 6075173.15201     

044 308147.34823 6075939.63940     

048 322194.47124 6069563.08724     

049 310084.25657 6072661.19426     

050 315137.21903 6071608.40844     

051 309270.66233 6074626.80715     

052 320494.00205 6069590.06268     

053 311507.87279 6074895.80723     

054 322055.28491 6069748.67563     

055 311339.61932 6074997.40101     

056 313925.59647 6070883.84827     

057 314469.09272 6073732.38979     

058 307499.88655 6075148.40138     

059 320190.91565 6069575.38604     

060 309406.03068 6073298.94855     

061 320097.44145 6070221.56686     

064 310366.83986 6073173.27429     
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066 310946.20124 6072874.86908     

067 313211.86274 6075799.12364     

068 314523.88908 6072439.65018 S   

069 314854.90346 6070792.93861     

071 319409.10410 6070321.68476     

072 314370.12490 6073190.51059 S  S 

073 312479.90041 6075438.92884     

074 311149.38762 6074759.85973     

6

079 312060.13617 6070551.48152     

080 310612.66359 6072559.18749     

081 320827.68226 6069121.45257     

084 308552.14167 6074890.99851     

085 313990.58488 6073168.30681     

087 311188.23466 6072760.80421     

088 319498.60705 6070533.58911     

089 315583.43231 6071104.89642     

096 310512.67006 6074319.02763     

097 314800.88444 6074001.99344     

099 308965.64853 6073633.44112     

100 313393.00000 6072021.00000     

101 313937.00000 6073040.00000     

103 313212.00000 6071360.00000 S    

104 314387.00000 6073982.00000   S 

107 314415.00000 6074559.00000     

108 313587.00000 6072512.00000 S   

109 314640.00000 6073257.00000 S S 

110 316561.00000 6070413.00000 S  S 

111 315454.00000 6071556.00000     

112 314107.00000 6073143.00000 S  S 

113 314580.00000 6072746.00000 S  S 

114 313755.00000 6074901.00000 S    

116 314850.00000 6071725.00000 S  S 

118 315273.00000 6071304.00000     

119 314469.00000 6073027.00000 S   

120 314233.00000 6074823.00000     

121 314328.00000 6073764.00000 S  S 

123 312768.00000 6072288.00000     

124 313649.00000 6074926.00000     

127 315145.00000 6071514.00000 S    

128 313288.00000 6071425.00000 S    

129 314446.00000 6074670.00000     

130 314608.00000 6072534.00000 S S 

131 316158.00000 6070697.00000 S S 

134 312871.00000 6072165.00000     

136 313920.00000 6073243.00000 S S 

137 313910.00000 6072027.00000     

138 314439.00000 6072446.00000 S  S 

139 314366.00000 6073109.00000     

141 314321.00000 6074418.00000   S 

143 312701.00000 6071209.00000     

144 314408.60651 6073561.00000 S S 
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145 316491.00000 6070485.00000     

146 315010.00000 6071731.00000     

147 314520.00000 6074361.00000 S S 

149 314590.00000 6072760.00000 S  S 

151 313143.67180 6074786.15400     

156 318130.47150 6070547.50600     

158 315000.67380 6071665.34300     

159 315371.15230 6071519.71700     

161 311342.12220 6072923.13400     

162 313997.25680 6073673.31100     

168 314305.36490 6073829.04200     

169 313982.21320 6071924.85200     

170 313152.53010 6071358.26000     

173 309672.83310 6072920.07500     

175 312643.01700 6072443.83500 S S 

176 312477.83380 6071741.52300 S    

179 311739.39750 6070693.57100     

180 313800.49600 6073124.13500 S    

181 314853.26480 6071695.61400 S S 

183 314648.38230 6074224.77400     

185 314594.59160 6074247.63900     

186 314348.15180 6071621.57400     

187 312369.85100 6071760.03800 S    

188 315233.70440 6071501.54300     

189 314418.87090 6074728.12900   S 

190 311695.63340 6070547.27100     

191 312511.06610 6071660.64600     

192 314193.11650 6073919.49200 S    

197 315313.68150 6071609.80000     

198 314488.53080 6071580.18300     

 



 APPENDICES - 175 - 

 

 

Hyperion saltpan (P=saltpan present) 
Field 

Site ID 
Easting Northing Field 

Cover 

Image 

Map  

000 313066.42702 6075465.09656     

002 312456.66596 6071561.29565     

003 315081.71303 6071033.24763     

004 314304.00455 6073801.04102 P P 

005 314863.30268 6071786.45888     

006 311261.35118 6075760.18189     

008 312111.32531 6070527.47856     

012 313732.74124 6075826.17585     

020 313833.92456 6072608.61321   P 

022 310444.84300 6074344.21188     

024 309084.39952 6073235.99777     

025 309521.34292 6072645.33666     

026 313493.15389 6074995.25346     

029 310666.96228 6075231.25042     

030 314396.48888 6074680.52687     

031 314102.63798 6071467.76756   P 

032 309894.12210 6074987.97396     

034 310799.95167 6075282.32546     

036 310552.01084 6073082.57726     

037 313937.40102 6073800.09912 P   

040 311750.21244 6076040.33255     

042 313593.67278 6075173.15201     

043 311476.37992 6076757.08774     

049 310084.25657 6072661.19426     

050 315137.21903 6071608.40844 P P 

051 309270.66233 6074626.80715     

053 311507.87279 6074895.80723     

055 311339.61932 6074997.40101     

056 313925.59647 6070883.84827     

057 314469.09272 6073732.38979     

060 309406.03068 6073298.94855     

062 313325.98921 6075493.66778     

064 310366.83986 6073173.27429     

065 313983.80902 6075435.98484     

066 310946.20124 6072874.86908     

067 313211.86274 6075799.12364     

068 314523.88908 6072439.65018     

069 314854.90346 6070792.93861     

072 314370.12490 6073190.51059 P   

073 312479.90041 6075438.92884     

074 311149.38762 6074759.85973     

076 313729.27580 6076412.41938     

078 311660.48093 6075254.29609     

079 312060.13617 6070551.48152     

080 310612.66359 6072559.18749     

085 313990.58488 6073168.30681     

087 311188.23466 6072760.80421     
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089 315583.43231 6071104.89642     

096 310512.67006 6074319.02763     

097 314800.88444 6074001.99344     

099 308965.64853 6073633.44112     

100 313393.00000 6072021.00000     

101 313937.00000 6073040.00000     

103 313212.00000 6071360.00000 P   

104 314387.00000 6073982.00000     

107 314415.00000 6074559.00000     

108 313587.00000 6072512.00000   P 

109 314640.00000 6073257.00000     

111 315454.00000 6071556.00000 P P 

112 314107.00000 6073143.00000 P   

113 314580.00000 6072746.00000 P   

114 313755.00000 6074901.00000 P   

116 314850.00000 6071725.00000 P   

118 315273.00000 6071304.00000 P   

119 314469.00000 6073027.00000     

120 314233.00000 6074823.00000     

121 314328.00000 6073764.00000 P   

123 312768.00000 6072288.00000     

124 313649.00000 6074926.00000     

127 315145.00000 6071514.00000 P   

128 313288.00000 6071425.00000 P P 

129 314446.00000 6074670.00000 P   

130 314608.00000 6072534.00000     

134 312871.00000 6072165.00000     

135 314003.00000 6074759.00000     

136 313920.00000 6073243.00000     

137 313910.00000 6072027.00000     

138 314439.00000 6072446.00000     

139 314366.00000 6073109.00000     

141 314321.00000 6074418.00000     

143 312701.00000 6071209.00000     

144 314408.60651 6073561.00000     

146 315010.00000 6071731.00000 P   

147 314520.00000 6074361.00000 P   

149 314590.00000 6072760.00000 P   

151 313143.67180 6074786.15400     

155 311765.67505 6076484.94316     

158 315000.67380 6071665.34300 P P 

159 315371.15230 6071519.71700 P P 

161 311342.12220 6072923.13400     

162 313997.25680 6073673.31100 P P 

168 314305.36490 6073829.04200   P 

169 313982.21320 6071924.85200 P P 

170 313152.53010 6071358.26000     

171 313167.72630 6075637.50700     

173 309672.83310 6072920.07500     

174 313232.54300 6075674.43700     

175 312477.83380 6071741.52300     

176 312477.83380 6071741.52300 P P 
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179 311739.39750 6070693.57100     

180 313800.49600 6073124.13500 P   

181 314853.26480 6071695.61400     

183 314648.38230 6074224.77400     

185 314594.59160 6074247.63900     

186 314348.15180 6071621.57400     

187 312369.85100 6071760.03800 P   

188 315233.70440 6071501.54300 P P 

189 314418.87090 6074728.12900 P   

190 311695.63340 6070547.27100   P 

191 312511.06610 6071660.64600 P P 

192 314193.11650 6073919.49200 P P 

193 311691.43085 6076716.59856     

197 315313.68150 6071609.80000 P   

198 314488.53080 6071580.18300   P 
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Hyperion samphire (S=samphire present)  

Field 

Site 

ID 

Easting Northing Field 

Cover 

Image 

Map  

000 313066.42702 6075465.09656     

002 312456.66596 6071561.29565     

003 315081.71303 6071033.24763     

004 314304.00455 6073801.04102   S 

005 314863.30268 6071786.45888 S   

006 311261.35118 6075760.18189     

008 312111.32531 6070527.47856     

012 313732.74124 6075826.17585     

020 313833.92456 6072608.61321     

022 310444.84300 6074344.21188     

024 309084.39952 6073235.99777     

025 309521.34292 6072645.33666     

026 313493.15389 6074995.25346     

029 310666.96228 6075231.25042     

030 314396.48888 6074680.52687     

031 314102.63798 6071467.76756     

032 309894.12210 6074987.97396     

034 310799.95167 6075282.32546     

036 310552.01084 6073082.57726     

037 313937.40102 6073800.09912 S   

040 311750.21244 6076040.33255     

042 313593.67278 6075173.15201     

043 311476.37992 6076757.08774     

049 310084.25657 6072661.19426     

050 315137.21903 6071608.40844     

051 309270.66233 6074626.80715     

053 311507.87279 6074895.80723     

055 311339.61932 6074997.40101     

056 313925.59647 6070883.84827     

057 314469.09272 6073732.38979     

060 309406.03068 6073298.94855     

062 313325.98921 6075493.66778     

064 310366.83986 6073173.27429     

065 313983.80902 6075435.98484     

066 310946.20124 6072874.86908     

067 313211.86274 6075799.12364     

068 314523.88908 6072439.65018 S   

069 314854.90346 6070792.93861     

072 314370.12490 6073190.51059 S S 

073 312479.90041 6075438.92884     

074 311149.38762 6074759.85973     

076 313729.27580 6076412.41938     

078 311660.48093 6075254.29609     

079 312060.13617 6070551.48152     

080 310612.66359 6072559.18749     

085 313990.58488 6073168.30681     

087 311188.23466 6072760.80421     
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089 315583.43231 6071104.89642     

096 310512.67006 6074319.02763     

097 314800.88444 6074001.99344     

099 308965.64853 6073633.44112     

100 313393.00000 6072021.00000     

101 313937.00000 6073040.00000     

103 313212.00000 6071360.00000 S   

104 314387.00000 6073982.00000     

107 314415.00000 6074559.00000     

108 313587.00000 6072512.00000 S S 

109 314640.00000 6073257.00000 S S 

111 315454.00000 6071556.00000   S 

112 314107.00000 6073143.00000 S S 

113 314580.00000 6072746.00000 S S 

114 313755.00000 6074901.00000 S   

116 314850.00000 6071725.00000 S   

118 315273.00000 6071304.00000     

119 314469.00000 6073027.00000 S   

120 314233.00000 6074823.00000     

121 314328.00000 6073764.00000 S S 

123 312768.00000 6072288.00000     

124 313649.00000 6074926.00000   S 

127 315145.00000 6071514.00000 S   

128 313288.00000 6071425.00000 S   

129 314446.00000 6074670.00000     

130 314608.00000 6072534.00000 S S 

134 312871.00000 6072165.00000     

135 314003.00000 6074759.00000     

136 313920.00000 6073243.00000 S S 

137 313910.00000 6072027.00000     

138 314439.00000 6072446.00000 S S 

139 314366.00000 6073109.00000     

141 314321.00000 6074418.00000     

143 312701.00000 6071209.00000     

144 314408.60651 6073561.00000 S S 

146 315010.00000 6071731.00000   S 

147 314520.00000 6074361.00000 S S 

149 314590.00000 6072760.00000 S S 

151 313143.67180 6074786.15400     

155 311765.67505 6076484.94316     

158 315000.67380 6071665.34300     

159 315371.15230 6071519.71700     

161 311342.12220 6072923.13400     

162 313997.25680 6073673.31100     

168 314305.36490 6073829.04200   S 

169 313982.21320 6071924.85200     

170 313152.53010 6071358.26000     

171 313167.72630 6075637.50700     

173 309672.83310 6072920.07500     

174 313232.54300 6075674.43700 S S 

175 312477.83380 6071741.52300 S S 

176 312477.83380 6071741.52300 S   
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179 311739.39750 6070693.57100     

180 313800.49600 6073124.13500 S S 

181 314853.26480 6071695.61400 S S 

183 314648.38230 6074224.77400   S 

185 314594.59160 6074247.63900   S 

186 314348.15180 6071621.57400     

187 312369.85100 6071760.03800 S   

188 315233.70440 6071501.54300   S 

189 314418.87090 6074728.12900     

190 311695.63340 6070547.27100     

191 312511.06610 6071660.64600     

192 314193.11650 6073919.49200 S   

193 311691.43085 6076716.59856     

197 315313.68150 6071609.80000     

198 314488.53080 6071580.18300     

 



 APPENDICES - 181 - 

 

 

CASI saltpan (P=saltpan present) 
Field 

Site ID 
Easting Northing Field 

Cover 

Image 

Map 

000 313066.42702 6075465.09656   

002 312456.66596 6071561.29565   

003 315081.71303 6071033.24763   

004 314304.00455 6073801.04102 P  

005 314863.30268 6071786.45888   

006 311261.35118 6075760.18189   

008 312111.32531 6070527.47856  P 

009 322316.69332 6069541.19391   

010 308654.26815 6073895.26906   

011 322371.54197 6069639.83116   

012 313732.74124 6075826.17585   

013 316140.71815 6070589.57341 P P 

017 320553.14556 6069013.17698   

020 313833.92456 6072608.61321   

021 321930.93246 6068863.37246   

022 310444.84300 6074344.21188   

023 318537.08270 6070609.40052   

024 309084.39952 6073235.99777   

025 309521.34292 6072645.33666   

026 313493.15389 6074995.25346   

027 317892.53862 6070589.62183   

028 321740.76990 6068566.41282   

029 310666.96228 6075231.25042   

030 314396.48888 6074680.52687  P 

031 314102.63798 6071467.76756   

034 310799.95167 6075282.32546   

035 320020.54283 6069815.80923   

036 310552.01084 6073082.57726   

037 313937.40102 6073800.09912 P  

038 318610.95136 6070396.08150   

039 308940.44234 6074282.42394   

040 311750.21244 6076040.33255   

041 320609.16121 6069100.21675   

042 313593.67278 6075173.15201   

044 308147.34823 6075939.63940   

048 322194.47124 6069563.08724   

049 310084.25657 6072661.19426   

050 315137.21903 6071608.40844 P P 

051 309270.66233 6074626.80715   

052 320494.00205 6069590.06268   

054 322055.28491 6069748.67563   

055 311339.61932 6074997.40101   

056 313925.59647 6070883.84827   

057 314469.09272 6073732.38979   

058 307499.88655 6075148.40138   

059 320190.91565 6069575.38604   

060 309406.03068 6073298.94855   
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061 320097.44145 6070221.56686   

062 313325.98921 6075493.66778   

064 310366.83986 6073173.27429   

065 313983.80902 6075435.98484   

066 310946.20124 6072874.86908   

067 313211.86274 6075799.12364   

068 314523.88908 6072439.65018   

069 314854.90346 6070792.93861   

071 319409.10410 6070321.68476   

072 314370.12490 6073190.51059  P P 

073 312479.90041 6075438.92884   

076 313729.27580 6076412.41938   

078 311660.48093 6075254.29609   

079 312060.13617 6070551.48152   

080 310612.66359 6072559.18749   

081 320827.68226 6069121.45257   

084 308552.14167 6074890.99851   

085 313990.58488 6073168.30681  P 

087 311188.23466 6072760.80421   

088 319498.60705 6070533.58911   

089 315583.43231 6071104.89642   

096 310512.67006 6074319.02763   

097 314800.88444 6074001.99344   

099 308965.64853 6073633.44112   

100 313393.00000 6072021.00000   

101 313937.00000 6073040.00000   

103 313212.00000 6071360.00000  P  

104 314387.00000 6073982.00000   

107 314415.00000 6074559.00000   

108 313587.00000 6072512.00000  P 

109 314640.00000 6073257.00000   

110 316561.00000 6070413.00000  P  

111 315454.00000 6071556.00000 P P 

112 314107.00000 6073143.00000  P  

113 314580.00000 6072746.00000  P  

114 313755.00000 6074901.00000  P P 

116 314850.00000 6071725.00000  P P 

118 315273.00000 6071304.00000 P P 

119 314469.00000 6073027.00000   

120 314233.00000 6074823.00000   

121 314328.00000 6073764.00000  P  

123 312768.00000 6072288.00000   

124 313649.00000 6074926.00000   

127 315145.00000 6071514.00000  P P 

128 313288.00000 6071425.00000  P P 

129 314446.00000 6074670.00000 P  

130 314608.00000 6072534.00000   

131 316158.00000 6070697.00000   

134 312871.00000 6072165.00000   

135 314003.00000 6074759.00000   

136 313920.00000 6073243.00000   

137 313910.00000 6072027.00000   
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138 314439.00000 6072446.00000   

139 314366.00000 6073109.00000   

141 314321.00000 6074418.00000   

143 312701.00000 6071209.00000   

144 314408.60651 6073561.00000   

145 316491.00000 6070485.00000 P P 

146 315010.00000 6071731.00000 P  P 

147 314520.00000 6074361.00000  P P 

149 314590.00000 6072760.00000  P  

151 313143.67180 6074786.15400   

155 311765.67505 6076484.94316   

156 318130.47150 6070547.50600   

158 315000.67380 6071665.34300 P  

159 315371.15230 6071519.71700 P P 

161 311342.12220 6072923.13400   

162 313997.25680 6073673.31100 P  

168 314305.36490 6073829.04200   

169 313982.21320 6071924.85200 P  P 

170 313152.53010 6071358.26000   

171 313167.72630 6075637.50700  P 

173 309672.83310 6072920.07500   

174 313232.54300 6075674.43700  P 

176 312477.83380 6071741.52300  P P 

179 311739.39750 6070693.57100   

180 313800.49600 6073124.13500  P  

181 314853.26480 6071695.61400   

183 314648.38230 6074224.77400   

185 314594.59160 6074247.63900   

186 314348.15180 6071621.57400   

187 312369.85100 6071760.03800  P  

188 315233.70440 6071501.54300 P P 

189 314418.87090 6074728.12900 P  

190 311695.63340 6070547.27100   

191 312511.06610 6071660.64600 P P 

192 314193.11650 6073919.49200  P  

193 311691.43085 6076716.59856   

197 315313.68150 6071609.80000 P  

198 314488.53080 6071580.18300   
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CASI samphire (S=samphire present) 
Field 

Site ID 
Easting Northing Field 

Cover 

Image 

Map  

000 313066.42702 6075465.09656     

002 312456.66596 6071561.29565     

003 315081.71303 6071033.24763     

004 314304.00455 6073801.04102     

005 314863.30268 6071786.45888 S S 

006 311261.35118 6075760.18189     

008 312111.32531 6070527.47856     

009 322316.69332 6069541.19391     

010 308654.26815 6073895.26906     

011 322371.54197 6069639.83116     

013 316140.71815 6070589.57341     

017 320553.14556 6069013.17698     

020 313833.92456 6072608.61321     

021 321930.93246 6068863.37246     

022 310444.84300 6074344.21188     

023 318537.08270 6070609.40052     

024 309084.39952 6073235.99777     

025 309521.34292 6072645.33666     

026 313493.15389 6074995.25346   S 

027 317892.53862 6070589.62183     

028 321740.76990 6068566.41282     

029 310666.96228 6075231.25042   S 

030 314396.48888 6074680.52687     

031 314102.63798 6071467.76756     

034 310799.95167 6075282.32546   S 

035 320020.54283 6069815.80923     

036 310552.01084 6073082.57726     

037 313937.40102 6073800.09912 S  S 

038 318610.95136 6070396.08150     

039 308940.44234 6074282.42394     

041 320609.16121 6069100.21675     

042 313593.67278 6075173.15201     

044 308147.34823 6075939.63940     

048 322194.47124 6069563.08724     

049 310084.25657 6072661.19426     

050 315137.21903 6071608.40844     

051 309270.66233 6074626.80715     

052 320494.00205 6069590.06268     

053 311507.87279 6074895.80723     

054 322055.28491 6069748.67563     

055 311339.61932 6074997.40101     

056 313925.59647 6070883.84827     

057 314469.09272 6073732.38979     

058 307499.88655 6075148.40138     

059 320190.91565 6069575.38604     

060 309406.03068 6073298.94855     

061 320097.44145 6070221.56686     
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062 309406.03068 6073298.94855     

064 310366.83986 6073173.27429     

065 320097.44145 6070221.56686     

066 310946.20124 6072874.86908     

068 314523.88908 6072439.65018 S   

069 314854.90346 6070792.93861     

071 319409.10410 6070321.68476     

072 314370.12490 6073190.51059 S    

073 312479.90041 6075438.92884     

078 311660.48093 6075254.29609     

079 312060.13617 6070551.48152     

080 310612.66359 6072559.18749     

081 320827.68226 6069121.45257     

084 308552.14167 6074890.99851     

085 313990.58488 6073168.30681     

087 311188.23466 6072760.80421     

088 319498.60705 6070533.58911     

089 315583.43231 6071104.89642     

096 310512.67006 6074319.02763     

097 314800.88444 6074001.99344     

099 308965.64853 6073633.44112     

100 313393.00000 6072021.00000   S 

101 313937.00000 6073040.00000     

103 313212.00000 6071360.00000 S    

104 314387.00000 6073982.00000     

107 314415.00000 6074559.00000     

108 313587.00000 6072512.00000 S S 

109 314640.00000 6073257.00000 S   

110 316561.00000 6070413.00000 S    

111 315454.00000 6071556.00000     

112 314107.00000 6073143.00000 S  S 

113 314580.00000 6072746.00000 S  S 

114 313755.00000 6074901.00000 S    

116 314850.00000 6071725.00000 S    

118 315273.00000 6071304.00000     

119 314469.00000 6073027.00000 S S 

120 314233.00000 6074823.00000     

121 314328.00000 6073764.00000 S  S 

123 312768.00000 6072288.00000     

124 313649.00000 6074926.00000     

127 315145.00000 6071514.00000 S  S 

128 313288.00000 6071425.00000 S    

129 314446.00000 6074670.00000     

130 314608.00000 6072534.00000 S   

131 316158.00000 6070697.00000 S S 

134 312871.00000 6072165.00000     

135 314003.00000 6074759.00000     

136 313920.00000 6073243.00000 S S 

137 313910.00000 6072027.00000   S 

138 314439.00000 6072446.00000 S  S 

139 314366.00000 6073109.00000     

141 314321.00000 6074418.00000     
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143 312701.00000 6071209.00000     

144 314408.60651 6073561.00000 S S 

145 316491.00000 6070485.00000     

146 315010.00000 6071731.00000     

147 314520.00000 6074361.00000 S   

149 314590.00000 6072760.00000 S  S 

151 313143.67180 6074786.15400     

156 318130.47150 6070547.50600     

158 315000.67380 6071665.34300     

159 315371.15230 6071519.71700     

161 311342.12220 6072923.13400     

162 313997.25680 6073673.31100     

168 314305.36490 6073829.04200     

169 313982.21320 6071924.85200     

170 313152.53010 6071358.26000     

171 312550.18860 6071039.50300     

173 309672.83310 6072920.07500     

174 309672.83310 6072920.07500     

175 312643.01700 6072443.83500 S S 

176 312477.83380 6071741.52300 S    

179 311739.39750 6070693.57100   S 

180 313800.49600 6073124.13500 S    

181 314853.26480 6071695.61400 S   

183 314648.38230 6074224.77400     

185 314594.59160 6074247.63900     

186 314348.15180 6071621.57400     

187 312369.85100 6071760.03800 S    

188 315233.70440 6071501.54300     

189 314418.87090 6074728.12900     

190 311695.63340 6070547.27100     

191 312511.06610 6071660.64600     

192 314193.11650 6073919.49200 S    

197 315313.68150 6071609.80000     

198 314488.53080 6071580.18300     
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