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Chapter 11:  Real and Apparent Motion 

Brief summary of chapter 

A sequence of rapidly presented, independently generated Glass patterns appears to 
move consistently, one way or the other, along the path of the transformation used in 
generating the Glass patterns. In this inquiry, rotation Glass patterns are employed. The 
apparent motion of rotation Glass patterns is examined along with the situation in which a 
Glass pattern is really rotated from frame to frame. A nearest neighbour explanation 
illuminates results from a published study set up to investigate the phenomenon. However, 
this leads on to consideration of the role of further Delaunay neighbours. 

The work outlined in this chapter, with the exception of that indicated of other 
researchers, is original. Particularly, the interpretation of outcomes from Ross, Badcock, and 
Hayes (2000), in terms of proximity measures, is original. 

Background

In a recent paper, Ross, Badcock, and Hayes (2000) draw attention to a phenomenon 
in which a sequence of rapidly presented, independently generated Glass patterns gives rise to 
a perception of coherent motion that, they claim, is ‘indistinguishable from real motion’ (p. 
679), except that its direction is ambiguous. According to Ross et al. (2000), because there is 
no organization in the motion vectors, any coherence in the motion perceived ‘can only come 
from their static internal structure’ (p. 679). 

This conclusion is arresting because it is widely believed that form and motion are 
analysed separately in mammalian visual systems (De Yoe, Fellerman, Van Essen, & 
McClendon, 1994; Goodale, Milner, Jakobson, & Carey, 1991; Merigan, 1999; Ungerleider & 
Mishkin, 1982). Instead, Ross et al. (2000) propose that the analysis of form and motion may 
be ‘tightly coupled at all stages of visual analysis’ (p. 681), as earlier suggested by Lennie 
(1998). In accordance with this view, the generative transformation model uses the same 
routines to detect both form (static or spatial structure) and motion (dynamic or temporal 
structure). And on this view, ‘information about form could contribute to the analysis of 
motion, just as information about motion can to the analysis of form’ (Ross et al., 2000, p. 
681, citing Burr, Ross, & Morrone, 1986). 

While we agree that form and motion may be closely linked at all stages, we consider 
the argument for it, presented by Ross et al. in this particular instance, is incomplete and may 
be misleading. Although Badcock, Ross, and Hayes (2000) recognise that such sequences 
‘contain motion signals of random velocity’ (Suppl. 25), their focus is on the contribution of 
static structure to the organization of this motion into a coherent percept. The analysis of 
successive, independently generated Glass patterns presented below, however, shows that 
such sequences provide an abundance of information for motion, while there are also spatio-
temporal constraints that make for coherence. This result means that it may not be useful to 
conceive of the experience elicited by these sequences as a paradoxical process, in which 
static structure alone is responsible for a perception of coherent and continuous motion. 

In their first experiment, Ross et al. (2000) presented observers with a sequence of 10 
independently generated Glass patterns. Each pattern in a sequence was generated by starting 
with an array of 50 dots, distributed uniformly and randomly within a circular area, imposing 
a rotational transformation about the centre, and then superposing the transformed array onto 
the original array. According to Ross et al. (2000), ‘[t]here is no corresponding organization 
in the motion vectors from a sequence of independent Glass patterns…and thus a percept of 
coherent motion is not predicted’ (p. 679). 

In a second stage of their investigation, Ross et al. (2000) found that observers were 
unable to distinguish the apparent spin of independently generated Glass patterns from that of 
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a succession of Glass patterns linked by ‘real bidirectional motion signals’ (p. 680) consistent 
with a speed of 22º per sec. The independent Glass patterns had a dot pair separation of 8 arc 
min and a frame duration of 32 msec.1 In the case of the motion-consistent Glass patterns, the 
bidirectional signals were intended to mimic the ambiguity of the direction of spin seen with 
the independent Glass patterns and took the form of alternating clockwise and anticlockwise 
directions of the displacements in four successive annular regions of the circular display area. 
According to Badcock (personal communication to D. Vickers, 2002), the motion-consistent 
Glass patterns also had a frame duration of 32 msec and a dot pair separation of 8 arc min, but 
had a between-frame separation of 44 arc min. The reason given for this separation is that 
‘[t]he speed was needed to match the apparent speed of rotation of the independent Glass 
pattern sequence’ (Ross et al., 2000, p. 680). 

What is puzzling about this last finding is that the succession of independent Glass 
patterns, with dot pair separations of 8 arc min and frame durations of 32 msec, is consistent 
with a maximum total separation of just over 4º per sec, provided all individual separations 
are added without loss. Nonetheless, this succession of static patterns gives rise to an 
impression of spin that is equated with ‘true’ motion-consistent displacements with a speed of 
22º per sec (i.e., over 5 times as fast). Moreover, this occurs despite the fact that the motion-
consistent Glass patterns also have the same static structure as the independent Glass patterns. 

Although Ross et al. (2000) do not comment on this finding, it seems paradoxical in 
terms of the interpretation they propose. What it suggests is that, not only does static structure 
provide a source of motion information, but it also appears to be several times as powerful as 
accepted sources of motion information. Moreover, although static structure is effective when 
successive Glass patterns are independent, it is much less so when successive rotated Glass 
patterns (endowed with the same static structure) are indeed consistent with motion. The 
analysis we advocate for a range of dot densities of the same order as those used by Ross et 
al., suggests a plausible resolution of these apparent paradoxes. 

Since Ross et al. (2000) employ rotation Glass patterns in developing their thesis—but 
state generally equivalent effects for other Glass transformations—in developing our 
argument we generally restrict ourselves to rotation Glass patterns. 

Interpretation in terms of mean nearest neighbour distance 

In this interpretation we use distances measured between patterns, not distances 
measured within patterns. Mean nearest neighbour distance can provide an indication for what 
occurs with the apparent rotation perceived when independently generated Glass patterns are 
displayed in quick succession. The model calculates mean nearest neighbour distances from 
one independently generated Glass pattern to the next in a sequence, and all patterns in the 
sequence have the same number of pairs. 

For real rotation sequences, the model calculates the mean nearest neighbour distance 
from another independently generated Glass pattern to the selfsame Glass pattern rotated by 
some angle increment, and this pattern has the same number of pairs as the other 
independently generated patterns. After generation it is rotated clockwise by 0o increments, 
from which mean nearest neighbour distance is calculated from an increment to the next. 
(This is the null instance.) Then another independently generated Glass pattern is rotated 
clockwise by 1o increments, from which mean nearest neighbour distance is calculated from 
an increment to the next. And then another independently generated Glass pattern is rotated 
clockwise by 2o increments, from which mean nearest neighbour distance is calculated from 

1 The term ‘pair separation’ used here is inaccurate. Strictly it means separation between one pair and another, 
when generally throughout it is meant to indicate displacement between transformational partners. To be 
consistent with the connotation of Ross et al. (2000), we here use the same terminology to indicate displacement 
between transformational partners. 
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an increment to the next, and so on, up to 180o increments. A new, different, Glass pattern is 
generated for each real rotation sequence. The same number of increments is applied to each 
real rotation sequence for the purpose of observing effect, but any two consecutive increments
in each sequence suffice for calculating mean nearest neighbour distance.2

At real rotation increments corresponding to a mean nearest neighbour distance below 
a mean nearest neighbour distance range for apparent rotation, real rotation can be 
discriminated, either when presented on the same display with apparent rotation or when
presented by itself. Within and about the mean nearest neighbour distance range for apparent 
rotation, real rotation becomes indistinguishable from apparent rotation in apparent speed as 
well as ambiguity of direction. This appears to be the case over a considerable density range 
of Glass pairs. Hence apparent rotation speeds are in the regions of the upper limits for 
discriminable real rotation speeds. See Figures 11.1 to 11.4 for graphs of mean nearest 
neighbour distances for 50, 100, 200, and 300 apparent and real rotation Glass pairs. Note the 
reduction in angle increments for real rotation required to match the speed of apparent 
rotation for increasing number of Glass pairs. 

Mean Nearest Neighbour for Apparent and Real

Rotation for 50 Pairs

0

50

100

150

200

250

300

350

400

450

500

0

1
5

3
0

4
5

6
0

7
5

9
0

1
0

5

1
2

0

1
3

5

1
5

0

1
6

5

1
8

0

Real rotation increment in degrees

M
e

a
n

n
e

a
re

s
t 
n

e
ig

h
b

o
u

r 
d

is
ta

n
c
e

Apparent

rotation

Real

rotation

Figure 11.1: Mean nearest neighbour distances for 50 apparent and real rotation
Glass pairs. The boundary between unambiguous and ambiguous real rotation is here
shown to be about 23o.

2 Generating a new Glass pattern for each real rotation sequence ensures palliation of any pattern atypicality. 
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Figure 11.2: Mean nearest neighbour distances for 100 apparent and real rotation
Glass pairs; the same number of pairs as used by Ross, Badcock, and Hayes (2000).
The boundary between unambiguous and ambiguous real rotation is here shown to be
about 19o.
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Figure 11.3: Mean nearest neighbour distances for 200 apparent and real rotation
Glass pairs. The boundary between unambiguous and ambiguous real rotation is
here shown to be about 16o.
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Figure 11.4: Mean nearest neighbour distances for 300 apparent and real rotation
Glass pairs. The boundary between unambiguous and ambiguous real rotation is
here shown to be about 14o.

Figure 11.5 shows the graph of mean nearest neighbour distances for 100 apparent and 
real rotation Glass pairs, each averaged over five runs, which provides a better indication of 
the boundary between unambiguous and ambiguous real rotation: about 24o.
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Mean Nearest Neighbour Distances for Apparent and 

Real Rotation Averaged Over Five Runs for 100 Pairs
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Figure 11.5: Mean nearest neighbour distances for 100 apparent and real rotation
Glass pairs, each averaged over five runs. The boundary between unambiguous and
ambiguous real rotation is here shown to be about 24o.

Figure 11.6 shows mean nearest neighbour distances for clockwise real rotation of 100 
Glass pairs, independently generated for each sequence of increments ranging from 0o to 360o.
(That is, a new, different, Glass pattern is generated for each real rotation sequence.) For the 
relatively smooth initial part of the graph, rotation appears slower than it does for apparent 
rotation, and unambiguously clockwise. The closer to zero, the slower it appears. For the 
fluctuating part of the graph, rotation appears indistinguishable from that of apparent rotation; 
i.e. about the same speed and ambiguous in direction. For the relatively smooth final part of 
the graph, rotation appears slower than it does for apparent rotation, and unambiguously
anticlockwise. The closer to 360o, the slower it appears. Of course, rotation appears 
unambiguously anticlockwise this time because the pattern is rotating clockwise but pulling
up short of a full circle by some, diminishing, few degrees, and the shortest transformation
path is reversed. And when the pattern rotates by increments of 360o, then no rotation is 
observed.

Generating a new Glass pattern for each real rotation sequence ensures palliation of 
any pattern atypicality. Figure 11.7 shows a typical graph for which the same Glass pattern is 
involved in all rotation sequences. However, had the pattern been atypical—an 
unrepresentative number of pairs in one half of the display for instance—then mean nearest
neighbour distances would have shown bias. 
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Mean Nearest Neighbour Distances for Real

Rotation for 100 Pairs
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Figure 11.6: For the relatively smooth initial and final parts of the graph, rotation
appears slower than for the fluctuating part of the graph, and appears unambiguously
clockwise and anticlockwise respectively. For the fluctuating part of the graph,
rotation appears about the same speed as for apparent rotation and appears
ambiguous in direction.
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Figure 11.7: Typical graph for which the same Glass pattern is involved in all
rotation sequences. Generating a new Glass pattern for each real rotation sequence,
as per Figure 11.6, ensures palliation of any pattern atypicality.
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Why does speed appear to stabilize at an upper limit, and ambiguity of direction 
appear to occur for angle increments of real rotation that take its mean nearest neighbour 
distances into the range of mean nearest neighbour distances for apparent rotation? It concerns 
the distance at which the regions of shortest path for coherent displacement become populated 
by interposing pairs. Below mean nearest neighbour distance, coherent displacement is 
evident because of reduced interposition by other pairs, but beyond mean nearest neighbour 
distance, displacements are commonly interposed by other pairs.

In the event that both apparent and real rotation patterns are displayed together, 
interpositions can come from pairs belonging to both patterns. In the event that only real 
rotation patterns are displayed, then interpositions come entirely from within. See Figure 11.8, 

which, for sake of simplicity, shows real rotation pairs only. When A is rotated to A' then B is 

rotated to B', which obscures the path from A to A'.

Figure 11.8: A typical situation in which Glass pairs are rotated in angle
increments above the range for mean nearest neighbour distance for
apparent rotation.

And why, with more dot pairs, is there a reduction of the real rotation angle increment
at the boundary between unambiguous and ambiguous real rotation, which coincides with the 
mean nearest neighbour distance region for apparent rotation? Because for more dot pairs the
mean nearest neighbour distance reduces; hence perceived rotation speed slows. This slowing 
is reflected in a reduction of the real rotation angle increment, as shown in Figure 11.9. The 
reduction of the real rotation angle increment coincides with the boundary between 
unambiguous and ambiguous real rotation, and is proportional to decrease in mean nearest 
neighbour distance with increase in number of dot pairs. 
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Angle Increments for Rotated Patterns at which
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Figure 11.9: Reduction, with increasing number of dot pairs, of the real rotation
angle increment, which coincides with the boundary between unambiguous and
ambiguous real rotation indicated by the mean nearest neighbour distance region for
apparent rotation. Slowing of perceived rotation is reflected in this reduction.

Motion vectors and Delaunay neighbours 

Ross et al. (2000), conclude that there is no organization of motion vectors in 
sequences of Glass patterns. In other words, motion vectors in sequences of Glass patterns are 
random, as they are for sequences of random dots. However, point-to-point distances for 
Glass patterns have a grouping due to transformation consistencies, and nearest neighbour 
distances also can have a concomitant grouping. This is the case whether we are talking about 
within a Glass pattern or between Glass patterns, but you are reminded that here we deal with 
the latter.

If you consider the source of the motion illusion to lie within any one Glass pattern, 
(which I do not), then you still have your concomitant grouping. However, the source of any 
such illusion is nothing static. Two adjacent light bulbs permanently on or off, for example, 
do not account for the motion illusion that materializes when they are alternated on and off. 
The source of the illusion is in the dynamics (energy difference), not the statics! The
character of the illusion is defined by the statics, which means unchanging arrangement.

Figures 11.10 to 11.15 show graphs of distances derived from configurations having 
just 10 dots for the sake of clarity. The first triplet of figures shows graphs of point-to-point 
distances sorted in ascending order, and the second triplet shows corresponding graphs of 
nearest neighbour distances sorted in ascending order. The first graph of each triplet is for 
sorted distances between two sets of random dots, the second is for sorted distances between 
two Glass translation patterns, and the third is for sorted distances between two Glass rotation 
patterns.
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Interpoint Distances Between Ten Random Dots of One Set and 

Ten Random Dots of Another Set

0

1000

2000

3000

4000

5000

6000

1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

Metric element

D
is

ta
n

c
e

Figure 11.10: Sorted point-to-point distances from one random dot set to the
next set in a sequence. No grouping is evident.

Interpoint Distances Between Five  Glass Translation Pairs of 

One Set and Five Glass Translation Pairs of Another Set
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Figure 11.11: Sorted point-to-point distances from one translation Glass set to
the next set in a sequence. Quad grouping can be distinguished.
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Interpoint Distances Between Five  Glass Rotation Pairs of One Set

and Five Glass Rotation Pairs of Another Set
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Figure 11.12:  Sorted point-to-point distances from one rotation Glass set to the
next set in a sequence. Quad grouping can be distinguished.
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Figure 11.13: Sorted nearest neighbour distances
from one random dot set to the next set in a
sequence. No pairing is evident.
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Figure 11.14:  Sorted nearest neighbour distances from
one translation Glass set to the next in a sequence.
Pairing within a narrow order of magnitude is evident.
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Nearest Neighbour Distances Between Five

Glass Rotation Pairs of One Set and Five

Glass Rotation Pairs of Another Set
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Figure 11.15:  Sorted nearest neighbour distances from one
rotation Glass set to the next in a sequence. Pairing within a 
narrow order of magnitude is evident.

For point-to-point distances from a set A to a set B, Glass patterns exhibit quad 
groupings, i.e. distance a to b, a to btransform, atransform to b, and atransform to btransform. For nearest
neighbour distances from a set A to a set B, Glass patterns can exhibit pair-wise grouping 
because if b is nearest a then btransform has some chance of being nearest a as well. 

The number of dots used to generate these particular figures is limited for the sake of 
graphical clarity. And it is not disputed that as mean nearest neighbour distance becomes less 
than Glass translation distance or mean Glass rotation distance (or any other Glass 
transformation distance), then nearest neighbour grouping degrades. 

Motion vectors appear to be determined by nearest neighbour distances, at least, and 
by all Delaunay distances at most. Certainly, the unambiguous real rotation motion vectors are 
described by a preponderance of transformational paths as shortest distances, and while mean
nearest neighbour distance from successive real rotation instances is less than mean nearest
neighbour distance from successive apparent rotation instances, there is no ambiguity of real 
rotation direction. Figure 11.16 shows nearest neighbour edges as vectors from a Glass 
pattern (set A, hollow dots) to the selfsame Glass pattern rotated by 5o (set B, solid dots).
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Figure 11.16: Nearest neighbour edges as vectors from a Glass 
pattern (set A, hollow dots) to the selfsame Glass pattern rotated by 5o

(set B, solid dots). (The numbers in the upper left corner are somewhat
incidental, per favour of the computer routine. They are number of 
dots, and mean nearest neighbour distance in screen units from set A 
to set B.) 

This unambiguous direction is lost as mean nearest neighbour distance from 
successive real rotation instances gets close to, equals, or exceeds, mean nearest neighbour
distance from successive apparent rotation instances, but the rotation effect along with 
apparent speed is not lost. Hence vectors become quasi-vectors: direction is purely in the eye 
of the beholder. Figure 11.17 shows nearest neighbour edges as quasi-vectors from a Glass 
pattern (set A, hollow dots) to the selfsame Glass pattern rotated by 30o (set B, solid dots). 
The quasi-vectors are similar to those for the two independently generated Glass patterns of 
Figure 11.18.



221

Figure 11.17:  Nearest neighbour edges as quasi-vectors from a Glass
pattern (set A, hollow dots) to the selfsame Glass pattern rotated by
30o (set B, solid dots). The quasi-vectors are similar to those for the
two independently generated Glass patterns of Figure 11.18.

Figure 11.18: Nearest neighbour edges as quasi-vectors from a Glass
pattern (set A, hollow dots) to a subsequent independently generated
Glass pattern (set B, solid dots).

Mean nearest neighbour distance is germane to directional ambiguity and apparent 
speed (the larger the mean the faster apparent speed), but what of the rotation effect? When 
mean nearest neighbour distance is roughly the same for the real and apparent rotation 
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situations, the rotation effect appears essentially the same for each. In the case of real rotation, 
transformation paths no longer have a preponderance of shortest distances. 

A ploy that teases apart what is happening involves displaying only nearest neighbour 
edges; not Glass patterns themselves. Figures 11.19 and 11.20 show nearest neighbour edges 
resulting from markedly different dot densities. Each set of edges are quasi-vectors from a 
Glass pattern (set A) to a subsequent independently generated Glass pattern (set B). The Glass 
patterns themselves are not shown. 

Figure 11.19: Nearest neighbour edges as quasi-vectors from a Glass
pattern (set A) to a subsequent independently generated Glass pattern
(set B). The Glass patterns themselves are not shown. 
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Figure 11.20:  Nearest neighbour edges as quasi-vectors from a 
densely populated Glass pattern (set A) to a subsequent independently
generated, densely populated Glass pattern (set B). The Glass patterns
themselves are not shown.

This is done for both real rotation and apparent rotation, and, of course, motion 
vectors essentially develop along transformation paths for the smaller increments of real 
rotation; for which unambiguous rotation is clear despite the absence of Glass patterns. For 
the larger increments of real rotation, and for apparent rotation, motion vectors only 
sometimes develop along transformation paths, but, rotation, albeit ambiguous in direction, is 
obvious despite the absence of Glass patterns. 

This can be explained simply by two considerations. The first is that for ambiguous 
rotation, vectors are bi-directional. They are not the true vectors perceived for unambiguous
real rotation. For the true vectors there is little doubt about direction owing to a 
preponderance of consistent increases in length that extends all the same ends in the direction 
of rotation consistent with the smallest transformation. The second consideration involves 
observation of the quasi-vectors as a sequence of hidden Glass patterns proceeds. 

The quasi-vectors extend, break and reconnect from elements of the hidden patterns of 
set A to set B, and then from set B to set C, and so on. Connections from A to B are taken in 
apparent fashion from B to C in such a way that the kind of patterns from which they arise is 
evident. All Glass patterns are anisotropic in some way, which favours increased density 
orientated along transformation directions, and it is particularly along such aspects that these 
‘probing feeler’ quasi-vectors appear to begin or end as they converge on, or diverge from,
transformation paths from display to display.3 The quasi-vectors themselves do not 
necessarily align with transformation paths, but point them out in a way that makes them
totally obvious. At frame rates in quick succession, the quasi-vectors on their own give the 
same impression of rapid rotation as observed for Glass patterns on their own. And last, 

3 This is not that evident from looking at the figures: there is no substitute for a dynamic display with ability to
control frame rate. However, Figure 11.20, with its more densely inspired rotational form, hints at what the
effect might be.



224

quasi-vectors for a sequence comprising independently generated, hidden random dots give 
no perception of rotation whatsoever; and why should they? But perception of rotation is 
obvious enough for real rotation involving hidden random dots. 

Motion paths are not perceived to cross in any sequence, random or otherwise. This is 
interesting because Delaunay edges do not cross either: they simply intersect at dots. This 
means that none of the hierarchy of edges within Delaunay can cross, which augers well for a 
nearest neighbour interpretation. Nearest neighbour appears to be implicated over a large 
range of Glass pattern densities; but with some help, especially as densities become extreme. 

A subset of point-to-point distances constituted of the range of Delaunay neighbour 
distances has the same grouping or lack thereof, as that for a whole set of point-to-point 
distances. All Delaunay neighbours might be profitably recruited in an argument for the 
perception of apparent rotation. It is clear what ‘unobstructed’ means by way of what 
‘obstructed’ means, in the sense of nearest neighbour: if a transformation path is not a nearest 
neighbour path, then it is obstructed. (In spite of this, though, rotation is still adequately 
pointed out.) Enlisting all Delaunay neighbours, with their hierarchy of meanings for 
‘unobstructed’, might help resolve issues for those who would like motion vectors to lie along 
transformation paths (and, again, it is not necessary for ambiguous motion).  

The relevant question is, ‘Are transformational paths included in the hierarchy of 
edges that constitute Delaunay triangulation?’ This can be decided by checking that the mean 
for the farthest Delaunay neighbour distances for each dot from one set to the next is greater 
than transformation distance. If so, it would then be a relatively simple matter to identify 
which rank Delaunay neighbours best fit. 

Figure 11.21 shows a colour coded Delaunay triangulation as quasi-vectors from a 
very densely populated Glass pattern to a subsequent independently generated, very densely 
populated Glass pattern. The Glass patterns themselves are not shown. Delaunay neighbours 
as quasi-vectors are colour coded with black for nearest neighbours, blue for second rank 
Delaunay neighbours, green for third rank Delaunay neighbours, cyan for fourth rank 
Delaunay neighbours, red for fifth rank Delaunay neighbours, magenta for sixth rank 
Delaunay neighbours, yellow for seventh rank Delaunay neighbours, and so on with other 
colours, through to farthest rank Delaunay neighbours. The unspecified colours do not matter 
here because they so rarely present. 

Figure 11.21 shows some evidence of rotation, but if it is submitted to colour 
enhancement for one colour at a time, the eye readily discerns which colour quasi-vectors best 
load along transformation paths. However, they still look spindly and generally lack impact 
owing to diminution; hence ‘diffusing’ is expedient. Diffusing the enhanced colour about the 
spindles highlights the rotational effect, as shown in Figure 11.22. 

Unlike the other figures representative of Glass patterns, which are dispersed over 
circular forms because that is the way Ross et al. did it, these last two figures are dispersed 
over square forms. This is to obviate the possibility that circular perimeters might somehow 
heighten, or at least influence, perception of any pattern. 
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Figure 11.21: Delaunay triangulation as quasi-vectors from a very
densely populated Glass pattern to a subsequent independently
generated, very densely populated Glass pattern. The Glass patterns
themselves are not shown. Delaunay neighbours as quasi-vectors are
colour coded with one colour for nearest neighbours, another colour
for second rank Delaunay neighbours, and so on, through to farthest
rank Delaunay neighbours.

Figure 11.22: Delaunay triangulation depicted in Figure 11.21, with 
enhancement and diffusing of the colour coded neighbours as quasi-
vectors that reveal most spin. At this density, most spin loads on third
rank Delaunay neighbours.
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Here, green is dominant, so, generally, third rank Delaunay neighbour edges show an 
appreciable element of rotation. That is not to say that there are no useful rotation indicators 
among other edges. In any event the significant message regarding stimuli of the density 
employed by Ross et al. (2000) is that nearest neighbour explains perceived rotation 
adequately. And nearest neighbour continues to do so adequately through to a considerable 
density.

Before leaving this topic, one more point might be profitably raised in connection with 
visual perception generally. It is related to the theory of those who advocate frequency 
filtering from a computational point of view: Adelson and Bergen, (1985); Heeger, (1988); 
Jones and Malick, (1992); Koendernink and Van Doorn, (1976a); Malick and Perona, (1990), 
for example. And it is also related to ecological theory like that of Gibson, (1950, 1966, 
1979), which shifts the problem to the environment. The former uses multi-orientation, multi-
scale filters as spatial primitives upon which higher level processes operate, and the latter 
contends that visual perception is simply a process of ‘resonating’ to the rich variety of 
information available in the stimulus array. 

It seems that just a hint of some consistency, or pattern, primes the perceptual search 
for more. If no more is forthcoming, then an array is deemed random under the current 
approach. However, more seems to prime more, in an exponential way, such that if there is
more then it looms rapidly. In other words, it would not take more than just the odd valid 
transformational trajectory here and there to tune the perceptual filter, and the resonance of 
the tuned system would ensure a rapid escalation to global perception. Since this involves 
self-similarity across scales, such a mental process might be described in fractal terms. 
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Chapter 12:  Neighbours and Beyond 

Brief summary of chapter 

Neighbour connectivity patterns of Glass patterns without dot displays are examined 
for a reason as to why they reveal the structure of underlying patterns. Ultimately, Glass 
patterns with millions of dots are employed in the effort to go beyond Delaunay neighbours or 
n

th nearest neighbours for an explanation. Here, it seems, the concept of anisotropy can help. 
All the work outlined in this chapter is original. Particularly, the neighbour 

connectivity investigation and measures of anisotropy are original, along with the 
investigation in which millions of dots are employed. 

Relationship of neighbours to pattern detection 

 Figure 12.1 is composed of four computer screenshots. The upper left panel shows a 
Glass screw pattern comprising 10,000 dots, which was generated from a Glass rotation 
pattern by rotating the pairs at midpoints by 20o. The upper right panel shows corresponding 
nearest neighbour edges; the display of stimulus dots has been omitted. The lower two panels 
show Delaunay neighbour edges: one in colour and the other in grey. The colours, of course, 
have the same interpretation as that for Figure 11.21, page 225. Displays of stimulus dots for 
the Delaunay diagrams have been also omitted. 
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Figure 12.1:  Upper Left: Glass screw pattern comprising 5,000 pairs rotated at midpoints by 20o. Mean
transformation distance is 100.15 screen units and mean nearest neighbour distance is 25.04 screen units.
Upper Right: Nearest neighbour edges for Glass screw pattern. Lower Left and Right: Delaunay
neighbour edges for Glass screw pattern. Transformational structure is clearly seen in edges alone, and
even though mean transformation distance well exceeds mean nearest neighbour distance, transformational
structure is clearly seen in the nearest neighbour edges.

Figure 12.2 provides a similar example to Figure 12.1, but the number of dots 
involved is 28,000 and the pairs are rotated at midpoints by 330o. In both cases, mean nearest 
neighbour distances are much less than mean transformation distances. According to some
authors (e.g., Dakin, 1997; Glass, 1979; Maloney, Michinson, & Barlow, 1987; Stevens, 
1978), nearest neighbours should be rendered ineffective under such conditions. Since 
pertinent displays show intended transformational structure with edges alone, particularly 
with nearest neighbour edges, then nearest neighbour is surely a basic structural device. All 
Delaunay neighbours make an obvious contribution, but what of the contribution of 
neighbours beyond those of Delaunay?
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Figure 12.2:  Upper Left: Glass screw pattern comprising 14,000 pairs rotated at midpoints by 330o.
Mean transformation distance is 100.00 screen units and mean nearest neighbour distance is 15.02 screen
units. Upper Right: Nearest neighbour edges for Glass screw pattern. Lower Left and Right: Delaunay
neighbour edges for Glass screw pattern. Transformational structure is clearly seen in edges alone, and
even though mean transformation distance exceeds mean nearest neighbour distance substantially more
than for the previous figure, transformational structure is seen just as clearly in the nearest neighbour
edges.

Figure 12.3 is composed of seven computer screenshots. The upper left panel shows a 
Glass screw pattern comprising 5,000 dots. The upper right panel shows corresponding 
nearest neighbour edges. Again, the mean nearest neighbour distance is well less than the 
mean transformation distance. The lower panels show 3rd nearest neighbour edges, 6th nearest 
neighbour edges 9th nearest neighbour edges, 12th nearest neighbour edges, and 15th nearest 
neighbour edges from left to right down the page. 

The distribution for number of Delaunay neighbours of each dot for a random display
peaks at six, and neighbours are effectively exhausted at around eleven. With reference to 
Figure 2.18, page 27, the probability of getting 14 neighbours is estimated at just .000005.
Hence it may be no coincidence that structure is substantially exhausted at about 12th nearest
neighbours.

I hypothesize that neighbours beyond those of Delaunay do not contribute in any 
substantial way to structure in Glass pattens and some other patterns with similar low-level 
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attributes. However, the exhaustion of Delaunay neighbour links between transformation
partners at high pattern densities should not be regarded as an indication of depletion of the 
transformation effect. The hypothesis does not say that Delaunay neighbour links are required 
to bridge transformation partners in order to perceive a transformation effect.
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Figure 12.3:  Upper Left (previous page): Glass screw pattern comprising 2,500 pairs rotated at
midpoints by 30o. Mean transformation distance is 99.41 screen units and mean nearest neighbour distance
is 34.47 screen units. Upper Right (previous page): Nearest neighbour edges for Glass screw pattern.
Others (including this page): Progressively larger ranked neighbours, corresponding to progressively
longer edges, for Glass screw pattern (see preceding text). Structure is substantially exhausted at about 12th

nearest neighbours, shown in the second to last panel.

Caelli (1981) suggested that the mean and variance of nearest neighbour distances for 
Glass patterns, including those for which mean transformation distance is substantially greater 
than mean nearest neighbour distance, are different to those for a random display with the 
same number of dots. Nonetheless if Caelli’s proposal is pushed to explain the streakiness in 
suitably dense Glass patterns, it fails. Differences in means and variances for nearest 
neighbour distances become negligible. Indeed when means and variances for other 
measures—nearest neighbour angular offset from transformation direction(s), for example—
are used in suitably dense Glass patterns, there is a streakiness that is no longer differentiated. 

However, similar analyses of larger ranked neighbours confirm the flavour of Caelli’s 
proposal, but not without a twist. Whereas nearest neighbour analysis indicates clustering for 
Glass patterns ranging to reasonably dense, and eventually randomness for suitably dense 
Glass patterns, larger ranked neighbour analysis indicates regularity, and eventually
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randomness; while still showing randomness for noise of course. And this can be readily 
explained.

Figures 12.4 and 12.5 derive from Glass translation patterns of the same density as the 
Glass screw pattern of Figure 12.3. Figure 12.4 shows a plot of nearest neighbour distances 
for a Glass translation pattern (magenta) displayed over a plot of nearest neighbour distances 
for the same number of noise points (black); which provides a better view in this case. For the 
Glass translation pattern, mean nearest neighbour distance is well less than Glass translation 
distance. Nearest neighbour distances for the Glass pattern are clipped at translation distance:
enough that they stand out against the smaller nearest neighbour distances, and that they are 
readily distinguished from the larger nearest neighbour distances for noise. Some nearest 
neighbours for the Glass pattern are not translation counterparts, in which case they have to be 
closer. It is clear that mean and variance for Glass nearest neighbours are somewhat less than 
those for noise; hence the verdict of clustering. However, if the translation distance is not less 
than the larger noise distances, nearest neighbour mean and variance fail to discriminate.
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Figure 12.4: Nearest neighbour distances (magenta) derived from a Glass translation pattern
comprising 2,500 pairs, compared to nearest neighbour distances (black) derived from 5,000 noise
points. Glass transformation distance is 60 screen units, or about 1.71 times the mean nearest
neighbour distance for the Glass pattern.

Figure 12.5 shows a plot of second nearest neighbour distances for a Glass translation 
pattern (magenta). This time, the plot of second nearest neighbour distances for the noise 
points (black) is displayed over that for the Glass pattern; which provides a better view in this 
case. Translation distance is now a little greater than the larger nearest neighbour distances for 
noise, as shown in Figure 12.4. Second nearest neighbour distances for the Glass pattern are 
clipped at translation distance, but not as many reach the translation distance as do nearest 
neighbours for the smaller translation distance of the previous example. More second nearest 
neighbours are closer than translation distance, and third and maybe fourth nearest neighbours 
are needed to increase clipping. However, some of these extend beyond translation distance as 
well, which diminishes the measure, and this is where Delaunay ranked neighbours prove 
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useful.1 Yet, even without the advantage of Delaunay it is clear that mean and variance for 
Glass second nearest neighbours are greater than those for noise; hence the verdict of 
regularity.
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Figure 12.5:  Second nearest neighbour distances (magenta) derived from a Glass translation
pattern comprising 2,500 pairs, compared to second nearest neighbour distances (black) derived
from 5,000 noise points. Glass transformation distance is 150 screen units, or about 2.78 times the
mean second nearest neighbour distance for the Glass pattern.

Given some transformation magnitude, there is an optimal loading spread for 
neighbours as outlined on page 23 of Chapter 2, and by the graphs of Figures 2.11 to 2.20. 
(For the purpose outlined, increasing the transformation magnitude is equivalent to increasing
the density; as long as transformation counterparts taken beyond the display form are included 
in calculations.) And as consistent distances become larger relative to mean distances 
belonging to respective neighbour rankings for equivalent noise, then any such consistency 
has to be judged as regular. 

To see this more clearly, consider a Glass pattern with a relatively large transformation
magnitude alongside an equal number of noise dots. The overall effect of transformation
counterparts is to increase mean neighbour distance beyond that for the noise. This equates to 
some degree of regularity (as outlined in Chapter 3) for the Glass pattern. At a relatively small
transformation magnitude, the overall effect of transformation counterparts is to reduce mean
neighbour distance below that for the noise. This equates to some degree of clustering (as 
outlined in Chapter 3) for the Glass pattern.

Nonintersecting paths

Kolers (1972) has extensively investigated apparent motion between successive 
frames of sparse arrays. Among his findings, Kolers determined that apparent motion paths 
avoid crossing. Nearest neighbour paths do not cross, and neither do any of the Delaunay 

1 Delaunay neighbour ranking is not the same as near neighbour ranking; even though they are affiliated. This
can be appreciated by observing that Delaunay neighbour links do not cross, but near neighbour links, other than
nearest neighbour links, can cross; statistically more so with larger ranked neighbours and greater dot density.
Moreover Delaunay neighbours are essentially more limited in number of ranks than near neighbours.
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paths, whether dealing with neighbours within a pattern set or between (successive) pattern 
sets. Nonetheless, regarding near neighbours, Figure 12.3 indicates that even third nearest 
neighbours, at the relatively high dot density involved, resist crossed paths to a fair extent. 
The importance of nonintersecting paths with regard to apparent motion, and also travelling 
salesperson solutions, is addressed in the unpublished study contained in Appendix B 
(Vickers, Preiss, & Hughes, 2003). 

A point of technical interest 

 In Chapter 8, page 152, it was shown how Glass screw patterns form a continuum 
between rotation and dilation patterns by simply rotating the dot pairs. The same segment of 
program code that forms a Glass pattern is used to rotate the pairs by re-referencing from the 
centre of rotation of the Glass pattern to midpoints of pairs. 

Furthermore by referencing the centre of rotation of a Glass pattern to a location far 
removed from the pattern itself, any Glass translation pattern can effectively be generated. Of 
course the transformation angle needs to be suitably reduced, in proportion to radial distance. 
The point is that all the common Glass patterns can effectively be produced with the same few 
lines of program code by changing a couple of parameters. For those interested in computer 
programming, the segment of Visual Basic 6 code for a universal Glass pattern generator 
shown in Appendix D serves to provide some idea of the procedure. (It can be copied into a 
Visual Basic 6 form, and directly executed for the purpose of manipulating parameters.) The 
methodology essentially reduces Glass patterns to one type, in which angles subtending Glass 
pairs form elements of consistency.

A point of practical interest 

 Undoubtedly, transformation regularity, which is consistency or continuity of 
orientation along with consistency of magnitude, is important to Glass pattern detection. 
(Consistency of a quantity can mean consistent change, or consistent change of change, as 
well as constancy.) Here, such consistency highlights inherent anisotropy, or cardinal 
direction, in Glass patterns. Rotating pairs of a Glass rotation pattern in either direction by 
one or another appropriate angle results in a Glass screw pattern. Independently generated 
sequences of these—as per the procedure described for Glass rotation patterns in the last 
chapter—produce a strong spiralling effect over a suitable range of angles. The spiralling 
effect is inwards for one direction of pair rotation and outwards for the other direction. 

Direction and distance are well known quantities in neurophysiology concerned with 
the visual system. An important conjecture of this thesis is that these induce a most likely 
transformation, which acts to filter out a plethora of less likely possibilities. 

Voronoi, Delaunay overture 

 Voronoi partitioning provides a basis for Glass phenomena to be conceived in terms of 
MacKay patterns. For dot patterns, members of pairs connected by Delaunay neighbour links 
generally have Voronoi cell boundaries normal to, and midway between, their links. This is 
the case whether or not a link is reflexive. (Sometimes, of course, a Delaunay neighbour link 
has only the extension of a Voronoi cell boundary normal to, and midway between, its link.) 

If a Glass pattern was partitioned by the visual system in terms of Voronoi, then there 
could be a conspicuous proportion of cell boundaries normal to transformation orientation that 
might produce a MacKay-like preference for transformation direction. Moreover Glass 
patterns have a range of transformation displacements, not too small nor large, over which 
Glass pattern structure is more prominent (see Dakin, 1997; Dry, Vickers, Lee, & Hughes, 
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2004).2 Hence, as a Glass pattern becomes more densely populated, effect due to decreasing 
neighbour distances earlier in ranks of Delaunay neighbours abates, while it transfers to later 
ranked neighbours, and a conspicuous proportion involves transformation pairs. This, while 
boundaries normal to notional links between members of such pairs could invoke the Mackay 
effect.

Figures 12.6 to 12.10 depict the theme with a mix of translation and rotation Glass 
patterns. Transformation partners that are nearest neighbours are encircled in magenta and 
transformation partners that are other ranked neighbours are encircled in green. 
Transformation normals (Voronoi boundaries perpendicular to transformation direction) are 
shown in red. Note that as patterns become more dense the ratio of transformation normals to 
dots reduces; and this concurs with the description outlined in Chapter 2, pages 22 to 30. For 
a sparse Glass pattern the ratio of transformation normals to dots is generally .5, i.e. there is a 
transformation normal for every Glass pair of dots.3 And for an extremely dense Glass 
pattern, in which Delaunay neighbours as transformation links are substantially exhausted, the 
ratio of transformation normals to dots is expected to approach that for Voronoi boundaries 
that have the same sense of orientation in an equivalent density noise display. However, the 
situation is not quite that straightforward. Noise displays are provided for comparison with 
patterned situations. 

Figure 12.6:  Left: Horizontal translation Glass pattern of 70 dots. All nearest neighbour distances are 
translation distances. Hence the ratio of nearest neighbours for transformation pairs to nearest neighbours for
all pairs is 1. Translation normals (vertical Voronoi boundaries in this case) are shown in red, and other
Voronoi boundaries are shown in blue. Ratio of translation normals to dots should be .5, instead of .471, but
for a foible of MATLAB (see footnote 3). Right: Same treatment for the same number of noise dots. No
Voronoi boundary has the same sense of orientation as the red translation normals of the left panel, hence the
corresponding ratio is 0.

2 Since patterns scale perfectly well over a wide range of comfortable viewing distances, transformation
displacements in terms of absolute units, particularly angular units for dipole lengths as subtended at the eye at 
some viewing distance, are not particularly relevant to this thesis.
3 Owing to a foible of MATLAB, in which it plots only the bounded Voronoi cells, the ratio is a little short in the
examples, with less error accompanying increasing density.
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Figure 12.7:  Left: Rotation Glass pattern of 250 dots, for which not all nearest neighbour distances are
rotation distances. The ratio of nearest neighbours for transformation pairs to nearest neighbours for all pairs
is .82. Rotation normals (radial Voronoi boundaries in this case) are shown in red. Ratio of rotation normals
to dots is .492. Right: Delaunay display along with rotation normals for the same Glass pattern. Strong
connections (low rank Delaunay links) exist across the rotation normals for all transformation regularities.

Figure 12.8:  Left: Noise display for same number of noise dots as per Figure 12.7. Ratio of radial Voronoi
boundaries to dots is .02. Right: Display for same number of noise dots as per the left panel of Figure 12.9.
Ratio of vertical Voronoi boundaries to dots is .016.
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Figure 12.9:  Left: Horizontal translation Glass pattern of 1,000 dots. The ratio of nearest neighbours for
transformation pairs to nearest neighbours for all pairs is .399. Ratio of translation normals to dots is .458.
Right: Rotation Glass pattern of 2,000 dots. The ratio of nearest neighbours for transformation pairs to 
nearest neighbours for all pairs is .144. Ratio of rotation normals to dots is .390.

Figure 12.10: Left: Rotation Glass pattern of 5,000 dots. The ratio of nearest neighbours for transformation
pairs to nearest neighbours for all pairs is .0082. Ratio of rotation normals to dots is .2064. Right: Same
treatment for same number of noise dots. Ratio of radial Voronoi boundaries to dots is .0118.

The Delaunay interpretation shown in the right panel of Figure 12.7 indicates strong 
connections (i.e., relatively close neighbours) across transformation normals for all 
transformation regularities. This remains the case for even dense Glass patterns, and only 
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reduces when Delaunay neighbours for transformation distances expire under extreme
density.

Figure 12.11 is a rotation Glass pattern of intermediate density. Its density is ten times
greater than that for the right panel of Figure 12.7. There is a Delaunay neighbour connection, 
in blue, shielded by every rotation normal, shown in red. Comparatively strong connections 
prevail across the rotation normals for transformation regularities.

Figure 12.11: Delaunay display along with rotation normals for a rotation Glass pattern of 2,500
dots. Comparatively strong connections exist across the rotation normals for transformation
regularities.

Table 12.1 summarises the trend for the Voronoi, Delaunay figures as density increases. 
The middle column shows percentages of nearest neighbours for transformation pairs relative 
to nearest neighbours for all pairs (number of transformation nearest neighbours multiplied by 
100, then divided by number of all nearest neighbours). The right-hand column shows 
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corresponding percentages of transformation normals relative to numbers of dots (number of 
transformation normals multiplied by 100, then divided by number of dots). 

Table 12.1:  Quantitative changes with 
increasing Glass pattern density (see 
preceding text).

Number of
dots

Transform 
NN / all 

NN

Transform 
normals / 

dots

70 100.00% 50.00%

250 82.00% 49.20%

1,000 39.90% 45.80%

2,000 14.40% 39.00%

2,500 9.76% 34.80%

5,000 0.82% 20.64%

Table 12.1, along with the likes of the left panel of Figure 12.10, indicates that 
connections for which nearest neighbour distances are transformation distances can be a small 
proportion of all nearest neighbour distances, while the Glass effect remains strong. Further 
investigation might inquire as to whether or not there is a qualitative difference in the Glass 
effect upon depletion of such indicators. Even so, the next step is to see if the ratios of 
transformation normals to dots for extremely dense Glass patterns approaches the regions of 
those for Voronoi boundaries that have the same orientation(s) in equivalent density noise 
displays. If so, then few such Glass pairs are connected by Delaunay neighbours. 

Figure 12.12 shows a suitably dense rotation Glass pattern. There are relatively few 
transformation normals, especially about regions at three o’clock and eight o’clock. Despite 
the fact that the ratio is almost as low as that of equivalent noise (see the right panel of Figure 
12.14), the rotation effect is still obvious. And it is just as obvious in the two regions with 
almost no transformation normals. 

Figures 12.13 and 12.14 show the rotation effect, via Voronoi tessellation, for 20,000 
and 30,000 dots respectively. As before, displays of stimulus dots for the Voronoi diagrams 
have been omitted. The rotation effect is conspicuous among neighbours for which distances 
are obviously not transformation distances. Omitting the display of dots renders them literally 
dimensionless: they are simply sites for which Voronoi boundaries are loci. And as discussed 
in Chapter 2, pages 27 to 30, dots of a suitable size in a pattern of suitable density would 
cause the Glass effect to fall away.4 Nonetheless invoking such a device does not help with 
the transformation effect as ultimately indicated by Voronoi, Delaunay with no display of 
stimulus dots. 

It is clear that given a random distribution of dots, corresponding other dots offset from 
these under some transformation provide a guarantee of anisotropy, or greater concentration 
along the direction(s) of transformation. Hence interspersed and adjacent Glass pairs, which 
can upset neighbour considerations between transformation partners, provide connections 
between partners of different Glass pairs that outline the transformation scheme at work. In 

Chapter 2, page 23, a range of directions 10o about orientation along transformation 
direction were considered salient, meaning that salient normals would have the same range. 

This is shown in Figure 12.15, by allowing what were transformation normals to have 10o

slack. And it is clear that allowing a slack around orientation along transformation direction 

4 It seems that this is reached at greater densities for rotation than for translation Glass patterns. 
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does not confer a device that differentiates the Glass effect from noise. There are about as 
many salient normals for each display.

Figure 12.12: Dense rotation Glass pattern. Transformation normals are shown in red. There are 
relatively few transformation normals, especially about regions at three o’clock and eight o’clock.
The ratio of transformation normals to dots is .0102. Despite the fact that the ratio is almost as low 
as that for equivalent noise (see the right panel of Figure 12.14), the rotation effect is still obvious.
And it is just as obvious in the two regions with almost no transformation normals.
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Figure 12.13: Left: Rotation effect, via Voronoi tessellation, for 20,000 dots. As before, displays of
stimulus dots for the Voronoi diagrams have been omitted. Transformation normals are shown in red, and the
ratio of transformation normals to dots is .0143. The rotation effect is conspicuous among neighbours for
which distances are obviously not transformation distances. Right: Equivalent density noise display. Voronoi
boundaries that form radials from the centre of the display are shown in red, and the ratio of these to dots is 
.0116.

Figure 12.14: Rotation effect, via Voronoi tessellation, for 30,000 dots. As before, displays of stimulus dots
for the Voronoi diagrams have been omitted. Transformation normals are shown in red, and the ratio of
transformation normals to dots is .0114. The rotation effect is conspicuous among neighbours for which
distances are obviously not transformation distances. Right: Equivalent density noise display. Voronoi
boundaries that form radials from the centre of the display are shown in red, and the ratio of these to dots is 
.0098.
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Figure 12.15: Left: Rotation Glass pattern of 30,000 dots. Salient normals (Voronoi boundaries in the range

10o of rotation normals) are shown in red. The ratio of salient normals to dots is .329. Right: Same

treatment for same number of noise dots. Ratio of salient normals (Voronoi boundaries in the range 10o of 
radials) to dots is .331. Allowing a slack around orientation along transformation direction does not help to
differentiate the Glass effect from noise. There are about as many salient normals for each display.

In summary, at the density associated with 5,000 dots any putative effect due to nearest 
neighbour links is lost and at 30,000 dots any putative effect due to remaining Delaunay 
neighbour links is lost. Nonetheless the transformation scheme is made obvious by Voronoi or 
Delaunay links. When presented with an ultimate consideration that refutes neighbour links 
between transformation partners, then emphasis on anisotropy seems imperative. Investigation 
shows that anisotropy is not demonstrated by examination of the difference between average 
lengths of sets of Voronoi boundaries: one set within a salient range about transformation
normals and the other set within the corresponding perpendicular range. The calculation 

‘average length for the set of Voronoi boundaries in the range 10o about transformation

normals’ divided by ‘average length for the set of Voronoi boundaries in the range 10o about 
the perpendicular’ shows no substantial difference between Glass patterns and equivalent 
noise.

Nonetheless I hypothesize that with increasing density, notional nearest neighbour 
links, such as the real ones of Figures 12.1 and 12.2, pages 228 and 229, form notional 
elements, which are notionally linked by subsequent notional neighbour links and so on. At 
low to intermediate densities these provide connections between transformation partners, as 
well as connections between partners of different transformation pairs, that outline the 
transformation scheme at work. At high densities they predominantly provide connections 
between partners of different transformation pairs that outline the transformation scheme at 
work.

Voronoi, Delaunay based connectivity preserves spatial arrangements of underlying 
dot distributions, while practically all other point-to-point connectivity does not. Hence there 
must be a measure on some aspect of Voronoi, Delaunay that differentiates Glass patterns 
from equivalent noise. 
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Measures of Anisotropy 

 A measure of anisotropy might involve calculating the mean and standard deviation 
for each of the x and y components of nearest, or near, neighbour distances. The ratio (x
mean) / (y mean) and-or ratio (x standard deviation) / (y standard deviation) could be then 
taken as the ratio of the axes of a plane elliptical form. Hence a circular form would indicate 
noise. And the more elliptical a form, the greater would be the degree of anisotropy. 

Indeed, this works quite well for horizontal and vertical transformed Glass patterns, 
even when transformation distance well exceeds mean nearest neighbour distance. And by 
using components of polar coordinates, it works equally as well for all types of Glass pattern. 
However, its utility becomes exhausted for suitably dense Glass patterns. 

A different procedure that appears to work for Glass patterns of any density that can 
be reasonably tested involves Hausdorff distance methodology applied to components. In 
terms of rectangular coordinates, the method involves first finding the set of least distances 
from each point to every other point in the x sense only. The mean and standard deviation are 
then calculated for the set of least x distances. An equivalent procedure yields the mean and 
standard deviation for the set of least y distances. Then the ratio (x mean) / (y mean) and-or 
ratio (x standard deviation) / (y standard deviation) is taken as the ratio of the axes of a plane 
elliptical form. Note that a point nearest to another point in either the x or y sense could be 
well separated from that other point in the resultant sense. 

Again, the more elliptical a form the greater is the degree of anisotropy. The method 
works well for horizontal and vertical translation Glass patterns of any density that can be 
reasonably tested. For an o oblique translation Glass pattern, the coordinate system can be 
rotated by o. Only least distances are required, even though the method works with second 
least distances, third least distances, and so on. And by using the ratio of normalized polar 
coordinate components—proportion of radial distance to proportion of angular distance—the 
method works equally as well for all types of Glass pattern. Lastly, the reason for the elliptical 
interpretation, as opposed to simply stating ratios, is that an ellipse, overlying a pattern 
segment, can confirm degree and orientation of anisotropy by its shape and alignment. 

Means and standard deviations for components of second least distance, third least 
distance, and so on (allied to second nearest neighbour, third nearest neighbour, and so on) 
work effectively, but the mean and standard deviation for components of least distance (allied 
to nearest neighbour) clearly differentiates any Glass pattern from noise and pair orientation 
perturbations without help from the subsequent measures. The measure is shown for the 
patterns of Figures 12.16 to 12.20. For the horizontal and vertical translation Glass patterns 
the measure is, respectively, about half and twice that of noise. For the translation Glass 
pattern with pairs rotated by random amounts, the measure is close to that of noise.



244

Figure 12.16: Horizontal, translation Glass pattern
comprising 2,500 pairs. Transformation distance =
60.00 screen units. Mean nearest neighbour distance
= 35.00 screen units and standard deviation = 17.55
screen units. (x mean) / (y mean) = 0.49 and (x
standard deviation) / (y standard deviation) = 0.50.
The measure is about half that for equivalent noise.

Figure 12.17:  Vertical, translation Glass pattern
comprising 2,500 pairs. Transformation distance =
60.00 screen units. Mean nearest neighbour distance
= 35.01 screen units and standard deviation = 17.09
screen units. (x mean) / (y mean) = 1.92 and (x
standard deviation) / (y standard deviation) = 1.95.
The measure is about twice that for equivalent noise.

Figure 12.18: Horizontal, translation Glass pattern
comprising 2,500 pairs. Transformation distance =
200.00 screen units. Mean nearest neighbour distance
= 36.65 screen units and standard deviation = 19.19
screen units. (x mean) / (y mean) = 0.53 and (x
standard deviation) / (y standard deviation) = 0.54.
The measure is a little more than half that for
equivalent noise because of the larger transformation
distance.

Figure 12.19:  Noise comprising 5,000 dots. Mean
nearest neighbour distance = 35.62 screen units
and standard deviation = 19.05 screen units. (x
mean) / (y mean) = 0.99 and (x standard deviation)
/ (y standard deviation) = 0.97.
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Figure 12.20: Perturbed translation Glass pattern comprising 2,500
pairs that have been rotated by random amounts. Transformation
distance = 60.00 screen units. Mean nearest neighbour distance = 36.66
screen units and standard deviation = 17.23 screen units. (x mean) / (y
mean) = 1.01 and (x standard deviation) / (y standard deviation) = 1.08.
The measure is about that for equivalent noise.

Back to Delaunay 

The top left panel of Figure 12.21 shows the Delaunay triangulation of 10,000 Glass 
rotation dots, with constant separation between transformation partners. The bottom left panel 
shows the Delaunay triangulation of 20,000 such dots. And the two right-hand panels show 
Delaunay triangulations of respective noise. Again, the display of stimulus dots has been 
omitted.

The number of triangles fails to differentiate Glass patterns from noise. The mean and 
standard deviation of least angles of triangles ultimately fails to differentiate Glass patterns
from noise. And the mean and standard deviation of lengths of triangle sides ultimately fails 
to differentiate Glass patterns from noise. That is, distributions of these measures, graphed
from associated data, fail to show any differentiation of Glass patterns from noise at middle to 
higher densities. However, the mean area of triangles is of some help in differentiating Glass 
patterns from noise, and the standard deviation of areas of triangles proves useful. Table 12.2 
shows the means and standard deviations of Delaunay triangulations belonging to respective 
Glass and noise patterns for the range of measures just outlined.
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Figure 12.21: Upper Left: Delaunay triangulation of 10,000 Glass rotation dots. Upper Right: Delaunay
triangulation of 10,000 noise dots. Lower Left: Delaunay triangulation of 20,000 Glass rotation dots.
Lower Right: Delaunay triangulation of 20,000 noise dots. (See text.)

Table 12.2:  Means and standard deviations for various measures on Delaunay
triangulations for respective Glass and noise patterns. The standard deviation of areas of
triangles proves useful.

10,000 dots 20,000 dots

Glass Noise Glass Noise

Number of triangles 19,931 19,932 39,928 39,900

Average least angle of triangles 31.17
o

30.12
o

30.75
o

30.51
o

Standard deviation 13.16
o

13.30
o

13.08
o

13.09
o

Average side length of triangles 57 58 41 41

Standard deviation 34 34 23 22

Average area of triangles 1259 1247 629 625

Standard deviation 1215 1120 577 549
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The ability of standard deviation—in particular standard deviation squared, or variance—to 
differentiate areas of triangles via appropriate inferential statistics; the F test for equality of 
variances ( 2 Glass/ 2 noise) for example, holds for Glass patterns of any density that can be 
reasonably tested. 

This concurs with the anisotropic interpretation. For every dot in a Glass translation

pattern there is at least one other dot that lines up, which, at least, forms a pair with an 
orientation that is consistent across the pattern. For every dot in a Glass rotation pattern there 
is at least one other dot with the same radial distance from the rotation centre, which, at least,
forms a pair with an orientation normal to that of the radial extent, and with an orientation that 
is consistent across the pattern. Dots are constrained in pairs, with a lane-like tendency, 
orientated in preferred directions. This also affects the homogeneity of dots normal to 
transformation direction. 

Compared to a random dot pattern with the same number of dots, more dots lie along 
preferred directions and therefore fewer dots lie across them. Compared to the distribution of 
Delaunay triangle areas for the random dot pattern, there is a greater frequency of smaller
triangle areas for Glass patterns and also a longer tail of larger triangle areas.

Hence, in the anisotropic situation there is a greater spread of triangle areas, which can 
be overtly appreciated by reference to the upper two panels of Figure 12.21; these being Glass 
rotation and noise, each involving 10,000 underlying stimulus dots. 

The greater spread of triangle areas can be also appreciated by reference to Figure 
12.22, which was derived from a circular form rotation Glass pattern and equivalent noise, 
each involving 10,000 underlying stimulus dots. 

Figure 12.22: Left: Delaunay triangulation of 10,000 Glass rotation dots on a circular form. Right: Delaunay
triangulation of equivalent noise; i.e., 10,000 noise dots on a circular form. (See text.)

A circular form obviates the overlap problem with square form rotation Glass patterns, which 
exists at the corners and increasingly along the edges with greater rotation magnitude. Figure 
12.23 indicates the general idea. Dot density is half as much at the overlaps owing to 
transformation counterpart dots in these regions being rotated out of the common area. Just 
the dots inside a common sub-area should be used, but it is expedient in the present 
application to use a circular form.
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Figure 12.23:  Dot density is half as much
at the overlaps. Just the dots inside a sub-
area should be used.

Figure 12.24 shows F ratios for variances of Delaunay triangle areas (circular form)
for rotation Glass patterns against equivalent noise ranging from 500 to 50,000 dots at 60 
screen units transformation distance, shown in dark blue, and 200 screen units transformation
distance, shown in magenta. It also shows corresponding critical values for the F tests in cyan 
and yellow.

The transformation effect is near optimal at 60 screen units transformation separation, 
for which the plot shows it always significant, but more so at lower densities. For 200 screen 
units transformation separation, the plot rightly indicates that the transformation effect is not 
as strong. As close to F criticals as such plots might come, there appears to remain some
difference out to very high densities. Even so, given the power to detect meaninglessly small
differences in large numbers of dots, statistical significance is not the issue. Rather the issue is 
that the differences are principled. They are all in the right direction, reduce as expected with 
increasing density and transformation magnitude, and there is no case in which an F ratio is 
less than or equal to 1. And so it appears to be for Glass patterns of any density that can be 
reasonably tested (of which there is a practical limitation owing to current computing
capacity). Moreover, the t test on means of triangle areas yields principled differences. 
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Figure 12.24: F ratios for variances of Delaunay triangle areas for rotation Glass patterns
(circular form) against equivalent noise, ranging from 500 to 50,000 dots. Transformation
distance at 60 screen units is shown in dark blue, and transformation distance at 200 screen
units is shown in magenta. Corresponding critical values for the F tests are shown in cyan 
and yellow, which are essentially superposed.

Results from such measures on Glass patterns indicate the transformation effect does 
not disappear with increasing density. Results also indicate that the transformation effect is 
less with greater separation between transformation partners. 

Upon the evidence it is likely that proximity and orientation measures have some
influence at lower densities. There can be quite a difference indicated for such measures
between lower density Glass patterns and equivalent noise, which aught to operate in concert 
with the variance measure for Delaunay triangle areas. Moreover first and second moments
for Delaunay triangle edge lengths and least angles, as well as average area for Delaunay
triangles, are quite different to those of equivalent noise at lower densities.5

For a clearer indication of differences between distributions of Delaunay triangle 
areas, those for a circular form rotation Glass pattern of 40,000 dots and equivalent noise are 
shown in Figure 12.25. 

5 Maybe less dense Glass patterns have some extra qualitative difference in transformation effect, with respect to
more dense Glass patterns, to match this quantitative difference.
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Figure 12.25:  Distributions for a circular form rotation Glass pattern of 40,000 dots (upper panel) and
equivalent noise (lower panel). The greater frequency of smaller triangle areas for the Glass pattern is
obvious. However, the tail of larger triangle areas for the Glass pattern is not obvious owing to the scale 
of the graph, but the larger scale of the abscissa connotes these areas; albeit at low frequency.

As far as density is concerned, limits appear to be practical ones for which there is an 
obliterating fusion of dots at some density related to dot size. The transformation effect that 
characterizes Glass patterns endures at extremely large densities. With the variance measure
on Delaunay triangle areas, there is evidently saturation of dot colour for even tiny dots before 
a Glass pattern measures like noise of the same density. 

Upon magnifying rotation or dilation Glass patterns containing up to 10 million or so 
speck-like dots, by differentially scaling selected areas with respect to dot size, the 
transformation effect can be still patently evident. Before such scaling, Glass patterns, typical 
in size of those shown in figures throughout, are characteristically saturated with dot colour. 
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In the differential scaling employed herein, a form is scaled up more than its dots, and such 
that the dots tend strongly to individuation in the event of an initially saturated situation. 

Where a Glass pattern is initially discernable, then uniform scaling (i.e., form and dots 
scaled up equally) preserves the effect. To discern a strong transformation effect after 
differential scaling at increasing magnifications, a Glass pattern requires relatively smaller 
transformations. Upon differential scaling, a pattern with a larger transformation can be lost 
though the pattern is obvious beforehand. However, this requires some qualification. If, after 
such scaling, enough of the pattern is included then it can still be seen; albeit with some
reduction of effect. Notwithstanding the global contribution of larger pattern segments, all this 
suggests an interaction of transformation distance and dot interposition. Moreover the 
transformation effect is not nearly as persistent for translation Glass patterns as it is for Glass 
patterns in which transformation is about a proximal central pivot; which seems ecologically 
plausible.

Figure 12.26 shows a small segment with a few thousand dots belonging to a constant 
displacement rotation Glass pattern of 5 million dots in all. The segment is rescaled by a form
factor of 388. The F test for variance of triangle areas with respect to equivalent noise for 
segments proves principled in the way that the F tests were for the previous examples. And if 
a reasonable part of any constant displacement Glass pattern shows such comport against 
equivalent noise, then the whole must do so as well.6

Figure 12.26: Small segment of a constant displacement rotation Glass pattern,
rescaled by a form factor of 388. The whole Glass pattern of 5 million dots was 
on a form not much smaller than that derived for the magnified segment; the
latter of which was maximally sized for screen fit while maintaining aspect ratio.

By iterating through arrays preloaded from Glass pattern picture files, millions of dots 
can be shown at once for each presentation. The method allows for rapid iteration of displays 

6 A result for the whole remains beyond accessible computing resources. 
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at any practical number of dots; as opposed to generating each display immediately prior to 
presentation. The latter procedure becomes slow and ineffective for successive displays of 
large numbers of dots 

As an aid to description, Figure 12.27(a) shows a relatively sparsely populated 
example of a progressive displacement rotation Glass pattern; as opposed to an equivalent 
constant displacement rotation Glass pattern shown in Figure 12.27(b). Taking a progressive
displacement rotation Glass pattern as an exemplar, rotation motion is obvious at hundreds of 
thousands to millions of dots. At the same time, dot density can be linearly increased 
throughout a presentation sequence, upon which the rotation effect becomes progressively 
more localized around the centre of the display. The same ‘spin in’ effect can be seen by 
generating one such Glass pattern, with each dot pair output to the display in generation
sequence, up to millions of pairs. 

  a b

Figure 12.27: Progressive displacement rotation Glass pattern (a). Constant displacement rotation 
Glass pattern (b).

The Glass pattern exemplar has a progressive increase in distance between 
transformation partners, related to radial distance from transformation centre. In other words, 
more outwardly located pairs are constituted of larger partner displacements than more
inwardly located pairs. With increasing density, the transformation effect is lost not because 
of increasing interposition, which is uniform across any Glass pattern, but because of 
interaction of increasing interposition with progressively greater transformation distances. 

 The relation between density and transformation effect is further clarified by iterating 
the same Glass pattern, or at least the same number of Glass pairs, such that it spans 
increasing size forms. Initial density is chosen so that the transformation effect is visible just 
to the middle part of the edges, say, of the small, initial form. It turns out that the same effect
persists across the different size forms: the same visibility of effect to the edges of all the 
forms remains with decreasing density. 

Starting with the same Glass pattern, or at least the same number of Glass pairs, on the 
same small, initial form as before, the number of Glass pairs is now increased proportionally 
to increasing form area so that density remains constant. And there is no doubt that the 
transformation effect moves inwards, in a principled manner, as form size is increased.
Transformation effect appears to be exactly compensated by reducing density in the first 
instance, and reduced by increasing transformation distances in the second instance.
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Additionally, MacKay patterns with hundreds of thousands of dots can be presented 
by iterating through arrays preloaded from random dot picture files with barred backgrounds, 
and the MacKay effect is still patently obvious. In all these kinds of observation there is no 
movement other than that generated by the visual system. This suggests that an active or 
generative transformational system is at work in the visual system. It appears to be the 
common element across many apparently different phenomena related to visual perception. 
Distance between elements is relevant, and structure is certainly elucidated by the Delaney 
neighbourhood.

A summary hypothesis

Barlow (1999) noted that many researchers with an interest in cognitive function 
recognised the importance of statistical regularities of the environment. He and others have 
begun to show how regular statistical properties of images are exploited by neural 
mechanisms. Chun (2000) showed that statistical regularities in the structure of images were 
picked up unconsciously by observers. Inasmuch as this thesis is concerned, statistical
regularities are inducing consistencies. 

Inducing consistencies may produce likely transformations. Voronoi tessellation and 
the Delaunay neighbour hierarchy capture structure in patterns. However, investigation has 
shown that the transformation effect, both within Glass patterns and between Glass patterns 
treated in sequence, persists beyond exhaustion of Delaunay neighbour distances equal to 
transformation distances. Hence a claim that neighbours of any kind in the Delaunay 
hierarchy need to link transformation partners to sustain the transformation effect is incorrect.
Nonetheless they may be implicated at low to moderate densities in Glass patterns and 
Mackay-like patterns. An important point is that even when Delaunay neighbour distances 
equal to transformation distances are exhausted, members of the Delaunay neighbour 
hierarchy capture structure in Glass patterns.

For unstructured displays—static random dot displays and random dot 
kinematograms, for example—sporadic, or chance, inducing consistencies may produce likely 
transformations. Nearest neighbours and-or other Delaunay neighbours appear to pay a key 
role in the perception of such displays (see Appendix B). Moreover nearest neighbours and-or 
other Delaunay neighbours prove important for the perception of clustered and regular 
patterns (see Appendix A), and for the perception of Marroquin patterns as another form of 
regular pattern. Figure 12.28 (a) shows a piece of Marroquin pattern formed with a rotation of 
12.5o and Figure 12.28 (b) shows the pattern outlined by nearest neighbours, for example.

a      b

Figure 12.28: Structure in the piece of Marroquin pattern (a) is captured by nearest 
neighbours, shown linked in (b).
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Gestalt principles as inducing consistencies 

Polygons can be generated using translations and circles can be generated using 
rotations. Geometric patterns such as these consist of special arrangements of Glass pattern 
elements. Hence the Glass pattern detection routine can detect these on the same basis as it 
detects Glass patterns. In fact the Glass pattern routine can serve as a basis for detection of a 
variety of low-level structures. 

Voronoi or Delaunay based connectivity preserves spatial arrangements of dot 
distributions. With increasing density of Glass patterns, notional neighbour links form 
notional elements. At low to intermediate densities, these provide connections between 
transformation partners, as well as connections between partners of different transformation 
pairs, that outline the transformation scheme at work. This then may trigger a salient 
transformation in the visual system. At high densities, elements formed by notional neighbour 
links predominantly provide connections between partners of different transformation pairs 
that outline the transformation scheme at work. Again, this may trigger a salient 
transformation in the visual system. 

Voronoi, Delaunay based connectivity is a kind of consistency that relates to just one 
Gestalt principle, namely proximity. The other Gestalt principles, similarity, continuity, and 
closure, along with proximity, constitute a group in which the elements can interact. All are 
kinds of consistency, or statistical regularity, that may trigger salient transformations in the 
visual system. 

Links substitute for dots 

For a relatively sparse Glass pattern, most nearest neighbours link transformation 
partners and few nearest neighbours link partners of different transformation pairs. For an 
intermediate density Glass pattern some nearest neighbours link transformation partners, but 
these are intermingled with other nearest neighbours that link partners of different 
transformation pairs. And for a high density Glass pattern there are few nearest neighbours 
that link transformation partners. Nearest neighbours predominantly link partners of different 
transformation pairs. Figure 12.29 shows this transition in panels from top left to bottom 
right.

Whether or not separate nearest neighbour links substitute for two underlying dots or 
connected nearest neighbour links substitute for three, or more, underlying dots, and whether 
or not they link transformation partners appears to be irrelevant. What is relevant is that the 
links substitute for underlying dots and we see the Glass effect in the links, which have a 
lower density than the dots in the range half density upwards. And if these links, as elements, 
are linked in similar fashion again, between their centroids for example, and the original links 
erased, then a decreasing number of larger elements continues to outline structure. The 
important consideration is that proximal distances matter. They outline structure. Moreover 
they outline transformation schemes, whether or not their corresponding links join 
transformation partners. 
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Figure 12.29:  Nearest neighbour links for underlying Glass patterns of increasing density. At low density they
link transformation partners. At intermediate density they link transformation partners, but these are 
intermingled with other nearest neighbours that link partners of different transformation pairs. At high density
they link partners of different transformation pairs.
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Neighbours and spatial frequency 

 A commitment of this thesis has been to thoroughly explore nearest neighbour and its 
encompassing family, but these are obviously not the only terms in which explanations can or 
should be couched. Spatial frequency theory provides an appealing account involving 
proximity, and is here briefly mentioned. 

It is generally known that Neurophysiological studies (Frisby, 1980; Hubel, 1979a; 
Hubel & Wiesel, 1959, 1968; Mountcastle, 1978) have revealed cortical columns of 
specialized feature detector cells that are aggregated in hypercolumns with varying degrees of 
a feature along one dimension and left-eye, right-eye alternating columns for the respective 
degrees along the complementary dimension. 

In spatial frequency theory, the phase and amplitude of a spatial frequency wave are 
respectively commensurate with the location and degree of brightness of elements belonging 
to an image. Higher spatial frequencies carry finer detail formed by local contrasts and lower 
spatial frequencies carry coarser detail formed by the overall pattern of shading. Complex 
spatial frequency waves can be constructed from the summation of pure sinusoidal waves 
having a variety of phases and amplitudes. These typically correspond to real scenes, in 
contrast to the pure sinusoidal waves that correspond to a class of contrived displays used in 
psychophysical studies. 

Much evidence exists to show that we have specialized cells, called spatial frequency 
filters, in the retina and further levels of the visual system, and that these respond to specific 
spatial frequencies (De Valois & De Valois, 1980). According to spatial frequency filter 
theory, the specialized feature detector cells revealed in neurophysiological studies detect 
information about spatial frequencies. Many bits of spatial frequency information from small 
areas of the retina are integrated further along in the visual system. 

For MacKay patterns, there is an impression of dots streaming faster in directions 
normal to barred backgrounds as the barred backgrounds are made more dense, and this 
equates simply to increasing the spatial frequency of the backgrounds as inducing elements. 
Anisotropy in Glass patterns equates to a kind of textural graininess, which causes Glass 
patterns to have higher spatial frequencies along transformation orientations than across them. 
For both MacKay patterns and Glass patterns, impression of orientation is the same as the 
orientation of highest spatial frequency. That is, impression of orientation is the same as the 
orientation of closest proximity of inducing elements. 

One of the earliest cortical cell features discovered was sensitivity to orientation, with 
progressive changes in orientation across the columns of cells (Hubel & Wiesel, 1959, 1968). 
Further studies have shown that cortical cells tuned to different spatial frequencies appear to 
be ordered along the dimension complementary to that of orientation selectivity within each 
hypercolumn (De Valois & De Valois, 1988). 

Scale integration in spatial frequency theory has presented a challenge. However, scale 
integration that uses a broad and continuous range of scales has been undertaken somewhat 
successfully by Witkin (1983). Notwithstanding that there may be constraints on distances 
associated with orientations and that these would need to scale, then, on the above, we should

see some kind of Glass effect. Moreover orthogonality may bracket the argument. Effects 
from cells with the most excitation may be compared with effects from cells with the least 
excitation; which highlights the difference along a grain as opposed to across the grain. At the 
same time, effects from cells excited a little less than the most excited may be compared with 
effects from cells excited a little more than the least excited, and so on in trigonometric 
complementarity. 

However, for all but pure translation Glass patterns orientation is not constant, hence 
there remains a problem for the global percept of Glass patterns. It is the same as that outlined 
in Chapter 8 for the difficulty with the neural approach in terms of hierarchies of filtering 
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units. How are the many bits of spatial frequency information at different orientations, each 
from small areas of the retina, integrated further along in the visual system? And, again, it is 
hypothesized that such information triggers an appropriate transformation. More generally, 
however, some or all of the Gestalt principles in interactive combination may trigger an 
appropriate transformation.
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Chapter 13:  Discussion and Further Research 

General

The generative transformational approach stems from a general hypothesis in response 
to theoretical problems gleaned from the literature. Investigation into the approach indicates 
that it can provide a rudimentary, workable model of certain elements of human visual 
perception (Vickers, Navarro, & Lee, 2000; Vickers & Preiss, 2000). This is further supported 
by the investigation undertaken herein. 

The generative transformation model provides a reasonable account of perception of 
static and changing visual stimuli. It recognizes transformed stimuli, and can be utilized to 
draw conclusions about a number of illusions. The model is parsimonious and illuminating, 
both qualitatively and quantitatively. The discipline associated with the need to specify every 
process in detail enforced an unavoidable, if not laborious, advantage. Many dimly 
anticipated, and some unforeseen, elements were pointed up by the operational demands of 
the model under development. (Needless to say, there is a good deal of difference between a 
hypothesis and actually being called upon to implement it in any reasonable detail.)

The generative transformation model uses information about relative positions of 
image elements. In effect each image element is ‘seen’ by all the others, and relationships of 
economy that prove most suitable are utilized to select transformations that minimize 
dissimilarity between arrays. The trajectories of the selected transformations then correspond 
to perceived structure. 

The model decomposes and regenerates fractal objects. It detects and differentiates 
non-fractal objects, including Glass and Marroquin patterns, and regular and semi-regular 
geometric objects; any embedded in noise as appropriate. In the same fashion, it detects 
regular and semi-regular motion. It also provides an explanation for temporal and spatial 
context effects, such as the ‘representational momentum’ that allows us to infer the future 
state of an object (Freyd & Finke, 1984). 

The generative transformational approach accords with Leyton (1992), who argues 
that visual perception consists of recovering the process history undergone by an object. 
According to Leyton, such recovery proceeds by progressively removing asymmetries or 
‘distinguishabilities’, so as to infer an original object that is maximally symmetric. 
All this implies that perceptual information may be remembered in a more active form than is 
generally reckoned; a form that is connected to the way in which such information can be 
regenerated (Vickers & Lee, 1997). Moreover the approach includes some interpretation of 
the development or construction of objects, hence it shifts the orthodox boundary between 
perception and cognition. 

Although detection of structure, as examined in Section 2, rests heavily on the 
Hausdorff measuring procedure, it should be emphasized that it is not helpful to regard the 
model as a static, reflex-like process. It is generative in the sense that the response of the 
model is capable of mimicking the process whereby an image was generated in the first place. 
This has been shown by the way it can regenerate fractal objects from parameters gathered 
during decomposition. (Decomposition is akin to seeing, and regeneration is akin to 
realization.) More generally, because relationships of economy are utilized to select 
transformations that minimize dissimilarity between arrays, the model is implicitly generative. 
Whatever is seen to be done in the first place, is ‘undone’ by the model in the deciphering 
process.

The generative transformational approach invites many predictions and provides 
explanations for a multitude of phenomena, just a few of which are mentioned below. 



259

Illusions concerning visual aftereffects 

 Illusions concerning visual aftereffects are accommodated by the generative 
transformational approach. MacKay figures, explained opportunely in terms of nearest 
neighbours at the end of Chapter 2, pages 33 to 35, are a precedent. The inducing, or 
background, figure has some form of symmetry. A radial background has bidirectional 
rotation symmetry. A concentric background has dilation symmetry (more on this presently). 
A barred background has translation symmetry in two directions orthogonal to the bars, and 
so on. 
 The generative transformational approach cites these figures in terms of process 
history, or transformational actions on simplest elements needed to produce them (Leyton, 
1992, again; see also Vickers & Preiss, 2000, Appendix C). In the case of the radial MacKay 
figure for example, a bar would be planar rotated, using one end as a pivot, and stamped in 
increments to give the barred radii. Another precedent related to MacKay’s work (MacKay, 
1957a for example) is the waterfall illusion, in which fixating for a while on downward 
streaming dots, as the inducing figure, results in apparent upward motion of a test figure of 
stationary dots. Here, the symmetry involves invariance under translation. In terms of process 
histories, the transformations that reinstate original configurations as invariants are 
experienced as tendencies by way of aftereffects. In either the MacKay figure or the waterfall 
illusion, a subsequently viewed bland field of stationary dots appears to move with a tendency 
to undo the inducing transformation. Note that in some cases inducing transformations result 
from one of two interpretations related to bi-directionality, as per Ross, Badcock, and Hayes 
(2000), cited in Chapter 11. Whatever the interpretation, the aftereffect is a complementary 
effect.

In the case of fixating an oblique line for a while, and then switching to a vertical line, 
the vertical line appears a little inclined in the opposite sense. Here, again, there is the 
endeavour by the visual system to undo a transformation, which is triggered in this instance 
by the mapping from test to inducing line.1 Like the representational momentum effect 
described in Chapter 9, pages 187 and 188, compensation occurs in response to a most 
parsimonious rendering of transformational history. 

Directionality of aftereffect is a topic that needs more explanation. Again, MacKay 
figures serve the purpose. Notwithstanding the predilection of a particular visual system, a 
MacKay figure with a radial background promotes equal probability for aftereffect streaming 
in either rotational direction; and similarly with a barred background for either direction 
orthogonal to the bars. However, for a concentric background the aftereffect is 
comprehensively experienced as streaming from the centre, outwards; and this could be 
because people do not have eyes in the backs of their heads! 

Concentric circles prime for dilation with greater probability than for contraction 
because the visual system has internalized the former with greater precedence than the latter. 
This is because the visual system experiences dilations during forward components of 
movement, which are ubiquitous in daily experience. The less likely experience of looking to 
the rear while moving forward, or, indeed, moving backward, produces contractions at the 
retina. An example that highlights could be the rear view experienced while looking from the 
rear of a fast moving train. The visual system manages, but the experience seems somewhat 
atypical. Nonetheless anything that recedes concurs with a contraction, and the visual system 
accommodates it. 

The aftereffect from fixating stationary patterns of alternating black and white stripes 
for a while and then viewing a uniform field of dots, which appear to show a streaming 

1 Of course, a vertical line is chosen as the canonical form because of the sensitivity of the visual system to 
departure from verticalness. In any event, such a small offset would not be noticed with another oblique line as 
the test figure. 
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motion normal to the orientation of the stripes, is the same as the simultaneous effect for 
dynamic MacKay configurations. Careful observation of the dynamic MacKay configurations, 
described at the end of Chapter 2, show that it is just as easy to urge either of the directions 
for streaming where a radial or a barred background is concerned, but it is more difficult to 
urge the inward direction for streaming against the predilection for the outward direction 
where a concentric background is concerned. Nevertheless it can be forced to some extent. 

In keeping with Shepard (1984, 2001), all this argues well for the notion of 
internalization. In urging one direction or another, one literally wills the direction of effect 
with the same mental transformation as the apparent streaming transformation that ultimately
results. And the biased bi-directionality for the concentric background should be, again, a 
confirming analogue for internalization. 

Müller-Lyer illusion 

Müller-Lyer arrowheads, however acute or obtuse, long or short, are simply
transformations of one another. It is obvious that the centroids (balance points) of inward
pointing arrowheads are further apart than those of outward pointing arrowheads, where each 
pair cap the same length shafts. See Figure 13.1. In addition to the centroid located at the 
centre of each shaft, each half of a Müller-Lyer figure has its own centroid constituted of half 
a shaft and an arrowhead. However, it does not appear to be this sub-centroid that dominates, 
only the sub-centroid of the arrowhead itself. 

A computational analysis indicates that twice the distance from the tip of an 
arrowhead to its centroid best represents the subjective difference in length between the two 
shafts. Equivalently, a shaft appears shortened (contracted) or lengthened (dilated) by the 
distance from the tip of an arrowhead to its centroid. See Figure 13.2. Another equivalent 
standpoint is that the centroids due to the arrowheads at both ends of a shaft have the effect of 
shrinking (contracting) or stretching (dilating) the ends halfway toward them. This prediction 
of the generative transformational approach needs investigation by way of a research study 
involving subjects, not just a computational analysis.

Figure 13.1: Müller-Lyer illusion. Shafts a and b are the same length. The intersection of
the hairline with a shaft indicates the centroid of the corresponding arrowhead.
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Figure 13.2: Analysis indicates that twice the distance from the tip of an arrowhead to its centroid best
represents the subjective difference in length between the two shafts. The top two lines, originally the
length of the shafts, are altered in length by the signed distance from the tip of an arrowhead to its centroid.
The computer program allows variable length arrowheads, and can spin the angles through acute and
obtuse continuously. Any combination appears to ring true.

A related prediction of the generative transformational approach concerns 
displacements of shafts. In this scenario, one shaft is capped with an inward pointing 
arrowhead at one end and an outward pointing arrowhead at the other end, and the other shaft 
is rendered in the opposite sense (an outward pointing arrowhead at the same end as the other 
shaft has an inward pointing arrowhead and vice versa). As the arrowheads are continuously
transformed through acute and obtuse angles, the generative transformational approach 
predicts that the shafts will appear to translate horizontally in opposite directions while 
maintaining fixed equal lengths, and this is exactly what happens. The apparent displacement
of the shafts with respect to each other is, again, twice the distance from the tip of an 
arrowhead to its centroid. Equivalently, a shaft appears to translate horizontally about a mean
position by the distance from the tip of an arrowhead to its centroid. Whether dealing with 
opposed or coincident arrowheads, shaft transformations appear seamless with continuous 
transformation of the arrowheads, and this seamless effect faithfully follows the way the 
centroids translate. 
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Distortion illusions 

Figure 13.3: Straight lines appear bowed away from the common center of the radial lines.

Figure 13.4: Straight lines appear bowed at the tangents, towards the common centre of the circles. 
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The line distortion illusions shown in Figures 13.3 and 13.4, again, can be explained in 
terms of bidirectional rotation symmetry for the radial background and dilation symmetry for 
the concentric background. For Figure 13.3, rotation symmetry in either direction concurs 
with apparent curving of the lines. For Figure 13.4, more dilation towards the ends of the 
upper line concurs with them being pushed away in apparent fashion from the centre of the 
circles. Dilation operates more along the lower line, and has more of an apparent stretching 
effect (which cannot be realized in this figure alone) along with some apparent bowing effect. 

Categorization 

 Feldman (1997) has recently investigated what he terms ‘one-shot categorization’ (p. 
145): the telling ability to infer that a single object, or a small number of objects, belongs to a 
general class with certain properties. Feldman (1997) proposes that this kind of generalization 
is equivalent to a generative model for a category: ‘a process…that generates legal members 
by applying a limited set of transformations to some primitive object’ (p. 146). 
 Feldman and Richards (1998) explored the ‘natural’ transformations undergone by a 
rectangle and conclude that subjects tend to choose transformations that preserve shape, rather 
than maintaining constant area, length, or width. This is consistent with the way greyscale 
charts indicate a shape invariance—via the arrangement of Hausdorff components—of 
transforming objects (see Chapter 8, pages 174 to 176). 
 Recognition of different instances of the same letter is a categorization example that 
could be included under the umbrella of the generative transformational approach. More 
generally, logo recognition is a categorization example that could be included under the 
umbrella of the generative transformational approach. Bitmap images, represented by 
relatively sparse arrays (see Chapter 9, pages 195 and 196), indicate a shape invariance—via 
the arrangement of Hausdorff components—that could be used to advantage. 

Transformed images presented to the retina 

Stratton (1896, 1897a, 1897b) and a raft of subsequent researchers, among them 
Kohler (1962, 1964), report a plastic correspondence between the image that impinges upon 
the retina and what is perceived. Such images, transformed in different ways by various 
optical devices worn at length by experimenters, are seen as transformed only until adaptation 
ultimately occurs; usually over some period. A transformation could be a displacement or 
some rotation, including an inversion, for example. Adaptation occurs via integration of the 
senses during a rediscovery of veridicality, which then dictates that there is nothing odd about 
the new world. However, invoking the pre-adaptation mode can interrupt the new experience, 
such that the world viewed through the device appears odd again. Additionally, adaptation to 
the new experience causes the world to be seen as transformed in the opposite sense for some 
period when the device is removed. In any event all adaptations undergone by an individual, 
including the so-called ‘normal’ one established during infancy, are available in 
complementary fashion: only one at a time can be realized. (Invoking an adaptation mode is 
evidently a bit like urging the alternative perception when looking at a Necker cube, cited in 
Palmer, 1999, for example, with its two mutually exclusive depth interpretations.) 

Stratton, commenting on his 1896 retinal image inversion studies, describes how ‘up’ 
is nothing in the visual sensory pattern other than opposite to ‘down’, and orientation is 
achieved by the relation of the visual pattern to somothesis and behaviour. He states, ‘Any 
visual field in which relations of seen parts to one another would always correspond to the 
relations found by touch and muscular movement would give us “upright” vision, whether the 
optic image lay upright, inverted, or at any intermediate angle whatever on the retina’ 
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(Stratton, 1896, p. 617). The conclusion is that the raft of findings from these studies fit nicely 
with, and could even compel, a generative transformational approach to visual perception. 

Perceptual constancy 

 Adaptation to optically transformed images, including up-down reversal, right-left 
reversal, deflection with distortion, image discontinuity by shearing at midline, bisection with 
complementary colours, and the provision of an artificial scotoma, indicates a facility related 
to wide ranging perceptual constancy. Such adaptation equates with reversion to some 
perceptual norm, or correctness, which services the imperative of successful functioning in 
the world. J. J. Gibson, interpreting Kohler’s findings in the introduction to Kohler (1964), 
explains that this is achieved by exploratory, not performatory, activity relating to eye, head, 
and body orientating systems as a successively inclusive hierarchy. The aim of the 
exploratory activity is to achieve an optimum of stimulation. 

The acquired uniformity of perception, across images transformed in quite different 
ways, includes size and shape constancy as just two among some number of perceptual 
constancies. Further, the status of an image need only be such that lawful transformations can 
validate experience in the world. Any biasing of the way that light delivers information from 
the environment is not unsatisfactory provided information is not destroyed. Again, this fits 
nicely with, and could even compel, a generative transformational approach to visual 
perception. In fact, a generative transformational approach accommodates enough that it is 
difficult not to conclude a substantial part of brain function is given over to transformation 
operations on representations. Generation of transformations on representations allows the 
representations to be plastic in any lawful way. 

Fractals

By utilizing appropriate transformations, along with minimization of Hausdorff 
distance mismatch, it is anticipated that any fractal can be decomposed and the representation 
thereof stored in just a few parameters. This includes modeling of growth and decay, for 
which a change in size of contracted copies along with one or another convergence factor is 
needed. An ongoing investigation would develop and optimize methodology to cater for any 
line, area, or volume fractal with a fixed or variable contraction size. 

Model refinement 

An immediate need for further research lies in refining the model through comparing 
predictions with data, especially in the fundamental areas of perception of Glass pattern 
structure and detection of coherent motion. These are relatively simple, constrained situations 
in which parameter estimation and the fitting of empirical data seem to be reasonably 
straightforward.

With respect to Glass patterns, for example, in Chapter 2 natural neighbour loadings 
were derived. This raises the question of quantification by comparing a formal analysis of 
natural neighbour loadings with psychophysical measurements of Glass pattern detection. 
However, in Chapter 12 a significant point was made: proximity links can still show structure 
without connecting transformation partners. This more inclusive finding subsumes the utility 
of natural neighbor loadings. New methods relating to anisotropy and F ratios for variances of 
Delaunay triangle areas were developed. Again, this raises the question of quantification by 
comparing a formal analysis of these measurements with psychophysical measurements of 
Glass pattern detection. Such quantification could be accomplished, for example, by 
comparison of a formal analysis with outcomes in terms of the signal detection theory of 
Green & Swets, 1966, for at least a ‘yes/no’ pattern discrimination task, in which Glass 
patterns in various levels of noise are presented to subjects. 
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Natural versus person made 

 Delaunay triangulations for degenerate point sets have different statistical properties 
than for point sets in general position. But, of course, as point sets in general position 
approach degeneracy so the statistical properties of their Delaunay triangulations approach 
those for degenerate point sets. Degenerate point sets are mostly artificial in their ‘perfect’ 
geometry, typical, as they are, of Euclidean mathematics. Degenerate point sets are mostly 
person inspired representations, and are the exception in representations of nature. 
Nonetheless the striking difference between ‘natural’ and ‘person made’ can be marked by the 
difference in statistical properties of their Delaunay triangulations, and this could be a subject 
of some research in pattern recognition. 

Further statistical development 

Pattern detection methodology in psychology could be further developed along some 
of the following lines. Numbers of Delaunay neighbour points belonging to each point for 
different point patterns can have different distributions. Statistical operations on these 
distributions may yield information about point pattern type. Nonetheless Bootes (n.d.) 
indicates properties of Voronoi—therefore Delaunay—polygons have proved difficult to 
derive analytically; hence some reliance on Monte Carlo simulation for moment distributions. 

Average neighbour distances for Delaunay neighbour sets have different distributions 
for different point patterns. The F Test for equality of variances—independent samples, n – 1 
degrees of freedom—could be an appropriate test for differentiating two normalized point 
patterns based upon such average distances. For differentiating more than two normalized 
point patterns, one-way analysis of variance could be appropriate. 

Average nearest neighbor distance for randomly distributed points appears to approach 
half the average Delaunay neighbour distance as the number of points becomes large. This 
could be investigated by way of graphing the two average distances for an increasing number 
of points (notwithstanding system array size limitations; something which I repeatedly 
encounter). It may be the case that patterns can deviate from the above-stated observation for 
random points. However, the procedure is time consuming and cumbersome. 

Owing to the lack of significance measures, differences between expected and 
empirical averages for length of perimeter and area of Voronoi polygons cannot be proposed 
as tests for complete spatial randomness. However, the distributions for length of perimeter 
and area are still useful for spatial analysis. Classification of point patterns into clustered, 
random, or regular, can be performed by homogeneity tests. Pásztor (1994) underscores the 
point that random and regular point structures have unimodal normal distributions with 
different variances. Multimodality indicates a hierarchic cluster structure, with the number of 
modes determined by the number of scales in a sample. And this is indicated by my research. 

Pásztor (1994) also underscores the point that the Voronoi model is useful for 
compiling density maps from point data. Areas of Voronoi polygons gauge inverse values of 
local intensity. By assigning 1/area to point locations as local densities, a map can be 
compiled with the aid of an interpolation method; deterministic or stochastic. 

The importance of anisotropy in some patterns should not be understated. With regard 
to Ripley’s K-function in Spatial Point Pattern Analysis, anisotropy can be detected by 
recording directions of points with respect to the point from which they are measured for 
distance lags. Directions are then processed along with counts for the distance lags. Some 
patterns show greater counts in a tolerance range for a particular direction over some distance. 
This methodology needs developing, particularly with regard to Glass patterns and reflection 
symmetry patterns. 



266

When is a neighbour not a neighbour? 

 Results from experiments indicate that proximity is not absolute. Rather it is relative, 
and is shown to be encompassed in its degrees by Delaunay triangulation of a field. Relative 
proximity, neighbourliness, and adjacency overlap in substance, and are important factors in 
pattern detection. That elements at larger distances can be relevant while identical elements at 
lesser distances are not, demands investigation into just what constitutes proximity, 
neighbourliness, and adjacency, and the way they interact. What changes a more neighbourly 
situation into a less neighbourly one, and vice versa; and is this consistent with how subjects 
see a changing field? This could be facilitated by a computer program that examines 
Delaunay triangulation of a point pattern that continually changes in a principled manner 
(related to neighbourliness), and from which a list of properties could be formulated. 

What constitutes a dot pattern in the context of this enquiry? 

 Generally, a transformation is a lawful difference from one condition to another. For a 
Glass pattern an original set of randomly distributed dots is overlaid with a transformed set, 
and the transformation cannot be too large. A minimum transformation exists that would 
superpose the two sets of dots. A Marroquin pattern maintains one pattern or another, no 
matter how large the transformation. This is because of proximal consistencies that are 
wrought by repetition of the same regularities within each set. For such a pattern, the 
minimum transformation that would superpose the two sets of dots need not be as large as the 
generating transformation. 

It seems that proximal consistencies are a prerequisite for perceiving many dot 
patterns. However, reflection symmetry dot patterns do not adhere to this heuristic. What they 
have in common with other patterns is the element of transformation. (In fact they involve the 
simplest transform interpretation of all: a contributing factor in the will to develop a 
transformational model of visual perception.) Proximal consistency is no longer necessary. 
Transformation partners can be relatively large distances apart! 
 Owing to the nested arrangement of the aggregate of transformation pairs in reflection 
symmetry, there is not the masking of more and more separated transformation partners that 
there is for Glass patterns. However, by nesting Glass pairs generated with a range of 
transformation magnitudes, the upper limit of which is well beyond typical masking 
magnitude for a routine Glass pattern, the transformation characteristic appears to remain 
obvious for an average distance larger than that which obscures the transformation effect in 
the routine Glass pattern. 

This could constitute a study of itself. A simple implementation—to be used 
advisedly—might involve transformation magnitudes for respective Glass pairs generated 
within some constrained random range. This can change the number of overlapping pairs in 
favour of a more nested arrangement. An example of a serious attempt to ‘unmask’ a Glass 
pattern involves nesting pairs without staggering them. That is to say, no pairs within largest 
transformation distance overlap and for these pairs more closely spaced transformation 
partners span the transformation normals of more widely spaced transformation partners. The 
theory is that what is in between is wholly contained, hence it does not confuse the issue. As 
long a pattern is not masked—by its own or extraneous elements—then a transformation is 
seen, even if the transformation is relatively large. 

Reflection symmetry involves more than one transformation interpretation, and this 
could have a bearing on why it is comparatively fundamental. Left/right reflection symmetry, 
for example, can be generated by overlying an original set of dots with its horizontal distance 
complement (maximum possible x-coordinate distance minus actual x-coordinate distance, 
with y-coordinate distance unchanged). Moreover it can be generated by choosing an original 
set of dots that occupy just the left half of a form, for example, and by filling out the right half 
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with the horizontal distance complement. Left/right reflection symmetry can be also generated 
by overlying the original set of dots with the set resulting from a vertical depth rotation of 
180o in either direction.

Relative proximity is important to obviate masking interference in many patterns, but 
it is not necessary in all patterns. The factor of transformation is the common element across 

all patterns. Even for imprecise patterns, transformation to some degree of relaxed precision 
is relevant. A necessary condition for a pattern is that a transformation exists that at least 
inclines towards superposing the two sets of dots (although it is not necessarily a sufficient 
condition).

In any event, outcome may be summarized by the finding that for perception of 
unstructured visual arrays, distance mechanisms, particularly nearest neighbours, are 
important. For structured arrays, distance mechanisms along with perceived transformations 
are important. This might even be the case for reflection symmetry, where reflection 
counterparts can be widely separated. Once again, this would require that the visual system is 
sensitive to structure that varies over a wide range of different scales within a single stimulus 
(Dakin, 1997; Prazdny, 1986).

Constraints

 Inverse problems need constraints to enable solutions. The account of 2D projections 
of views of 3D objects indicates considerabe constraints on matrices of affine transformations, 
whether pure or compound. (See Chapter 9, pages 196 to 199.) A thorough mathematical 
investigation is needed to determin what other constraints exist, and then to formulate a 
minimal representation of the constraints within a set. Constraints may be interrelated, and 
elements of a minimal set would be necessarily independent. 
 Appropriate parameters could then be indexed within the set, according to visual 
demand imposed by a 3D object, and applied to the 2D projection. The subset of parameters 
could be used to reconsruct the 3D object. In other words, parameters belonging to 
transformations needed to reconcile 2D projections of different views of a 3D object could be 
used in conjunction with projections to reconsruct the 3D object. Elaborating this could 
costitute a line of research. 

Minimum Euclidean matching 

 A further line of investigation based on proximity could involve minimum Euclidean 
matching (see Edmonds, 1965; Gabow, 1972; Mirzaian, 1993, for example). This requires 
linking pairs of points to make separate dipoles, such that the sum of the resulting integer(n/2) 
number of link lengths is minimum. 

Minimum Euclidean matching has figured in near optimal solutions to traveling 
salesperson problems (Christofides, 1976; Preparata & Shamos, 1985). However, it may also 
reveal structure in dot distributions. Maybe a recursive form of minimum Euclidean matching 
would be useful. This would involve the already linked dipoles becoming fundamental 
elements that require linking in pairs to generate new separate dipoles, and so on. In all these 
connections, the relation of minimum Euclidean matching to Voronoi, Delaunay linking 
would also need exploring.

Other transformations 

 It is well recognised that affine transformations can reconcile only part of the story. In 

categorization of the letters m and m, for example, the second letter with respect to the first is 

contracted and sheared, as well as translated, but it is still affine transformed. However, all 
manner of homeomorpic transformations that differentially stretch and shrink can be applied 
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such that the second letter can be still recognised as belonging to the same category as the 
first. 
 Just as a distance hierarchy was used in this theseis, so a transformation hierarchy 
might have been used. Going from least to most inclusive, this is Euclidean, similarity, affine, 
projective, and topological. Increasing inclusivness allows transformational reconciliation of a 
wider range of forms. And Kolers (1972) supports the impression that we prefer 
transformations in order from simplest to most compex in an endeavour to make sense of the 
world. Indeed, just a shift in position of an object acccords with a Euclidean transformation, at 
the bottom end of the spectrum, and it is anticipated that handwritten charactes require a 
topological interpretation, at the top end. 
 The generative transformation model was conceived as a test project, to be kept 
relatively simple. The pattern measuring devices introduced in the first section primarily 
support the model in its pattern detection and discrimination endeavours, which utilize affine 
transformations as described in the second section. Having shown the utility of the model to 
date, improvements that include homeomorpic transformations do not seem so ambitious 
anymore; especially in light of today’s computer morphing technology. Moreover treatments 
of other transformations, such as colour transformations and image discontinuities, included 
in the range examined by Kohler (1964), also do not seem so ambitious. 

Relationship to various approaches 

 The generative transformational approach adopts elements from various approaches to 
visual perception, while rejecting others. In sympathy with the ecological approach (as per 
Gibson, 1979), description at the receptor level is considered to need complementing by 
description at the level of the optic array. At the receptor level, input for vision is a two-
dimensional retinal array corresponding to intensity values for separate points of light. 
However, input for a perceiver is a pattern; the optic array extended in space and time, which 
is open to predictable change. Ways of describing the input for a perceiver are important. 

The generative transformational approach works with invariants in the optic array, but 
contrary to the ecological approach they are detected indirectly; by mediation in ‘early 
vision’, which is ‘cognitively impenetrable’ as posited by Pylyshyn (1999). Like Marr (1982), 
the generative transformational approach draws on algorithms to realize properties of the 
optic array. The role of an algorithm is to turn one representation into another. Contrary to the 
ecological approach, representations are needed. (See Bruce, Green, & Georgeson, 2003.) 

The generative transformational approach treats vision in its entirety as having 
evolved from the internal direction of what were originally overt actions. It posits a 
reconstructive vision, ultimately for the purpose of directing activity. Passive observation is 
wholly contained as a significant part of this ‘active vision’. 

The generative transformational approach draws on Leyton (1992). It adopts 
reconciliation, via inferred process history, of asymmetries with a maximally symmetric 
exemplar or canonical representation. And the generative transformation model looks to the 
Gestalt principals of organization in identifying relationships among elements in the optic 
array. These are economical relationships based on statistical regularities in the structure of 
the optic array. (See Barlow, 1999; Chun, 2000.) Such relationships are used to select 
transformations to accomplish reconciliation. Clearly, the generative transformation model 
could be improved by involving more of the Gestalt principles. 

Some approaches to low-level vision posit feature detector cells tuned to respond to 
fixed attributes, not attributes scaled to pattern configuration. However, the human visual 
system is demonstrably sensitive to structure that varies over a wide range of scales. 
Accordingly, the generative transformation model gives exactly the same result for the same 
pattern proportionally changed by a range of different scaling factors.
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Summary of basic assumptions, hypotheses, and implications 

Much of the second section of this thesis has its context in a broader persuasion 
furnished by D. Vickers. The following are assumptions he intended as a guide to subsequent 
theorizing, a summary of the nature of the perceptual theory he envisaged, and a statement of 
some of the wider implications of the generative transformational approach. In his words: 

The guiding assumptions are that:

1. The brain has evolved to reflect constraints in the environment to which we are sensitive. 
2. The most general physical principles should therefore be useful in structuring our explanations of 

mental processes. 
3. These mental processes (whether experienced or inferred), the symbol systems (by means of which we 

represent them), the functional structure of the brain, and the physical events in question can all be 
understood in terms of a common set of geometric notions operating at a single level. 

According to the perceptual theory that is envisaged:

1. The perceptual system codes incoming information in terms of the simplest possible algorithm for 
generating an output that is “more or less” compatible with the incoming sensory data. 

2. The simplest possible algorithm is that which requires the simplest set of transformations to generate a 
replica of the current sensory input. 

3. This economical coding also corresponds to the objective state of affairs with the highest likelihood of 
occurring. 

4. Coding in terms of the simplest possible set of transformations maximizes the symmetry, invariance, or 
partial self-similarity in the stimulus array. 

5. This coding is accomplished, not by a sequential, computational algorithm, but by a recurrent neural 
network. 

6. The operation of this recurrent network can by described in terms of a nonlinear dynamical system and 
its output characterized as an attractor of such a system. 

The following, more general hypotheses concerning brain function are consistent with this 

particular theoretical approach to visual perception:
1. The single major function carried out by the brain is to perform multiple geometric transformations on 

patterns of incoming sensory excitation (i.e., the brain is a massive, parallel transformation engine). 
2. All significant mental events and processes are determined by symmetries (or invariants, congruencies, 

or equivalences), associated with these transformations, or to which they give rise through continued 
iteration.  

3. Different cognitive activities are differentiated by their different transformation groups and associated 
symmetries. 

From those interrelated hypotheses four further implications follow as natural extensions:
1. The relations between perceptual organization (i.e. perception of the intrinsic structure of an object), 

the perception of orientation and layout (based on extrinsic relations between the light source, the 
surface(s) in question and observer), and cognitive and linguistic categorization can all be explicated in 
terms of the relations between the different invariants associated with groups of progressively less 
constrained transformations, ranging from similarity transformations, through affine and projective 
transformations, up to those which may be described as topological;  

2. The perceptual or psychological distance between two stimuli is determined by the locus of the 
‘simplest’ transformations relating them; 

3. Natural processes of reasoning and inference are not mediated by adherence to a rule-based formal 
system of the kind typified by the predicate calculus, but by transformations of a geometric, analogue 
kind, carried out on the basic elements of a topological system; and 

4. The response to invariants arising from multiple iterated geometric transformations is made possible 
by the anatomical structure of the brain and by the nature of its early growth and later development. 

(Vickers, n.d., pp. 191-192) 

May his vision endure in further inquiry.
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