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Chapter 1:  Basic Structures and their Perceptual Relevance

The structures employed in this thesis, which constitute input to the visual system or 
to some computational device, are configurations of general interest to the study of human 
visual perception. Some fundamental patterns used in various explanations of visual 
perception are generated by transformations (and this, in turn, might provide some clue as to 
how they might be perceived by the visual system). In the absence of a clear taxonomy of 
structure employed as visual stimuli, this thesis explores an approach as it applies to the 
perception of structure generated by (1) the application of transformations to random arrays of 
points; (2) the application of transformations to regular arrays of points; and (3) the detection 
of structure in otherwise random arrays. 

Glass patterns 

A Glass pattern (Glass, 1969; Glass & Perez, 1973) is produced by taking a random 
array of dots, applying some transformation, and then superposing the transformed array onto 
the original. Exactly half the number of dots are mapped onto the other half by the 
transformation. Glass patterns are of special theoretical interest because, in order to perceive 
structure in such textures, it has previously seemed necessary to suppose the visual system 
must solve some form of massive correspondence problem (of working out which dots should 
be paired with which).1 In this respect, the phenomenon resembles the integration of 
information from disparate images in stereopsis, the detection of mirror symmetry, and the 
perception of structure and motion from successive images in experiments employing random 
dot kinetograms. It is to be expected, therefore, that models devised to explain these various 
phenomena should be closely related. 

As suggested by Figures 1.1(a) to 1.1(d), the human visual system is sensitive to Glass 

pattern structure generated by a variety of different transformations. These include 

translations in the vertical, horizontal, and diagonal directions (Wilson, Loffler, Wilkinson, & 

Thistlethwaite, 2001), as well as rotations, expansions from a centre, and spiral and 

hyperbolic transformations (Wilson & Wilkinson, 1998). In the case of dilations and 

rotations, human observers are sensitive to transformations by a constant amount as well as by 

amounts that increase with distance from the centre of dilation or rotation. Indeed, we may 

surmise that the visual system is sensitive to any structure generated by the uniform 

application of any suitably constrained transformation (or combination of transformations) to 

a well-populated random array of points. 

1 Cardinal and Kiper (2003) show that randomization of luminance of dots in Glass patterns had no effect on the 
pattern of their results. They found that neural mechanisms responsible for detection of Glass patterns are not 
restricted to luminance directions in color space, and have a broad tuning in color space. Moreover setting the 
luminance of dots equal to that of the background posed no problem for detection. Hence an argument based on 
the luminance distribution corresponding to short oriented lines in Glass patterns should not preclude the 
question of correspondence. 
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Figure 1.1: Glass patterns generated by means of (a) rotation, (b) dilation, (c) a screw or spiral
transformation, and (d) a hyperbolic transformation. Each pattern contains 400 points.

Patterns with reflection (mirror) symmetry

The most common pattern with reflection symmetry employed by the thesis is 
symmetric about a central vertical line, as per Figure 1.2. (A good many forms, both natural 
and person-made, are correspondingly symmetric about a central vertical plane.) Such a 
pattern with reflection symmetry can be produced by taking a random array of dots, applying 
a depth rotation of 180o, and then superposing the transformed array onto the original. It can 
be more simply produced by overlying an original set of dots with its horizontal distance 
complement (maximum possible x-coordinate distance minus actual x-coordinate distance,
with y-coordinate distance unchanged). Again, exactly half the number of dots are mapped
onto the other half by the transformation.
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Figure 1.2: Pattern with reflection symmetry

Marroquin patterns 

Marroquin (1976) investigated the perceptual effects that arise if we take a regular 
array (such as a square lattice of dots), apply some transformation, and then superpose the 
transformed array onto the original. So-called Marroquin patterns can be constructed by 
superposing a single transformed copy of the original array (or by superposing two, or more, 
different transformations on the original). Examples of a number of Marroquin patterns, 
generated using single rotational transformations, are shown in Figure 1.3. 

Glass figures tend to evoke a clear perception of a single, stable structure, even when 
they are generated using combinations of two transformations (Prazdny, 1984). Although the 
structure suggests motion or ‘static flow’, the perception is of one single, consistent 
impression. In contrast, the perceptual effect of Marroquin patterns can be complex, with an 
unstable organization in which different symmetric structures compete and replace one 
another at random.2 The experience is similar to that of viewing certain tiling patterns, both 
regular and aperiodic. It can also be similar to that of viewing a kaleidoscope. 

Between them, Glass and Marroquin patterns exhaust a general partitioning of the 
class of structured arrays (into those where a transformation has been applied to a random or 
to a regular array). If the generative transformational approach provides a promising account 
of the perception of Glass figures, then we should ask if it provides a similarly good account 
of the perception of Marroquin patterns. 

The question turns out to be not entirely straightforward, however, because the 
constrained nature of the original array in Marroquin patterns gives rise to more complex, 
competing, and unstable perceptions. It is therefore difficult to know how the perception of 
Marroquin patterns might best be measured. One possibility, explored by Wilson, Krupa, and 
Wilkinson (2000), is to examine the duration of time for which a particularly salient sub-
structure is reported as ‘visible’, and to vary the position in the array at which such a sub-
structure is likely to be seen. Although Wilson et al. report remarkably consistent results,
three of the four observers tested were the authors themselves. Since a few minutes’
inspection of Figure 1.3 will show a variety of alternative sub-structures that appear and 

2 This occurs at transformation magnitudes greater than those at which Glass pattern structure is generally
discerned. Figure 1.3 (a) shows the effect of a transformation applied to a regular array that is typical in
magnitude of that applied to a random array to produce a Glass pattern.
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disappear spontaneously, it is far from certain that less committed and experienced observers
would produce results of equal clarity and consistency. 

a b

c d

Figure 1.3: Examples of Marroquin patterns generated by taking a square lattice of dots, applying a
rotational transformation, and then superposing the transformed array onto the original. Panel (a) shows a
rotational offset of –5o, panel (b) –16o, panel (c) –37o, and panel (d) – 45o.

MacKay patterns

MacKay (1957a, 1957b, 1961) presented examples in which subjects fixate inspection 
patterns of alternating black and white stripes for a while, and then view a random test field. 
The elements in the test field then appear to have a streaming motion normal to the orientation
of the stripes. This visual after-effect occurs with concentric, radial, and parallel, alternating 
patterns, to cite but a few. Figures 1.4(a) and (c) show examples of inspection stimuli, and 
Figure 1.4(b) shows an example of a test field, which is completely unstructured.
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     a          b  c

Figure 1.4: Examples of radial (a) and concentric (c) MacKay patterns, and an unstructured test field (b).

The after-effect can be explained by supposing that the streaming motion normal to 
the orientation of the stripes indicates continued activity of transforming units concerned with 
the perceptual organization of the inspection pattern. The perceptual organization of Figure 
1.4(a), for example, is indicted by a rotating spoke stamped in increments. If the inspection 
pattern strongly activated units responsible for the complementary transformation—the one 
needed to form the pattern—this should be reflected in a bland test field. In the case of the 
radial MacKay pattern, rotations imposed on random dot kinematograms reflect the continued
inertial activity of rotational transforming units.

Patterns with various degrees of image element dispersion

The human visual system is also sensitive to degrees of dispersion of image elements;
see Preiss and Vickers (2005), Appendix A, for example. This can be shown by the use of 
patterns with varying degrees of clustering or regularity of image elements. Such patterns 
have elements that are either grouped together (mutually attracted) or spread apart (mutually
repelled) more so than those of random distributions. Figure 1.5(a) shows an instance of a 
fixed number of elements in each cluster and Figure 1.5(b) shows an instance of a variable 
number of elements in each cluster (Poisson clustering). Figures 1.5(c) and 1.5(d) show
instances of random and semi-regular patterns respectively. 
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Figure 1.5: Examples of patterns with (a) fixed clustering, (b) Poisson clustering, (c) a random, and (d) a 
semi-regular distribution.

Travelling salesperson problem (TSP)

A typical formulation of the travelling salesperson problem involves travelling 
between cities (represented by points). Given a set of N randomly distributed cities and a cost 
incurred in moving between any two of them, devise a tour such that each city is visited once 
and the cost of the tour is minimum. This defines an ‘open’ tour: a ‘closed’ tour has the 
overriding provision that it finishes at the starting point. Figure 1.6(a) shows an open tour and 
Figure 1.6(b) shows a closed tour. A closed tour may be either the same as the corresponding 
open tour, but with the extra link, or it may be different to the corresponding open tour. 
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a      b

Figure 1.6: Open tour for 30 sites (a). Closed tour for 30 different sites (b).

The travelling salesperson problem belongs to a class of computationally intractable 
problems. Calculation of the optimal itinerary involves considering N! possible itineraries,
which is not feasible for all but a small number of sites, and totally out of the question for 30 
sites. The travelling salesperson problem is interesting because people often get quick, near 
optimal solutions to problems with numbers of sites that involve considerable computing
time.

3-D objects and their 2-D projections

Retinal images are two-dimensional projections, usually from views of three-
dimensional objects. Accordingly, a representation of these is addressed in the thesis. The 
example shown in Figure 1.7 shows a representation of a truncated pyramid, for which there 
is a dot (small circle) at each vertex. Adjoining lines do not figure in computations: their 
purpose is for figural clarification only. 

Figure 1.7: Truncated pyramid. (After Anton & Rorres, 1987.)
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Fractal patterns 

A fractal image is a geometric figure comprising patterns that repeat at increasingly 
smaller scales (see Oliver, 1992, for example). Repeating patterns exhibit self-similarity,
which is a pivotal property of fractals. A figure has this property when a smaller structure is 
similar in shape to a larger structure, which in turn is similar to an even larger one, and so on. 

Fractal curves are typical of those found in nature. The natural world can be modelled
by fractal geometry, and any image can be produced by fractal geometry. A natural system is 
plausible from an evolutionary perspective, and by taking the cue from such a system it is 
possible to solve the inverse problem of finding the fractal encoding for a visual array.

This can be achieved by a system that uses a constrained sequence of transformations
to work out how a fractal curve is generated and that is capable also of generating a copy of 
the curve. (The underlying idea is that what we experience as perceptual organization is the 
output of a generative process that applies multiple transformations to stimulus elements,
thereby producing an output. The output can then be tuned and steered by matching it with the 
current visual input.) 

Figure 1.8: Successive steps in generating the Koch curve.

Generation of fractal stimuli

Generation of fractal stimuli may be illustrated with the help of a construction called 
the Koch curve. As shown in Figure 1.8, the Koch curve begins with a seed (initiator), which, 
in this case, is a simple straight line. Four copies are made of this line, each 1/3 of the length 
of the original. A new curve is then constructed by shifting and rotating the smaller copies.
The process is then repeated on each of the resulting smaller straight line elements. At each 
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iteration, the number of copies is 4 and the contraction factor is 33. Each time the curve goes 
through the iteration process its length is multiplied by 4/3, with the result that its length after 
k iterations is (4/3)k.

The nonlinear increase in length that occurs as the number of iterations is increased 
brings out the point that fractal curves and surfaces may be regarded as the output of 
nonlinear dynamical systems based on positive feedback. Each element of successive outputs 
is subjected to the same processes of contraction, multiplication and transformation. That is, a 
fractal object can be regarded as a temporal record of the operation of a dynamical process.

To explain why the generation of fractal images might have some relevance for 
understanding human visual perception, it is helpful to contrast a single-copy reduction 
machine (such as a conventional photocopier) with a multiple-copy reduction machine. In the 
single-copy version, a single reducing (similarity) transformation, applied repeatedly to a 
single copy, simply makes the copied image smaller and smaller. In contrast, under certain 
conditions, a set of transformations, applied to multiple reduced copies, generates a stable
image. In this process, the nature of the initial elements is unimportant: what is important is 
the transformations. That is, all the information contained in the final image is effectively 
contained in the collage of transformations that is used to produce it. An important question, 
therefore, concerns the conditions under which such a process gives rise to a stable image.

These conditions are specified in the contraction mapping principle, a useful summary
of which is given by Peitgen, Jürgens, and Saupe (1992a, pp. 263-277). According to the 
contraction mapping principle, the repeated iteration of a collage of contractive 
transformations, applied to a set of points, will give rise to a set of points that approaches 
closer and closer to an invariant set. Another way of saying this is that the limit image
produced by the dynamical iterated function process is a stable attractor of the process. 

Fractal objects generated for this thesis are represented by arrays of dots, as per Figure 
1.9. Each dot is located at a vertex (end of a line) of the fractal object. (Hence the greater the 
number of iterations, or steps, involved in producing an object, the greater the number of dots 
required for its representation.) 

Figure 1.9: Koch curve, at step 3 in Figure 1.8, represented by points.

Regular structures embedded in noise 

A task that is of practical importance in many contexts is the detection of a regular 
structure embedded in noise. The human visual system can perform such tasks at a level well 
beyond that of automatic detection programs. Indeed, this singular ability to detect figures 
embedded in distracting or noisy backgrounds is a facility that constitutes the focus of a 
number of neuropsychological tests of cognitive functioning. It is therefore of some interest to 
consider how the generative transformational approach might be applied to problems of this 

3 Sometimes ‘contraction factor’ is called ‘reduction factor’.
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kind. Figure 1.10 shows an example of a regular array of image elements embedded in a 
random array of image elements, as used in this thesis. 

Figure 1.10: Example of a regular structure (circle in region
of upper left quadrant) embedded in noise.

Representational momentum

Upon exposure to a sequence of systematic transformations of an object, such as 
displacements and/or rotations, there is a tendency to mentally continue the implied motion. 
Specifically, Freyd and Finke (1984, 1985) studied subjects’ ability to recognize rectangles 
that had been subjected to a sequence of transformations (such as progressive planar 
rotations). A consequence of their findings was that subjects were most likely to recognize a 
previously seen rectangle when it was subsequently displayed in a position or orientation that 
corresponded to a continuation of the progressive sequence of transformations. By analogy 
with physical momentum, they dubbed this tendency ‘representational momentum’.
Representational momentum clearly motivates a transformational approach to visual 
perception.

Real and apparent motion 

A powerful source of information about objects in our environment is provided by the 
systematic transformations of visual images that occur when either an observer or objects are 
in motion. For example, in a classic series of experiments, Wallach and O’Connell (1953) 
showed observers the projected shadows of wire-frame figures that were placed on a turntable
between a point source of light and a translucent screen. When the turntable was stationary, 
the shadows were seen as two-dimensional patterns. However, as soon as the turntable was set 
in motion, the shadows were seen clearly and immediately as rigidly rotating three-
dimensional objects. 

Wallach and O’Connell’s experiment investigated the perception of real motion, 
insofar as it involved the (continuous) transformation of an imaged object undergoing 
continuous movement. However, most studies of motion perception have been concerned 
with what is termed apparent motion (or stroboscopic motion when the frame rate is rapid, as 



11

in cinema). Apparent motion is the term given to the perception of movement when 
successive, static stimuli are presented in discretely different positions and/or orientations. 
Because no ‘real’ continuous movement takes place, the perception of apparent motion is 
often referred to as ‘illusory’.

Temporal patterns 

The production of temporal patterns in the thesis mainly involves successive, short 
period presentations of displays of dots, which have some consistent change of spatial layout 
(transformation) from one display to the next. Dot patterns for successive displays are often 
embedded in randomly distributed dots that differ from one display to the next. Such patterns 
are loosely dubbed ‘temporal’ because, in the extreme, there may be no spatial pattern in any 
one display, only a pattern that emerges over time, with successive displays. 

Generally

A range of patterns is employed by the thesis; some not mentioned above because they 
will be more or less self-explanatory upon encounter. Beside spatial patterns, temporal 
patterns are considered. Besides two-dimensional patterns, three-dimensional patterns are 
considered. Besides Euclidean geometry, fractal geometry is considered. And many 
incidentals are also addressed along the way. The patterns were chosen because of their 
applicability to a range of questions relating to investigation of visual phenomena. Ultimately, 
structure in these quite different representations can be reconciled by just a handful of 
considerations relating to statistical regularity and symmetry in its various guises, in which 
perception of configuration becomes an optimising process. In short, it is proposed that 
analysis of distributions of distances and directions between image elements is sufficient for 
the detection of structure and motion, and can be used to select transformations that, when 
applied to image elements, generate a replica of the image. That is, information about relative 
positions of image elements can be used to select transformations that maximize generalized 
self-similarity within or between arrays. 
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Section 1:  A Computational Approach to Low-level Grouping in 

Visual Perception 

Chapter 2:  Production of Structure by Joining Pairs of Points on a Surface 

This section is chiefly concerned with developing some useful statistical approaches to 
questions in visual pattern detection, although it addresses related matters and other concerns 
in later chapters. First, however, an investigation of distance relationships between elements
of visual stimuli is undertaken. And later on, a neural network approach to the perception of 
reflection symmetry is developed. Many observations established in Section 1 are assumed by 
accounts given in Section 2, hence the purpose of some accounts in section 1 need not be 
immediately evident. 

Much of the statistical theory in Chapters 3, 4, and 5 is not original, but the 
implementation along with application to configurations of interest to the study of human 
visual perception is original. Much of the work in the other chapters of the section is original,
and work anywhere that is not original is clearly referenced.

Brief summary of chapter 

In accordance with the proximity principle of Gestalt psychology, a hierarchy of 
distance relationships ranging from nearest neighbour to Delaunay neighbour is discussed. 
The hierarchy is then put to work in an undertaking to shed some light on phenomena
connected with a range of different visual stimuli. These include Glass patterns, the traveling 
salesperson problem, and MacKay patterns. Such application to disparate stimuli provides a 
test of versatility for methodology.

The work outlined in this chapter is original, with the exception of that indicated of
others along with the graph theoretic structures. 

Distance metric 

Euclidean distance is an instance of the general concept of distance called the 
Minkowski p-metric. For two points located by xy-coordinates in the plane the generalized 
distance between them is 

[(x1 – x2)
p + (y1 – y2)

p]1/p, p = 1, 2, … , ,      (1) 

and for Euclidean distance, p = 2. Many operations discussed in this thesis employ Euclidean 
distance in two dimensions.

Hierarchy of distance relationships 

Nearest neighbours

As determined in this thesis, a nearest neighbour of an object belonging to a class of 
objects is another object of the same class at least Euclidean distance. Where objects are dots, 
they are often treated as (dimensionless) points. Generally, distance is measured between
centres of objects. There are N nearest neighbours for any N objects. Figure 2.1 shows a plane 
surface containing N = 30 randomly located dots. The nearest neighbour distance for each dot 
is the distance from each dot to its nearest dot. Some of the nearest neighbour relationships 
are reciprocal. For example, the nearest neighbour of dot A is dot B and the nearest neighbour 
of dot B is dot A. Other nearest neighbour relationships are not symmetrical. For example, dot 
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C has dot B as its nearest neighbour, but dot B does not have dot C as its nearest neighbour. 
The former are sometimes called mutual or reflexive nearest neighbours. 

The number of nearest neighbour edges, or links, for different dot configurations is
some variable value less than N, since edges do not differentiate the two kinds of nearest 
neighbour distance. Note that a point may be the nearest neighbour to several points or to no 
points at all; but, of course, the point must have a nearest neighbour. 

Figure 2.1: Nearest neighbour links.

Minimum spanning tree

A minimum spanning tree is a least cost network of edges that links all N dots in an 
array, and contains no loops (Aho, Hopcroft, & Ullman, 1987; Kingston, 1990). As 
determined in the thesis, ‘cost’ equates to ‘Euclidean distance’. There are N – 1 minimum
spanning tree edges for any N points. Figure 2.2 shows the minimum spanning tree for the 
same 30 dots used in Figure 2.1. Dots are linked such that a path can be traced from any dot to 
any other dot, and the total length of all the edges is minimal.

A minimum spanning tree can be constructed by sorting all the possible dot-to-dot 
distances into ascending order, and then by linking in order of increasing distance from the 
smallest. Edges that would form loops are discounted, and the process continues until N – 1 
edges are completed.

A somewhat more elegant (and intuitive) construction of a minimum spanning tree is 
first to link all nearest neighbours. The linked pairs, now considered as elements, are then 
linked to their nearest neighbour elements by closest members of pairs. The process continues 
until there is just one element that links all dots. This method for finding the minimum
spanning tree is a recursion upon nearest neighbours. 
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Figure 2.2: Minimum spanning tree.

Relative neighbourhood graph 

Two dots in a collection of dots are relative neighbours if they are at least as close to 
each other as they are to any other dot (Boots, n.d.). That is to say, two dots are relative
neighbours provided no other dot is closer to both of them than the distance between them.
The number of relative neighbourhood edges for some N points is bound from below by the 
number of edges in the corresponding minimum spanning tree, and from above by the number
of edges in the corresponding Gabriel Graph, which is defined below. 

Consider the same 30 randomly located dots. Pairs are linked if no dots are located in 
the interior of the intersection of two circles, as per dots A and B in Figure 2.3. Each circle is 
centred on a member of the pair, and the common radius is equal to intra-pair distance. To 
take another example from all possible pairs, C and D are not linked because a dot is located
in the interior of the intersection of their two circles. The relative neighbourhood graph 
includes the minimum spanning tree. 
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Figure 2.3: Relative neighbourhood graph. Pairs of dots are linked if no dots
are located in the interior of the intersection of two circles, as per dots A and B. 
Dots C and D are not linked because a dot is located in the interior of the 
intersection of their two circles.

Convex hull

The convex hull of a collection of points is the smallest convex set that contains the 
points (O’Rourke, 1994). Consider the same 30 randomly located dots. Imagine an elastic 
band stretched beyond the bound of the dots, then placed on the form and allowed to shrink 
onto outlying dots. The set of such outer dots, as shown in Figure 2.4, identifies the convex 
hull.
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Figure 2.4:  Those dots joined by the lines form the convex Hull for the 30
randomly distributed dots.

Voronoi partitioning 

For the purpose of image segmentation, Voronoi partitioning is here considered in two 
dimensions only. For a collection of points in the plane, the Voronoi diagram partitions the 
plane such that each point is associated with the region closest to it (O’Rourke, 1994). The
Voronoi diagram is an optimal device that embodies all information concerning proximity, or 
neighbourliness. By Euler’s formula for polyhedra, which states that faces + vertices = edges 
+ 2, a Voronoi diagram has at most 3N – 6 edges. (See O’Rourke, 1994, pp. 118-121, for a 
discussion and proof.) 

Considering the same 30 dots, there is a partition into areas within which any position
is closest to some dot. Along the boundary segments of the areas any position is equidistant 
from two neighbouring dots, and at points of intersection of the segments—ends of 
segments—any position is equidistant from three neighbouring dots. 

Imagine circles centred on respective points. Let the circles increase in radii at a 
uniform rate until their circumferences touch, and then intersect, in some succession. Straight
lines that delineate the respective spans of intersection lengthen until they meet. Points 
interior to the convex hull become enclosed by the edges of polygons, while points on the 
convex hull become partially enclosed. (The latter are located on the diagram between 
divergent lines extending beyond the edges of the form. See Figure 2.5.) Once the last pair of 
lines is joined, the surface within and around the convex hull is completely partitioned.
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Figure 2.5: Voronoi diagram for the same 30 randomly distributed dots.

The dots shown in Figure 2.5 are said to be in ‘general position’ (Preparata & Shamos,
1985), which is the common situation, and for which points of intersection involving three 
boundary segments are equidistant from three neighbouring dots. For dots in general position,
no three dots are collinear and no four dots are co-circular. Put another way: for dots in 
general position three or more dots are not collinear and four or more dots are not co-circular.

A situation in which three dots are collinear or four dots are co-circular is considered
‘degenerate’, but nevertheless valid. For degenerate situations, inconsequential but lengthy
details must be added to statements and proofs of theorems concerning properties of Voronoi 
diagrams; hence utilization of points in general position by O’Rourke (1994), and Preparata 
and Shamos (1985), for such statements and proofs. 

An example of a degenerate situation is that of rectangularly located dots. Points of 
intersection involve four boundary segments, equidistant from four dots. Hence analyses 
involving Voronoi related treatments may show meaningful differences between regularly 
placed elements and more randomly placed elements, which might be helpful in 
discriminating degrees of regularity from randomness. 

The Voronoi neighbours, other than the nearest neighbour, of a point may be more
distant than non-neighbours. For example, point A in Figure 2.5 is more distant from one of 
its neighbours at point B than it is from a non-neighbour at point C. 

Delaunay triangulation 

The Delaunay triangulation and Voronoi diagram are dual structures. Any Delaunay 
triangle edge connects two sites only if the sites’ Voronoi regions have a common edge. Since 
Delaunay triangle edges have one-to-one correspondences with Voronoi polygon edges, there 
are at most 3N – 6 Delaunay edges. A Delaunay triangulation contains the same information
as the corresponding Voronoi diagram: one is simply a transformed version of the other. 
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Nonetheless, as demonstrated in Figures 2.6 and 2.7, what it means to be a neighbour is 
shown more clearly by Delaunay triangle edges. Neighbours of any dot are those dots directly 
linked to it. Delaunay triangulation embodies all information concerning adjacency. 

Delaunay triangulation reflects the optimal quality of Voronoi partitioning. It is the 
angle optimal triangulation that maximizes minimum angles. In the two dimensional case, 
Delaunay triangulation is the maximal planar subdivision; which is the subdivision in the 
plane such that no edge connecting two points can be added without crossing at least one 
other edge, hence destroying planarity. (In order to cross—as opposed to intersect—an edge in 
the plane, another edge needs to traverse outside the plane, in the third dimension, thus 
destroying planarity.) 

Consider the same 30 dots, along with their Voronoi partitioning, as shown in Figure 
2.6. Observe that a neighbour of a dot is another dot with a common boundary. If a line is 
drawn from a dot to one of its neighbours, the line is either perpendicularly bisected by a 
Voronoi boundary or passes through two or more Voronoi boundaries, but is perpendicularly 
bisected by the extension of the common boundary. (Observe that the outer edges form the 
convex hull.) A dot can be either directly across the ‘fence’ from its neighbour or indirectly 
across the ‘fence’, which corresponds to two kinds of adjacency. 

Numbers of Delaunay neighbours belonging to each dot for different dot 
configurations can have different distributions. For dots randomly distributed in the plane 
there are, on average, six neighbours to a dot and four of these are, on average, directly 
adjacent neighbours. (This can be derived from Boots, n.d., pp. 6 & 26, and was confirmed in 
the thesis by experimentation). 

For direct neighbour edges, circles imposed upon the edges as diameters (hence 
passing through the dots at each end) do not include any other dot, while for indirect 
neighbour edges they do. Moreover in a triangle constituted of direct edges, any position is 
nearer to one or another of the triangle’s vertex dots than to any other dot. This is not 
necessarily the case for a triangle constituted of a mix of edges or all indirect edges. A graph 
constituted of all direct neighbour edges is called a Gabriel Graph (Boots, n.d.). Moreover it is 
possible for the whole of a Delaunay triangulation to consist of direct neighbour edges (again 
with the upper limit of 3N – 6 for number of such edges). 
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 Figure 2.6: Voronoi diagram (white) with Delaunay triangulation (yellow)
superposed, for the same 30 randomly distributed dots.

Figure 2.7: Delaunay triangulation for the same 30 randomly distributed dots.
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The partitioning just described is for plane surfaces, and uses Euclidean distances. 
However, different situations could demand different metrics for which this kind of 
partitioning can be applicable. Choosing p = 1 in expression (1), page 12, might be 
appropriate where points of interest are located on a grid, such as in many cities for example. 
Distance between the points is then measured along the lines of the grid. Other situations in 
flat space can demand different numbers of coordinates while p = 2, and curved spaces can 
demand different numbers of coordinates and other values for p. Moreover Voronoi 
partitioning can be defined using other interval concepts such as those associated with time or 
cost measures (Boots, n.d.). 

Comment on computational complexity 

Nearest neighbour, and minimum spanning tree algorithms are traditionally of order 
N

2
, and relative neighbourhood is of order N3. To find the set of nearest neighbours for 100 

dots, for example, the distance from each dot to every other dot needs to be calculated, which 

takes 100  100 = 10,000 operations.1 Delaunay triangulation via an appropriate algorithm, 
Fortune’s plane-sweep algorithm for example (O’Rourke, 1994), has order N log(N) which, 

for 100 dots, takes 100  2 = 200 operations. Hence all subsets can be computed in fewer 
operations by first performing Delaunay triangulation. 

Hierarchy 

 Nearest neighbour edges are a subset of minimum spanning edges, which, in turn, are 
a subset of relative neighbourhood edges, which, in turn, are a subset of direct neighbour 
edges. Nearest neighbour edges are constituted of the shortest edge from within each set of 
Delaunay neighbour edges. 

So far in the hierarchy of point-to-point linking relationships based on distance, the 
relevant linking factors are nearest neighbour, minimum spanning, relative neighbourhood, 
direct Delaunay and all Delaunay, both direct and indirect. These, of course, are all embedded 
in the superset containing all point-to-point edges. The set containing all point-to-point edges 
out to some cut-off distance, where the upper limit for the cut-off distance can include all 
possible point-to-point edges, will be addressed later on. 

Applications to pattern detection and visual perception 

Pattern structure 

 Structure in point patterns, as perceived by the human visual system, might be 
captured best by one or other of the relational hierarchy. Sometimes nearest neighbour or 
minimum spanning tree captures structure and Delaunay triangulation does not do so well, 
and other times the reverse is true. Quite often, in cases like these, the relative neighbourhood 
graph does well in either situation. It sits roughly in the middle of the hierarchy and spans the 
gap in number of edges from minimum spanning tree to Delaunay triangulation. 

1 There are actually N2 – N calculations, because the distance from any dot to itself is not calculated. However, 
this situation must still be tested by an operation. 
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Figure 2.8 shows an example of a pattern with hierarchical organization. Grouping is 
on the basis of dots first, then on the basis of rough crosses as units. These units, not dots, 
then group to form triangular units, and these units, not crosses, then group to form pairs of 
triangles.

Figure 2.9 shows structure captured by the neighbourhood hierarchy, excluding the 
relative neighbourhood graph. And Figure 2.10 shows structure captured by the relative 
neighbourhood graph. 

Figure 2.8: Example of hierarchical organization, in which there are groups of groups of groups.
(Triangular formation after Skiena, “Minimum Spanning Tree”, 1997.) 

Figure 2.9: Structure captured by nearest neighbour edges (green), remaining minimum spanning
tree (red), remaining direct Delaunay edges (yellow), and indirect Delaunay edges (black).
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Figure 2.10: Structure captured by the relative neighbourhood graph.

Figure 2.9 shows that nearest neighbour relationships clearly capture the most basic structure 
identified by crosses. Some remaining Delaunay edges, both direct and indirect, capture the 
polygonal structure enclosing the crosses at this level. Then some remaining minimum
spanning edges followed by remaining direct Delaunay edges capture the triangular structure.2

The relative neighbourhood graph, shown in Figure 2.10, makes a reasonable compromise in 
capturing structure otherwise seen across the neighbourhood hierarchy.

Application of Delaunay neighbours to Glass patterns 

Glass patterns (Glass, 1969; Glass & Perez, 1973) are generated by taking a uniformly
random spatial distribution of dots and superposing a geometrically transformed copy. 
Resulting textures are seen as having clear structure, consisting of dot pairs locally orientated 
along the direction of the transformation used to generate them. A transformation cannot be 
too large, otherwise structure becomes degraded and ultimately disappears. Because 
perception of structure in Glass patterns is immediate, and does not require attentive scrutiny, 
they provide an important device in the study of pattern detection.

Dry, Vickers, Lee, and Hughes (2004) found that correlations between the frequencies 
of alternative responses by subjects to translation Glass patterns, oriented in one or the other 
of two diagonal orientations and dosed with various proportions of dots distributed randomly
and uniformly (noise dots), showed that participants based their judgments on first and second 

nearest neighbour links that fell within a 15  tolerance of the positive or negative diagonals. 
For the following analysis of Glass patterns—the first of several throughout the 

thesis—Delaunay neighbours for each dot of a display are ordered in ascending distance, from
which Delaunay neighbour loadings are calculated. ‘Delaunay neighbour loading’ is indicated 
as the distribution of numbers of correspondingly ranked Delaunay neighbours across the 
display summed over each dot, whose orientations fall within a constrained range of angles 
about transformation direction(s), and which are proportional to numbers of all 
correspondingly ranked Delaunay neighbours for the display (which is trivially the same as 

2 It was hoped that indirect Delaunay edges would capture the pair-wise triangular structure, but maybe there is
not a strong case here; unless the total number of black edges within pairs compared with those between pairs is 
considered significant. Indeed the same might be said for red and yellow edges.
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numbers of angles for all correspondingly ranked Delaunay neighbours). Put simply,
Delaunay neighbour loading is the proportion of Delaunay neighbours (by rank) that lie in a 
limited range about transformation direction(s). 

The analysis shows that transformation pairs belonging to relatively sparsely
populated Glass patterns load close to 100%, in a constrained range of angles about 
transformation direction(s), upon nearest neighbours, and somewhat less on otherwise close 
neighbours. As Glass pattern density is increased, the loading peak progressively decreases 
and occurs progressively more on more distant neighbours. See Figures 2.11 to 2.16, for 

which the constrained range is 10o about transformation direction(s). The magenta lines 
show Glass pattern loadings on Delaunay neighbours (alternatively called natural neighbours) 
and the black lines show corresponding loadings for the same number of noise dots. 
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Figure 2.11: Natural neighbour loadings for a Glass
pattern with 50 dots and the same number of noise dots.
The graph shows the extents to which the different

neighbours load on the transformation direction(s) 10o,
belonging to the Glass pattern.
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Natural Neighbour Loading Within Absolute
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Figure 2.12: Natural neighbour loadings for a Glass
pattern with 2,000 dots and the same number of noise dots.
The graph shows the extents to which the different

neighbours load on the transformation direction(s) 10o,
belonging to the Glass pattern.
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Figure 2.13: Natural neighbour loadings for a Glass
pattern with 6,000 dots and the same number of noise dots.
The graph shows the extents to which the different

neighbours load on the transformation direction(s) 10o,
belonging to the Glass pattern.
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Natural Neighbour Loading Within Absolute
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Figure 2.14: Natural neighbour loadings for a Glass
pattern with 10,000 dots and the same number of noise
dots. The graph shows the extents to which the different

neighbours load on the transformation direction(s) 10o,
belonging to the Glass pattern.
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Figure 2.15: Natural neighbour loadings for a Glass
pattern with 26,000 dots and the same number of noise
dots. The graph shows the extents to which the different

neighbours load on the transformation direction(s) 10o,
belonging to the Glass pattern.
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Natural Neighbour Loading Within Absolute
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Figure 2.16: Natural neighbour loadings for a Glass
pattern with 30,000 dots and the same number of noise
dots. The graph shows the extents to which the different

neighbours load on the transformation direction(s) 10o,
belonging to the Glass pattern.
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Figure 2.17: Natural neighbour loadings for a Glass
pattern with 2,000 dots and 4,000 noise dots. The graph
shows the extents to which the different neighbours load on

the transformation direction(s) 10o, belonging to the Glass
pattern.
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The ranges of neighbours are ultimately exhausted as the loading peak descends 
towards the loading for noise, and this appears to be more or less coincident with 
transfiguring Glass effect.3 That is, when the background colouration shows evidence of the 
transformation effect as the foreground, or pattern, colouration becomes fused. A concomitant
reduction in loading peak is also seen in cases of Glass patterns dosed with various levels of 
noise. Figure 2.17 results from a Glass pattern of 2,000 dots dosed with 4,000 noise dots. 
Compare Figure 2.17 with Figure 2.12, the latter resulting from a Glass pattern of 2,000 dots 
dosed with no noise dots. The degree of degradation of the pattern dosed with noise is 
obvious.

Note the progressive y-axis scale reduction of the graphs, which indicates a much
greater range of loading peak reduction than is apparent by just looking at the curves in 
sequence. Note also that the distribution for the number of Delaunay neighbours of each dot 
belonging to a random display peaks at six, and neighbours are effectively exhausted at 
around eleven. (The probability of getting 14 neighbours is estimated at just .000005.) The 
distribution, shown in Figure 2.18, is consistent with the range of values evident in the graphs 
for natural neighbour loadings. 
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Figure 2.18: Estimates of number of sides of Voronoi
polygons, hence Delaunay neighbour edges, resulting from
uniformly random distributions of points. Data source:
Hinde and Miles, 1980, Table III, p. 215.

As Glass pattern density is increased the classic transformation effect is replaced by 
streaking in orientations along transformation direction(s). Further increase sees a 
transfiguration. Only when the foreground becomes substantially fused does the 
transformation effect fall away, and then it still does not disappear entirely. However, the 
density ranges at which these effects show prominence are dependent on dot size in relation to 
form area. 

3 Transfiguring: altering, changing, changing by reversal, reversing, turning.
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Distance to neighbours 

The above analyses deal with dimensionless points, i.e. centres of dots. Making dots 
smaller so as to approximate dimensionless points simply increases the density ranges at 
which effects show prominence, and this occurs independent of any analysis outcome. Effects 
of increasing Glass pattern density are obvious from the graphs, but at high densities some
neighbour loading remains.

A device that can be used—at least for now—is a dot size term: hence distance to 
neighbours needs to be taken from nearest point on circumference to nearest point on 
circumference of dots or, more generally, boundary to boundary of objects. This rids the 
analysis of all those (diminishing) distances that would otherwise maintain some directional
neighbour relativity after fusion. Figure 2.19 shows boundary-to-boundary natural neighbour 
loadings for a Glass pattern with 30,000 dots of radius 12 screen units. Figures 2.20 and 2.21 
show the Glass pattern and corresponding noise respectively. 

Effect of using a dot radius of 12 screen units
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Figure 2.19: Natural neighbour loadings for a Glass
pattern with 30,000 dots and the same number of noise
dots. The graph shows the extents to which the different
neighbours load on orientations along the transformation

direction(s) 10o, belonging to the Glass pattern. Closest
neighbours begin to null first. 
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Figure 2.20: Horizontal Glass translation composed of
30,000 dots.

Figure 2.21: Noise composed of 30,000 dots.

Note that there is still some Glass effect evident in Figure 2.20, with Figure 2.19 showing
some loading on neighbours six to ten. 

As mentioned, a term for form area is also necessary to go with the term for dot size. 
Together, these give a foreground / background area ratio, which determines density ranges at 
which effects become prominent. The problem is, however, that adjacent or partially fused 
dots still have some degree of directional relation with one another (which diminishes with 
increased overlapping), and some Glass effect remains. A more sophisticated analysis might
take into account degrees of fusion, or maybe the Voronoi diagram should be taken between 
separate entities, such that it changes upon dot contact. However, I have shown that the Glass 
effect persists at extremely high densities, whereupon explanation simply in terms of natural 
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neighbor loadings about transformation direction(s) is circumscribed. The question of Glass 
phenomena requires more work yet; hence it is developed in various shared contexts 
throughout the thesis, and is ultimately treated in a transformational context in Chapter 12 
where it turns out that proximity links can still show structure without connecting 
transformation partners. Any utility of natural neighbor loadings about transformation
direction(s) must then be subsumed in this more inclusive finding. 

The travelling salesperson problem (TSP) 

The travelling salesperson problem is a member of the class of computationally
intractable ‘NP-complete’ problems (Lawler, 1985). It is a form of ‘combinatorial 
optimisation’ problem: the value of a function needs to be maximized or minimized. Owing to 
the enormous number of possible tour combinations for even a modest number of points, 
solutions for only a small number of points are realizable in any reasonable computing time.
Hence computer scientists have devised heuristic procedures for near-optimal solutions. 

The study of subject’s solutions to travelling salesperson problems is important
because they often get quick, near optimal solutions to problems for numbers of points that 
involve considerable computing time. And the travelling salesperson problem is relevant to 
the perception of pattern because quick, near optimal solutions are not haphazard. They
appear to involve the perception of configuration, organization, or structure, in arrays. This
has been shown convincingly by Vickers, Bovet, Lee, and Hughes (2003), who conclude that 
the perception of organization may be considered the perception of minimal forms of structure 
(p. 885). 

So as to see how proximity measures might apply to the travelling salesperson 
problem, data from Vickers et al. (2003) were acquired, with permission, for 30 subjects. 
These data consisted of ordered indices to the site coordinates for tours made by each subject.
Optimal solutions for tours were also provided. Each subject tackled the same series of 10 
open ended and closed loop tours of 30 randomly located sites. Each of the 10 tours in the 
series was different, and the same series was used in random order for open and closed tours, 
except the latter were reflected about the 45o diagonal. Half the group commenced with open 
tours and the other half commenced with closed tours. 

For open tours, subjects were instructed to visit all sites; beginning on any site and 
finishing on a different site. For closed tours, they were instructed to visit all sites; beginning 
on any site and finishing on the same site. No instruction was given that solutions with 
crossed paths might be inefficient, and no subject reported having recognized closed tours as 
being transformed versions of open tours. 

Analysis in terms of the Delaunay neighbour hierarchy 

The data acquired from Vickers et al. (2003) for 16 of the subjects were reprocessed 
for the purpose of testing subject’s adherence in their tours to edges of the Delaunay 
hierarchy. These subjects had the widest and most even possible spread of ‘Percentage Above 

Optimal tour distance’ (PAO) scores. (
subject tour distance

AO= 100
optimal tour distance

P .) This spread 

facilitated interpretation of correlation statistics (for the obvious reason that tightly bunched 
data with spurious overlaps masks reciprocal relationships). 

Results of reprocessing the data showed that travelling salesperson solutions by the 16 
subjects loaded highly on Delaunay edges: average 97.62% of subjects links were Delaunay 
edges for open TSPs and 96.09% of subjects links were Delaunay edges for closed TSPs.
Figure 2.22 depicts a hierarchy of edges, with Delaunay edges shown in yellow, red, and 
green, for an arbitrarily selected layout of 30 sites. Red and green edges belong to the 
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minimum spanning tree, of which the green edges belong to nearest neighbours. The offset 
white links show a closed tour generated by an arbitrarily selected subject.

Figure 2.22: Delaunay diagram for 30 sites, with various subsets of the
hierarchy colour coded (see preceding text). The offset white links show a
closed tour generated by an arbitrarily selected subject.

As previously outlined, an average of two thirds of Delaunay edges for randomly distributed
sites are ‘direct’ and one third are ‘indirect’. For direct edges there was an average 89.09%
loading by subjects for open TSPs (with the balance of 8.53% for indirect edges), and 86.64% 
loading by subjects for closed TSPs (with the balance of 9.5% for indirect edges). The small
difference was because closed TSP solutions tended more towards a ‘round tour’ strategy, and 
wanted to load more heavily towards the convex hull, which has a higher proportion of 
indirect Delaunay edges. Loadings by subjects on nearest neighbour and minium spanning
tree edges respectively were 80.02% and 71.95% for open TSPs, and 75.58% and 68.56% for 
closed TSPs.

The optimal open TSP solutions share 100% of their links with Delaunay edges, and 
the optimal closed TSP solutions share 98.33% of their links. Corresponding loadings for 
nearest neighbour and minium spanning tree edges are respectively 84.71% and 77.26% for 
optimal open TSPs, and 77.84% and 71.73% for optimal closed TSPs. 

The distribution of PAO results for all 30 subjects was positively skewed (with tight 
bunching around the mode) whereas the distribution of PAO results for the 16 selected 
subjects was more uniform. Hence inclusion of all subjects in this particular analysis would 
have increased the loadings in favour of the hypothesis that subjects detect adjacency in the 
tradition of Delaunay. 

The spread of subject’s PAO scores facilitated some interesting correlations between 
the PAOs and proportions related to hierarchies of edges. Results are shown in Tables 2.1 to 
2.4. Rather than do the correlations with proportions of the edge hierarchy used by subjects, 
they were done the other way around, i.e. with proportions not used. The longer the average 
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tour distance above optimal by a subject, the greater the proportion of nearest neighbour links, 
for example, not used in the subject’s solutions. Any model for the TSPs clearly needs to 
yield statistically similar loadings to those indicated by the test subjects. Underlying this is the 
extremely heavy loading on Delaunay edges (Delaunay neighbours). 

Table 2.1:  Open tour correlations between PAO scores for 16 selected subjects and 
proportions related to hierarchies of edges.  

PAO

Proportion 
of NN not 

used 

Proportion 
of MS not 

used 

Proportion 
of direct 

Delaunay 
not used 

Proportion of NN not used 0.84

Proportion of MS not used 0.94 0.90

Proportion of direct Delaunay not used 0.91 0.79 0.94

Proportion of all Delaunay not used 0.78 0.66 0.77 0.86

Table 2.2:  Open tour correlations between PAO scores for 6 selected subjects and 
proportions related to hierarchies of edges. PAOs came from the two lowest, the two 
highest, and two around the middle in the range for the 16 subjects.

PAO

Proportion 
of NN not 

used 

Proportion 
of MS not 

used 

Proportion 
of direct 

Delaunay 
not used 

Proportion of NN not used 0.90

Proportion of MS not used 0.97 0.93

Proportion of direct Delaunay not used 0.98 0.87 0.97

Proportion of all Delaunay not used 0.85 0.79 0.87 0.92

Table 2.3:  Closed tour correlations between PAO scores for 16 selected subjects and 
proportions related to hierarchies of edges.

PAO

Proportion 
of NN not 

used 

Proportion 
of MS not 

used 

Proportion 
of direct 

Delaunay 
not used 

Proportion of NN not used 0.82

Proportion of MS not used 0.76 0.86

Proportion of direct Delaunay not used 0.90 0.86 0.86

Proportion of all Delaunay not used 0.82 0.76 0.75 0.68

Table 2.4:  Closed tour correlations between PAO scores for 6 selected subjects and 
proportions related to hierarchies of edges. PAOs came from the two lowest, the two 
highest, and two around the middle in the range for the 16 subjects. 

PAO

Proportion 
of NN not 

used 

Proportion 
of MS not 

used 

Proportion 
of direct 

Delaunay 
not used 

Proportion of NN not used 0.93

Proportion of MS not used 0.76 0.89

Proportion of direct Delaunay not used 0.88 0.94 0.84

Proportion of all Delaunay not used 0.76 0.68 0.60 0.42
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Very generally, minimum spanning tree and direct Delaunay edges figured more in 
open tours, and nearest neighbour and direct Delaunay edges figured more in closed tours. 
Minimum spanning links provide an efficient way of covering all bases in the case of open 
tours. However, for closed tours it seems that the requirement of finishing at starting points 
pressed subjects into employing somewhat more local links. In accord with Delaunay 
triangulation and the optimality of their solutions, subjects generally avoided crossing paths. 

Application of neighbours to MacKay patterns

MacKay (1957a, 1957b, 1961) presented examples in which subjects fixate inspection 
patterns of alternating black and white stripes for a while, and then view a uniform test field. 
The elements in the test field then appear to have a streaming motion normal to the orientation 
of the stripes. Such visual after-effects occur with concentric, radial, and parallel, alternating 
patterns, for example. 

Furthermore our observations show that rapid successive presentations of different 
static random dot patterns against a barred background induce an impression of dots 
streaming in directions normal to the bars, or in the case of curved bars normal to tangents of 
the bars. Again, backgrounds can be barred in any consistent manner: vertical, horizontal, 
herringbone, concentric, and radial all prove good examples. 

At relatively low densities, the illusion can be explained in terms of nearest 
neighbours. The nearest neighbour of the majority of streaming dots is simply a point on a bar 
closest to a dot. Figure 2.23 shows one of a sequence of different random dot patterns against 
a concentric background. The whole range of Delaunay neighbours could be invoked to 
explain the effect as random dot densities become larger. On their own, however, nearest 
neighbours are sufficient to demonstrate the principle. 
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Figure 2.23: The nearest neighbour of the majority of dots is a point on a bar
closest to a dot.

In an unpublished study, Vickers, Preiss, and Hughes (2003) showed the extent of 
motion seen in random dot kinematograms varied inversely with dot density and was closely 
related to the mean distance between nearest neighbours (see Appendix B). A variation on 
random dot kinematograms is to alternate every second random dot display with the same
regular dot display. This was done for lines of dots on one occasion and concentric circles of 
dots on another occasion. First, a frame of independently generated random dots was 
presented, then a frame of lines of dots, then another frame of independently generated 
random dots, then the same frame of lines of dots, and so on. The procedure was then 
repeated, substituting concentric circles of dots for lines of dots.

In both cases the Mackay effect was evident, and this can be explained by sets if 
nearest neighbours linking dots from one frame to the next. (Nearest neighbours were not 
determined within a frame of dots but between consecutive frames, from one frame to the 
next.) See Figure 2.24, each part of which shows a set of nearest neighbour links from one 
frame to the next. (For explanatory purpose, consecutive frames are shown superposed.) 
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Figure 2.24: Independently generated random dots alternated with regular dots show the Mackay
effect, which can be explained by nearest neighbours.

However, like the situation for Glass patterns, I have shown that the Mackay effect persists at 
extremely high densities, whereupon explanation simply in terms of proximity, again, breaks 
down. The MacKay visual after-effect requires more work, and is ultimately treated in a 
transformational context in Chapters 12 and 13. 
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Chapter 3:  Nearest Neighbours 

Barlow (1999) regarded statistical regularities in the environment as ‘important for 
learning, memory, intelligence, inductive inference, and in fact for any area of cognitive 
science where an information-processing brain promotes survival by exploiting them’ (p. 2). 
He referred to many researchers who have begun to show how the regular statistical 
properties of images are exploited by neural mechanisms. Chun (2000) showed that statistical 
regularities in the structure of images were encoded without explicit effort by observers. With 
regard to the obvious relevance of statistical properties of images, these next three chapters 
outline some statistical methods that can be used to discriminate characteristics of visual 
patterns and differences between such patterns.

Brief summary of chapter

Nearest neighbours are primary elements of the hierarchy of distance relationships. As 
such, statistical methods involving nearest neighbour analysis are discussed. These include 
nearest neighbours over an area, around the circumference of a circle, and along a line. After 
each theoretical exposition, the methodology is put to work in the analysis of visual patterns, 
including Glass, clustered, and regular patterns. 

The statistical theory for nearest neighbours outlined in this chapter is not original. 
However, the implementation along with application to configurations of interest to the study 
of human visual perception is original. 

Approach to nearest neighbours 

Nearest neighbour distance is the elementary metric of point-to-point distance 
relationships. It heads the relationship hierarchy, and on its own can make important 
contributions to a surprising number of observed relationship phenomena. Where a nearest 
neighbour account is not sufficient on its own, the contribution from nearest neighbour 
distance remains important. The approach to nearest neighbours can be divided into two main 
considerations, and it is expedient to deal with each separately.

First, nearest neighbours play an important role in identifying the structure within a 
point pattern set. Nearest neighbour distance relationships within a point pattern set, whether 
summarized by mean nearest neighbour distance or by the entire frequency distribution of 
nearest neighbour distances, provide a measure for discriminating between three basic pattern 
attributes: clustered, random, and regular. Obviously the frequency distribution contains more 
information than the mean and, as such, can show degrees of different ‘within’ pattern 
attributes by extent of departure from the theoretical probability distribution for randomness. 
On the other hand, departure of the mean from the theoretical mean for randomness can show 
only degree of an overriding attribute. 

Secondly, nearest neighbours play an important role identifying the relationship 
between two point pattern sets. Minimization of the largest nearest neighbour distance 
between two point pattern sets brings the sets into optimal proximity. In pattern sets of equal 
size reciprocal relationships are the same, hence such minimization can be reduced to 
minimization of the largest nearest neighbour distance from one pattern set to another, which 
brings the sets into optimal proximity. The pattern sets could be identical and one displaced 
from the other; or one could be some further affine transformation of the other, such as a 
dilation, shear, or rotation, or some combination thereof. Minimization of largest nearest 
neighbour distance steers transformations that bring two such patterns to identity, and along 
the way information about generating process for the pattern can be extracted. Additionally, 
change between successive (temporal) instances of a pattern set can be readily detected by 
examination of ‘between’ pattern nearest neighbour relationships. 
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Of course, a trivial situation exists for which the within and between pattern situations 
produce the same result. The distance relationship between elements of two superposed 
identical point patterns is effectively the same as the distance relationship among elements
within of one or the other. 

Poisson distribution and its relation to areal nearest neighbour distance 

Before describing the nearest neighbour statistics involved within an areal point 
pattern set, an explanation of the Poisson distribution and its relation to areal nearest 
neighbour distance is expedient. 

For a distribution of randomly located points, the probability of finding a point in an 
arbitrary area is the same for all points. In such a distribution, spacing is determined by 
chance. Boots and Getis (1988, pp. 13-14) describe a homogeneous planar Poisson process as 
a process in which points are generated in a study area subject to two conditions. 

Uniformity: Each location in the study area has an equal chance of receiving a point. 

Independence: The selection of a location for a point in no way influences the 
selection of locations for other points. 

In other words the distribution of points is completely homogenous, and there is no 
interaction between points. This is known as complete spatial randomness (CSR), after Diggle 
(1983).

For a Poisson random variable, the probability that X is some value x is given by 

P( )
!

x uu e
X x

x
x = 0, 1,…,      (1) 

where u is the average number of occurrences in the specified interval. For the Poisson
distribution, the mean equals u and the variance equals u.

By way of example, if the average number of events is 2.1 then the probability of getting 4 
events is 

4 2.12.1
P( 4) .0992

4!

e
X .

Now consider an area A, with a number of randomly located points N, then subregion a has, 

on average, 
a

N
A

points. Otherwise stated, subregion a has, on average, 
N

a
A

points, or a

points, where
N

A
 is the average number of points per unit area, or density of points. The 

probability of finding r points in subregion a is 

( )
P( )

!

r aa e
R r

r
,

following from direct substitution into Equation (1).
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The probability of finding no point in subregion a, that is r = 0, is then 

P(0) ae .      (2) 

The distribution of nearest neighbour distances under CSR depends on N and A. The 
probability of getting another point within distance d of some particular point is just the ratio 
of the corresponding subregion area, with radius d, to overall area 

A

d 2

and the number of points, on average, is 

N
A

d 2

which is 

d 2

therefore, on the basis of equation (2) 
2

P(0) de

This is a direct substitution into Equation (2), and is the probability of finding no points 
within distance d of some particular point. 

It is also the probability that the distance, D, to its nearest neighbour is greater than d.

2

P( ) P(0) dD d e

Hence
2

P( ) 1 P(0) 1 ( )dD d e F d ,      (3) 

which is the cumulative distribution function (cdf) for the nearest neighbour distance, d.

(Note that the ‘ ’ sign logically implies a cdf.) Figure 3.1 shows an example of a cdf of 
nearest neighbour distances for 200 points in an area of 25 million square units. 
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d

Figure 3.1: Poisson cumulative distribution function of
nearest neighbour distances for 200 points in an area of 25
million square units.

Differentiating equation (3) gives 

2

( ) 2 df d de ,      (4) 

which is the probability density function (pdf) for the nearest neighbour distance, d.

Note that the ‘=’ sign logically implies a pdf. Figure 3.2 shows an example of a pdf of nearest 
neighbour distances for 200 points in an area of 25 million square units.1

d

Figure 3.2: Poisson probability density function of
nearest neighbour distances for 200 points in an area of 25
million square units.

1
For a discrete distribution the pdf is the probability that the variate ‘takes’ the value d, i.e. P(D = d). For a

continuous distribution the pdf is the probability that the variate ‘has’ the value d. The probability at a single
point is effectively zero, hence it is often expressed in terms of an integral between two points.

( )d P( )

b

a

f d d a D b

In general terms, if f(x) is the pdf of a continuous random variable X, then f(x) × dx (a small positive quantity) is 
approximately the probability that X falls in the interval [x, x + dx]. So the integral of f(x) over an interval [a, b]
is the probability that a < X < b.
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Referring to equation (4), the mean, u, is the integral of the expression d f (d) and the 

variance is the integral of the expression (d – u)
2

f (d).

Nearest neighbour statistics for an areal point pattern set 

The average nearest neighbour distance for an empirical distribution is just the total 
nearest neighbour distance divided by N. The simplest algorithm involves calculating the 
distances from each point to every other point. This results in N sets of N distances, and the 
minimum distance in each set yields a set of N nearest neighbour distances. Mean nearest 
neighbour distance is given by 

1

1
min

N

ij

j i

u
N

where uij is the distance from point i to point j. This is the observed mean for an empirical
distribution of points, here denoted ro. In a Euclidean x, y coordinate system

2 2( ) (ij i j i ju x x y y ) .

The mean nearest neighbour distance for CSR, which is the Poisson distribution of 
nearest neighbour distances, is given by 

1

2 N
A

, which is 
1

2
, and is often given as 0.5 A

N
.      (5) 

This is the theoretical, or expected, mean, here denoted re, for a uniform random distribution 
of N points over an area A. Of course it must be taken for the same number of points 
distributed over the same area as those for the observed mean.

Dividing observed mean by expected mean gives the nearest neighbour statistic, here 
denoted R, which can be tested for significance (see Walford, 1995, for example).

o

e

r
R

r
.

The nearest neighbour statistic is a descriptive device, which provides a quantitative summary
of spacing between points. The more tightly points are clustered, the closer to 0 the value for 
R becomes; since average nearest neighbour distance decreases. The most tightly clustered 
situation is represented by all points superposed, for which the value of R equals 0. The closer 
to 1 the value for R becomes, the closer the points are to being randomly distributed. This 
follows from the way R is defined. The value of R equals 2.149 for perfectly uniformly spaced 
points; represented by a triangular lattice arrangement. Hence, the closer to 2.149 the value 
for R becomes, the more uniformly spaced are points.

Test for significance

The test for significance is a test to decide whether or not the difference between the 
observed mean, ro, and the expected mean, re, can be reasonably attributed to chance. The 
significance of the difference between some R resulting from sample data and the R for CSR, 
which equals 1, can be examined by a Z test. 
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The null hypothesis states that R has a value other than 1 wholly due to sampling 
error: that is R is due to CSR. The object is to show that the probability of R being due to 
sampling error is small enough to accept the alternative hypothesis: that is R is due to some
non-random, or patterning, mechanism. But before a Z test can be performed the standard 
deviation of the sampling distribution, or standard error, is required. The variance of the 
Poisson distribution of nearest neighbour distances is

4

4( )N N
A

,      (6) 

from which the standard error is 

4

4( )N N
A

,

which is calculated to be 

0.26136

( )NN
A

, or alternatively 20.06831A
N

,      (7) 

and is here denoted Sd.
The formula for the Z test is now 

o e

d

r r
Z

S
,

which, by definition, has a normal distribution.
(Since each nearest neighbour distance for a random point pattern is distributed 

independently of all the others and follows the distribution of expression (4), the observed 
mean for a random point pattern is distributed approximately as the normal distribution, with 
mean as per expression (5) and variance as per expression (6)). 

If the absolute value of Z exceeds the number of standard deviations for a chosen level
of significance (often .01 or .05) then the null hypothesis that R has a value other than 1 
wholly due to sampling error should be rejected in favour of some non-random mechanism.

Computational examples for nearest neighbour analysis of means 

By way of example, nearest neighbour analyses of the mean are performed for the 
three point patterns shown in Figures 3.3, 3.4 and, further along, Figure 3.5.
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Figure 3.3: Glass translation consisting of
100 point pairs.

Figure 3.4: 200 randomly located points.

Figures 3.3 and 3.4 each have 200 points dispersed over equal screen areas, here scaled at 

5,000 screen units  5,000 screen units = 25 million square units. Formula (8) below, for the 
observed mean nearest neighbour distance, was implemented on a computer. By 

1

1
min

N

o i

j i

r u
N

j       (8) 

the observed mean nearest neighbour distance for the Glass pattern, shown in Figure 3.3, is 
59.249 units. 

Because the figures have the same number of points dispersed over equal areas, the 
expected mean nearest neighbour distance from the one Poisson distribution is applicable to 
both.

re = 
1

2 N
A

 = 
1

2002
25000000

 =  176.777 units 

The nearest neighbour statistic for Figure 3.3 is then 

o

e

r
R

r
 = 

59.249

176.777
 =  0.335, 

which is far from the nearest neighbour statistic of 1 expected for a random distribution. 

Moving on to the test for significance: fist, the standard error is 

0.26136

( )NN
A

 = 
0.26136

200200( )
25000000

 = 6.534 

and
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o e

d

r r
Z

S
 = 

59.249 176.777

6.534
 = –17.988, 

which substantially exceeds the 1.96 standard deviations from tables of the normal

distribution for the  = .05 level of significance. Hence H0 of CSR is rejected, and because the
observed mean nearest neighbour distance is less than the expected mean, the points tend to 
clustering.

Confidence limits for re in the population are 

re + Z Sd and re – Z Sd.

If  = .05, then for every 100 samples taken from a randomly distributed population it can be 
expected that the mean nearest neighbour distance for 95 of them will lie between the 
confidence limits.

Moving on to the random distribution shown in Figure 3.4, the observed mean nearest 
neighbour distance is 176.082 units. Since the expected mean is 176.777 units, R = 0.996, 
which is very close to the nearest neighbour statistic of 1 for CSR. Z = 0.106, which is much

less than the 1.96 standard deviations from tables of the normal distribution for the  = .05
level of significance. Hence H0 of CSR cannot be rejected. For every 100 random samples
bounded as per Figure 3.4 and drawn from the population from which the sample of Figure 
3.4 was drawn, it can be expected that the mean nearest neighbour distance for 95 of them
will lie between

176.777 + (1.96  6.534) = 189.584 units and 176.777 – (1.96  6.534) = 163.970 units. 

Edge effect 

For much of pattern detection in psychology, study areas are readily arranged to be 
rectangular or circular, and a square study area as a special rectangular instance is often used. 
These forms are addressed by several edge correction techniques (see Boots & Getis, n.d., for 
example).

For nearest neighbour analysis the edge effect is simple: some points in a study area 
that are proximate to the edges would have their nearest neighbours outside the edges, but 
they are paired with respective nearest points in the study area, which are not their nearest
neighbours. Results from the (necessarily bounded) examples given above relate to infinite or 
unbounded CSR, therefore they are influenced somewhat by the edge effect. However the 
influence is marginal because of the reasonable number of points involved.

As the number of points increases, the ratio of number of inner points to number of 
peripheral points increases, which reduces the edge effect. Generally, the fewer the number of
points the more important some kind of edge correction becomes. As a rough rule of thumb,
edge correction should be applied when fewer than 200 points are involved but, ultimately,
edge effect issues are matters for judgement and experience. 

Buffer zone and toroidal edge correction techniques are left to pages 73 and 74 of the 
next chapter for discussion in fuller context. A further method of dealing with the edge effect, 
but restricted to nearest neighbour analysis, is to calculate mean nearest neighbour distance 
using only those nearest neighbour distances from points i to points j that are less than the 
distances between points i and a nearest boundary. Of course this reduces the number of 
nearest neighbour distances that contribute to a mean, which can be awkward if N is small;
and because the method tends to retain small nearest neighbour distances it can introduce
bias.
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If assessment by a researcher indicates that points in a study area are dispersed in such 
a way that the great majority of nearest neighbour distances are legitimate, then edge 
correction may not be an issue. Only by applying calculations initially both with and without 
edge correction can a researcher get a feel for the necessity of its application. As far as the 
majority of studies underlying the content herein are concerned, the edge effect makes little 
difference. This can be appreciated by way of recalculation of the examples given above with 
a well-tried method of edge correction. 

Donnelly (1978) showed that for N greater than 7 points in a study area that is not 
highly irregular, the adjusted expression (5)

1 0.041(0.0514 )
2

B
NNN

A

, which is 
1 0.041(0.0514 )

2
B

NN
, and is often 

given as 0.0410.5 (0.0514 )A B
N NN

,      (9) 

where B is the length of the study area boundary, approximates the mean nearest neighbour 
distance for the bounded Poisson distribution. 

Expression (7) for the standard error of nearest neighbour distances for the bounded 
Poisson distribution becomes

2 50.06831 0.037A AB
N N

.      (10) 

See footnote2.
The observed mean nearest neighbour distance for the Glass pattern shown in Figure 

3.3 is, of course, still 59.249 units. Recalculating: the expected mean is now 182.207 units, 
and R = 0.325, which is still far from the nearest neighbour statistic of 1 for a random
distribution. Z = 17.525, which substantially exceeds the 1.96 standard deviations from tables 

of the normal distribution for the  = .05 level of significance. Hence H0 of CSR is rejected, 
and because the observed mean nearest neighbour distance is less than the expected mean, the 
points tend to clustering. 

The observed mean nearest neighbour distance for the random distribution shown in 
Figure 3.4 is 176.082 units, and the expected mean is 182.207 units. Hence R = 0.966, which 
is still close to the nearest neighbour statistic of 1 for a random distribution. Z = 0.873, which 

is less than the 1.96 standard deviations from tables of the normal distribution for the  = .05
level of significance. Hence H0 of CSR cannot be rejected. 

The third example, Figure 3.5, shows a fairly regular pattern of 196 points in an area 
of 25 million square units.3 It is here subjected to nearest neighbour analysis with edge 
correction; this time using alternate forms of the base expressions listed at (5) and (7).

2 Since the modifications leading to expressions (9) and (10) were found by analysing simulated point patterns in
study areas of assorted geometric shapes including rectangles, squares, circles, and ellipses, they should not be
applied to irregularly shaped areas. 
3 The fixed form size throughout the examples eased the computer programming effort, but at the expense of a 
marginally more accurate value for R in this instance. The marginally more accurate value could have been
realized by placing the boundaries as close as possible to the most outwardly located points.
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Figure 3.5: Fairly regular pattern.

The observed mean nearest neighbour distance is 315.383 units. The expected mean
by expression (9) 

0.0410.5 (0.0514 )A B
N NN

is

25000000 0.041 200000.5 (0.0514 )
196 200196

 =  184.115 units, 

therefore

o

e

r
R

r
 = 

315.383

184.115
= 1.713, 

which well exceeds the nearest neighbour statistic of 1 expected for a random distribution.
The standard error of nearest neighbour distances for the bounded Poisson distribution by 
expression (10) 

2 50.06831 0.037A AB
N N

is

2 5
25000000 250000000.06831 0.037 20000

200 200
 = 7.164, 

and

o e

d

r r
Z

S
 = 

315.383 184.115

7.164
 = 18.332, 
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which substantially exceeds the 1.96 standard deviations from tables of the normal

distribution for the  = .05 level of significance. Hence H0 of CSR is rejected, and because the
observed mean nearest neighbour distance is greater than the expected mean, the points tend 
to regularity.

(Note that for tendency to clustering Z is negative; hence positive Z indicates tendency 
to regularity. But, of course, Z closer to zero indicates randomness: 1.96 Z  –1.96, for 

example, indicates randomness at the  = .05 level of significance.) 
Before moving on to refined nearest neighbour analysis, one last consideration 

warrants mention. If the maximum possible nearest neighbour statistic is 2.149 (R equals 
2.1491, to five significant figures, for perfectly uniformly spaced points) then the maximum
possible mean nearest neighbour distance between points is 

max
o

R
R

R
,

which, for this example, is 

2.149
315.383 395.656

1.713
 units. 

When observing a display of dots showing nearest neighbour links, I found it useful to 
subjectively compare its mean nearest neighbour distance with the maximum possible spacing 
for the same number of dots in the same field. This provided me with a readily visualized
form of feedback as to the statistical rating of the pattern in terms of straight distance 
comparisons.

Refined nearest neighbour analysis 

From the point of view of distance relationships, considering all point-to-point
distances provides maximum information. Important subsets of these—point-to-point 
distances out to some cut-off distance, indirect and direct Delaunay distances, relative 
neighbourhood distances, minimum spanning distances, and nearest neighbour distances, all 
result in loss of information. However, the objective is to choose optimal linking schemes:
schemes that balance most information against a least number of distance links. 

Conversion of data to some summary statistic, commonly to a single summary
statistic, also results in loss of information. Maximum information is realized by comparing
the distribution of all point-to-point distances for some point pattern with that for the
equivalent theoretical distribution; if one exists, of course! And distributions for the optimal
linking schemes produce a lot of information for relatively little outlay. A good return for 
outlay is the distribution for nearest neighbour distances; and this is the backbone of refined 
nearest neighbour analysis. 

Before proceeding, it must be emphasised that distance is not the only measure for
pattern detection that can be usefully treated by statistical methods. Least angle for Delaunay
triangulation is another useful measure, for example. The mean and distribution of least 
angles for Delaunay triangles can have some advantages in some situations over 
corresponding distance statistics; and, of course, angles and distances can interact. 

Refined nearest neighbour analysis involves comparing the distribution of some
observed set of nearest neighbour distances, F(di), with that of expected nearest neighbour
distances for CSR, P(di), (see Boots & Getis, n.d.). Observed nearest neighbour distances are 
ranked in ascending order and the proportions F(di  r) are determined. The distances, r,

usually coincide with nearest neighbour distances. Alternatively, they can be incremented by 
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some fixed amount. The proportions of observed nearest neighbour distances not greater than 
corresponding distances, r, are denoted F(r), and referred to as the observed proportion.

Corresponding proportions P(di  r) of expected nearest neighbour distances for CSR 
are then calculated. The proportions of expected nearest neighbour distances not greater than 
corresponding distances, r, are denoted P(r), and referred to as the expected proportion. The 
equation for corresponding proportions of expected nearest neighbour distances is provided 
by the previously derived formula for equation (3), and is 

2

( ) 1 P(0) 1 rP r e .      (11) 

Diggle (1981) suggested the statistical expression 

max |F(r) – P(r)|,

denoted dr, for comparing the two results. It signifies the largest absolute difference between
the two cdfs for corresponding values of r. Since observed nearest neighbour distances for 
patterns are not typically independent, Diggle also suggested a Monte Carlo procedure for 
testing the significance of this difference. 

For the Monte Carlo procedure, repeated equivalent Poisson simulations are invoked. 
The largest absolute difference between the observed proportion, as simulated, and the 
expected proportion, is calculated for each simulation: that is, a dr is calculated for each 
simulation. If a dr resulting from some empirical distribution then turns out to be one of the 
five largest when included with those resulting from 99 Poisson simulations, for example, 

then an H0 of CSR can be rejected for  = .05, and if it turns out to be the largest, then an H0

of CSR can be rejected for  = .01. 
However, I choose to calculate upper and lower delimiting confidence values for the

Poisson distribution by first calculating the standard error as per expression (7), and then 

multiplying by the desired Z . For the upper delimiting value the result is added to the r value 
for the largest absolute difference, which is then substituted for r in calculation by equation 
(11). For the lower delimiting value the result is subtracted from the r value for the largest 
absolute difference, which is again substituted for r in calculation by equation (11). For the 
purpose of refined nearest neighbour analysis, this is the only pair that need be calculated.

However, the manner in which the cdf for an empirical pattern mirrors the pattern’s noticeable
(intrinsic) difference to that for CSR is important, and for this kind of evaluation each pair of 
delimiting values at each r is calculated for plotting along with the Poisson cdf. 

More than just testing for statistical significance of dr, deviation from CSR anywhere 
along a nearest neighbour distance cdf can give information about pattern type. A pattern of 
regularly spaced clusters, for example, can show more relatively short and long nearest 
neighbour distances than those shown for the corresponding CSR. 

Sometimes statistical significance might be reached and other times not. What is 
important is how the cdf for an empirical pattern mirrors the pattern’s noticeable difference to 
that of a random pattern. For example, see Figure 3.6, in which the magenta line shows the 
cdf for the Poisson distribution, and the dashed lines delineate the 95% confidence interval.
The confidence interval is based upon measures associated with the random distribution, not 
measures associated with an empirical distribution that is being tested against such
randomness. It provides a graphic reference concerning significance for empirical measures.
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The small circles describe the cdf for the fairly regular pattern, Figure 3.5, given for 
the last nearest neighbour analysis of the mean.4 The point of largest absolute difference 
between the two cdfs for corresponding values of r is marked with a small blue circle. This 
example clearly shows the dearth of short nearest neighbour distances and the surfeit of 
longer nearest neighbour distances, which gave rise to the larger than expected mean.

Figure 3.6: Distribution functions for the fairly regular example shown in
Figure 3.5.

Table 3.1 below, frames the refined nearest neighbour analysis. Of course some
columns of values necessarily correspond to values that gave rise to the graphs of Figure 3.6. 
Table 3.1, part A refers to the analysis without edge correction and part B refers to the same
analysis with edge correction. For each part, dr, the point of largest absolute difference 
between the two cdfs for corresponding values of r, is highlighted in red. This difference, 
upward of the small blue circle in Figure 3.6, far exceeds the confidence limit, and because 
F(r) is less than P(r) a regular pattern is indicated. Remember, F(r) is the proportion of 
observed nearest neighbour distances not greater than the corresponding r, and given that it is 
less than expected at the point of maximum difference then the pattern is regular. While table 
3.1, part A is fairly self-explanatory, part B, with edge correction, needs explanation. 
However, it will be noticed forthwith that edge correction, again, does not change the 
outcome.

4 Ideally the two cdfs should coincide at the final data point, at least; but the scaling precision that produced the
display is slightly imperfect. Additionally the vertical lines show a deliberately over-scaled histogram, for better 
viewing definition, outlining the pdf of the fairly regular pattern.
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Table 3.1: 

A. Refined nearest neighbour analysis without edge  B. Refined nearest neighbour analysis with edge 
correction.       correction 

Distance

r (screen 
units)

Number 
of points 
for 
which 
di r

Observed 

proportion
F(r) 

Expected

Proportion
P(r) |F(r)–P(r)|

Distance

r (screen 
units)

Number 
of points 
for 
which 
di r

Number of 
points for 
which 
ui < r < di

Observed 

proportion
F(r) 

Expected

Proportion
P(r) |F(r)–P(r)|

10 0 0 0.005023 0.005023 10 0 0 0 0.005023 0.005023

20 0 0 0.014996 0.014996 20 0 0 0 0.014996 0.014996

30 0 0 0.029773 0.029773 30 0 0 0 0.029773 0.029773

40 0 0 0.049138 0.049138 40 0 0 0 0.049138 0.049138

50 0 0 0.072814 0.072814 50 0 0 0 0.072814 0.072814

60 0 0 0.100465 0.100465 60 0 0 0 0.100465 0.100465

70 0 0 0.131708 0.131708 70 0 0 0 0.131708 0.131708

80 0 0 0.16612 0.16612 80 0 0 0 0.16612 0.16612 

90 0 0 0.203245 0.203245 90 0 0 0 0.203245 0.203245

100 0 0 0.24261 0.24261 100 0 0 0 0.24261 0.24261 

110 0 0 0.283729 0.283729 110 0 0 0 0.283729 0.283729

120 0 0 0.326115 0.326115 120 0 0 0 0.326115 0.326115

130 0 0 0.369291 0.369291 130 0 0 0 0.369291 0.369291

140 0 0 0.412796 0.412796 140 0 0 0 0.412796 0.412796

150 0 0 0.456196 0.456196 150 0 0 0 0.456196 0.456196

160 0 0 0.499086 0.499086 160 0 0 0 0.499086 0.499086

170 0 0 0.5411 0.5411 170 0 0 0 0.5411 0.5411 

180 0 0 0.58191 0.58191 180 0 0 0 0.58191 0.58191 

190 0 0 0.621236 0.621236 190 0 0 0 0.621236 0.621236

200 0 0 0.65884 0.65884 200 0 0 0 0.65884 0.65884 

210 0 0 0.694532 0.694532 210 0 0 0 0.694532 0.694532

220 0 0 0.728166 0.728166 220 0 0 0 0.728166 0.728166

230 0 0 0.759639 0.759639 230 0 0 0 0.759639 0.759639

240 0 0 0.788891 0.788891 240 0 0 0 0.788891 0.788891

250 0 0 0.815898 0.815898 250 0 0 0 0.815898 0.815898

260 0 0 0.840669 0.840669 260 0 0 0 0.840669 0.840669

270 8 0.040816 0.863245 0.822429 270 5 3 0.025907 0.863245 0.837338

280 20 0.102041 0.883691 0.78165 280 16 4 0.083333 0.883691 0.800358

290 38 0.193878 0.902094 0.708216 290 33 5 0.172775 0.902094 0.729319

300 64 0.326531 0.918556 0.592025 300 55 9 0.294118 0.918556 0.624438

310 89 0.454082 0.933194 0.479112 310 75 14 0.412088 0.933194 0.521106

320 112 0.571429 0.946132 0.374703 320 94 18 0.52809 0.946132 0.418042

330 134 0.683673 0.957501 0.273828 330 110 24 0.639535 0.957501 0.317966

340 155 0.790816 0.967433 0.176617 340 120 35 0.745342 0.967433 0.222091

350 173 0.882653 0.976058 0.093405 350 130 43 0.849673 0.976058 0.126385

360 186 0.94898 0.983507 0.034527 360 136 50 0.931507 0.983507 0.052 

370 192 0.979592 0.989903 0.010311 370 141 51 0.972414 0.989903 0.017489

380 195 0.994898 0.995364 0.000466 380 144 51 0.993103 0.995364 0.002261

390 196 1 1 0 390 144 52 1 1 0

Table 3.1, part B is the same as Part A except that it has an extra column headed ui < r
< di, where ui is the distance of each point i to the nearest part of the study area boundary. If a 
point is closer to the boundary than it is to another point, then it is discounted for the 
particular distance, r. The column heading states ‘number of points for which the distance r is 
greater than the distance from a point i to the boundary while it is less than the distance from 
the same point i to its nearest neighbour’. For each r the accumulation of such numbers of 
points is subtracted from N. Hence each entry for F(r), the proportion of observed nearest 
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neighbour distances that are not greater than each r, is determined on the basis of some
accumulation of reduction in N. (For more information regarding nearest neighbour analysis, 
refined and otherwise, see Boots & Getis, 1988).

Before moving onto nearest neighbour analysis in one dimension, it is important from
a psychological perspective to appreciate how the cdf for an empirical pattern can mirror the 
pattern’s noticeable difference to that of the Poisson distribution. Statistical significance need 
not come into the argument, other than to perhaps provide some kind of opportune support. 

As a pattern becomes more clustered, its average nearest neighbour distance becomes
smaller relative to that of the equivalent random situation. As a pattern becomes more regular, 
its average nearest neighbour distance becomes larger relative to that of the equivalent 
random situation. Additionally, the more clustered a pattern, the more limited the variability 
of its nearest neighbour distances. Likewise, the more regular a pattern, the more limited the 
variability of its nearest neighbour distances. With this in mind, the points shown in Figure 
3.7 reflect an attempt to include a range of features: clustering, randomness, and regularity, in 
the hope that these will be adequately reflected in the distributions shown in Figure 3.9. 
Nearest neighbour links are depicted in Figure 3.8, and it must be noted that some of these are 
reflexive links, which are counted twice in the distributions. 

Figure 3.7: Pattern with a range of features: 
clustering, randomness, and regularity.

Figure 3.8: Nearest neighbour links for the pattern
with a range of features.
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Figure 3.9: Refined nearest neighbour analysis plots for the pattern with a range of
features. See text for analysis. 

Table 3.2 is a computer readout for the nearest neighbour analysis of the mean, calculated as 
per the previous section. 

Table 3.2: Nearest neighbour analysis of the mean.

Observed mean nearest neighbour distance 334.141

Standard deviation 310.137

Max possible nearest neighbour distance 937.237

Expected mean nearest neighbour distance 436.107

Nearest neighbour statistic 0.766

Standard error of expected mean 39.977

Z 2.551

Observed mean nearest neighbour distance < 

expected mean. Verdict at  = .05: 

Clustered

Figure 3.9 shows everything: theoretical (Poisson) and empirical cdfs and pdfs. The 
pdfs are over-scaled with respect to the cdf s for sake of better viewing definition. Although 

the one statistical verdict, clustered at  = .05, is given by both nearest neighbour and refined 
nearest neighbour analysis, Z = 2.551 and dr = 1.836 respectively indicate that the pattern is 
not far removed from randomness. Therefore an examination of the full distributions is 
required to understand the analysis properly. 

The nearest neighbour distances for which clustering is evident are shown by the small
circles above the theoretical cdf, and those for which regularity is evident are shown by the 
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small circles below the cdf. Looking at the pdfs: for the empirical pdf an elevation of short, 
clustering, distances, shown by the left group of vertical lines, is evident and a generally 
lesser elevation of longer, regular, distances, shown by the right group of vertical lines, is 
evident. However, the overall shape of the empirical pdf has a meagre correspondence with 
that of the theoretical pdf. Looking at the cdfs: the average behaviour of the empirical
distribution can be seen as not far from random. Nonetheless the overriding verdict is for 
clustering; basically because of the overall elevation corresponding to clustering in the
empirical pdf. This is the kind of approach needed, along with the statistics, in order to realize 
the utility of refined nearest neighbour analysis. 

Other neighbour analysis 

Equivalent analyses can be usefully performed on second, third…out to fifth or sixth 
nearest neighbours, but such neighbours can lose information carrying effectiveness in some
relationship to their ranking. 

An extension of the reasoning stated for the derivation of equation (4) can be applied 
to show that 

2(2 1)2( )
( )

( 1)!

k k rr e
f d

k

for the expected kth nearest neighbour pdf. The expected kth mean nearest neighbour distance 
is given by 

2

(2 )!

(2 !)k

k k

k d
,

here denoted rke, and the kth nearest neighbour statistic, here denoted Rk, can be tested for 
significance.

ko
k

ke

r
R

r
.

Of course R1 for the nearest neighbour statistic, given earlier on page 40 as R, is the situation
for which k = 1 in these formulae.

The constants given in table 3.3, simplify calculations and, in particular, the variance values, 
last column, facilitate calculation of standard error.

Table 3.3: Values of constants for kth nearest neighbour means and
variances. (After Thompson, 1956).

Order of neighbours
Mean = 1

A
N

1

Variance = 22
A

N

2

1 0.5000 .0683

2 0.7500 .0741

3 0.9375 .0760

4 1.0937 .0770

5 1.2305 .0775

6 1.3535 .0778
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Figure 3.10: Pattern formulated to expose limitation of
nearest neighbour analysis of means.

As already mooted, nearest neighbour analysis has its limitations. Patterns can be 
formulated for which it provides insufficient information. For example, such analysis applied 
to the pattern depicted in Figure 3.10 indicates clustering, which is constituted of the spacing 
within pairs. It does not indicate the regularity, which is constituted of the spacing between 
pairs. In this instance, application of the analysis using second nearest neighbour reveals the 
regularity.

Limitations can be experienced more under the demands of some disciplines than 
others. Probability distributions for point patterns, other than the probability distribution for 
points dispersed randomly, can be difficult to formulate on a theoretical basis. Although non-
random patterns can be ranked according to degree of clustering through to regularity, not 
much can be inferred about generating processes. 

However, generating processes for patterns of interest to psychology are often well 
defined. The way a pattern changes over changing viewpoint is defined by the set of affine
transformations on the pattern, for example. A Glass pattern is formed by some
transformation over randomly dispersed points; to give another example. In other words, 
theoretical distributions could be formulated for some patterns of interest to psychology, upon 
which they could be compared for quantitative difference.

Nearest neighbour distance relationships in one dimension 

An account of nearest neighbour distances in one dimension completes the 
possibilities of nearest neighbour distance relationships pertinent to a two-dimensional form
such as the retina. Because the nearest neighbour of any point in a one-dimensional pattern is 
just one of two possible neighbours, an exact binomial model rather than an approximate
Poisson model is used. Before describing the nearest neighbour statistics involved within a 
one-dimensional point pattern set, a flavour of the mathematical reasoning involved in 
derivation is here given for just one situation: a closed curve of unit length along which points 
are randomly distributed. (Selkirk & Neave, 1984, p. 357, indicate that the situation for open 
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curves, including straight lines, involves a more complex application of the ideas used for 
closed curves, including circles.)

For any point on the curve, consider an interval centred on the point. The interval can 
be anywhere from zero length to the length of the curve. Say that the length of the interval is 
2s; then s is not greater than half the length of the curve. Given N points, the probability that 
no other point lies in the interval is (1 – 2s)N  - 1. To see this, if there is just one other point
somewhere on the curve then the probability that no other point lies in the interval is

(1 – 2s)1 = 1 – 2s,

which is just the proportion of the entire curve that lies outside the interval. Let s equal a 
quarter the length of the curve, say, then the interval is half the length of the curve. Hence 
there is half a chance that no other point lies in the interval. If there are just two other points 
somewhere on the curve, then the probability that no other point lies in the interval is

(1 – .5)2 = .25.

Doubling the number of other points has halved the chance that no other point lies in the 
interval; and so on. 

Now let S be the distance from the point to the nearer of its two neighbours. The 
probability that S s is equal to the probability that there is at least one other point in the 
interval. Hence 

1P( ) 1 (1 2 ) ( )NS s s F s ,      (12) 

 which is the cdf for S. Differentiating the cdf gives

2( ) 2( 1)(1 2 )Nf s N s 1(0 )
2

s ,

which is the pdf for S.

Note that substituting 0 for s in (12) results in P( )S s = 0 and substituting ½ for s in (12) 

results in = 1. This is embodied in the equation P( )S s

1
1 2

2

0 0
( )d [ ( )] 1f s s F s ,

which shows that f (s) is, indeed, a pdf.

The expected value of S is then the integral from 0 to ½ of the expression s f (s). This is 
embodied in the equation 

1
2

0

1( )d
2

sf s s N .

The same follows for each of the N points: each has an expected nearest neighbour distance of 

½N. Hence the expected sum of nearest neighbour distances equals N  ½N = ½. Note that if
the closed curve is not of unit length then the expected sum of nearest neighbour distances 
equals half the length of the closed curve. And, of course, the expected mean of nearest 

neighbour distances equals (½  the length) / N. Note also that the result for the sum is 



55

independent of N. Analyses with equivalent outcomes can be performed by statistics on the 
sum instead of the mean if preferred (Selkirk & Neave, 1984, pp. 356-362). The following 
provides a flavour of methodology involving both the sum and the mean.

Analysis of nearest neighbours in one dimension 

Analysis of nearest neighbours in one dimension applies to points distributed along 
any line or open curve, or around a circle or closed curve. Because an open curve is bound 
only by its ends and a closed curve has no bound, edge correction is not the issue that it is for 
areal analyses. The sum of nearest neighbour distances for an empirical distribution is, of 
course,

1

min
N

ij

j i

u ,

where uij is the distance from point i to point j. And the average nearest neighbour distance is, 
again, just the total nearest neighbour distance divided by N

1

1
min

N

ij

j i

u
N

,

where uij is the distance from point i to point j. These are the observed sum and mean for an 
empirical distribution of points along an open or closed curve, and are again denoted ro.

Analysis of nearest neighbour sum around a closed curve

Although this thesis often concerns mean nearest neighbour distance, in this instance 
using the sum of nearest neighbour distances can save a mathematical step with the same end 
result. As indicated above, the expected sum of nearest neighbour distances for CSR around a 
closed curve equals half the length of the curve. That is

2

W
,

where W is the length of the curve. This is again denoted re.

The two extremes for observed sums are those for which all points are superposed and 
all points are equally spaced along the length of the curve. For the former the nearest 
neighbour sum equals zero and for the latter the nearest neighbour sum equals the length of 
the curve. All other observed sums fall between these extremes. The standard error for the 
expected sum of nearest neighbour distances is given by 

2

6( 1)

W

N
,

again denoted Sd.

These are used in the Z test. 

o e

d

r r
Z

S
.
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If analysis by statistics on a normalized length for a closed curve is preferred, then 
dividing the formula for standard error by W is appropriate. 

For a Z statistic that has an approximately normal distribution, N should be greater 
than 20, say, otherwise Z should not be used. Instead, the exact tables published in Selkirk and 
Neave (1984) should be consulted.5

The simple example given in Figure 3.11, conveniently for points dispersed around a 
circle, is here subjected to nearest neighbour analysis of the sum. The green links are nearest 
neighbour links. 

Figure 3.11: Points dispersed around a circle.

By

1

min
N

o i

j i

r u j ,

the observed sum of nearest neighbour distances for the pattern, shown in Figure 3.11, is 
25,303 screen units. This would be normalized upon dividing by the circumference of the 

5 Instances of random point distributions containing some given N > 20, say, show a normal distribution

about the mean
2

W
 for sum of nearest neighbour distances. However, progressively larger N results in

decreasingly narrower normal distributions, such that as N goes to infinity then
2

W
is effectively attained for the

sum of nearest neighbour distances of any random point distribution. For progressively smaller N, this

approximation to precision is in no way guaranteed. The distribution about the mean
2

W
 for sum of nearest

neighbour distances becomes increasingly broader. Hence N needs to figure in the formula for standard error,
even though the expected sum of nearest neighbour distances is independent of N.
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circle in screen units. However, when points are arranged in a circular manner a device can be 
used to simplify matters: radii are imagined drawn from the centre of the circle to respective
dots. The sum of nearest neighbour angles subtended at the centre of the circle, divided by 2
if working in radians or by 360 if working in degrees, produces the same result. The expected 
sum of nearest neighbour angles for CSR is  radians or 180 degrees, which, when divided by 
2  radians or 360 degrees, correspondingly equals .500. (The same method can be also used if 
statistics on directions from a location are required.) 

For the example, the observed sum of nearest neighbour angles is .725; which is also 
the sum of nearest neighbour distances on the normalized circle. By 

1

6( 1)N

the standard error is

1

6(60 1)
= .052

and

o e

d

r r
Z

S
 = 

.725 .500

.052
 = 4.310, 

which exceeds the 1.96 standard deviations from tables of the normal distribution for the  =
.05 level of significance. Hence H0 of CSR is rejected, and because the observed mean nearest
neighbour distance is greater than the expected mean, the points tend to regularity. 

The nearest neighbour statistic 

o

e

r
R

r
 = 

.725

.500
= 1.451, 

where R = 0 is maximum clustering, R = 1 is random , and R = 2 is maximum regularity. 

Analysis of nearest neighbour mean along an open curve 

For analysis of nearest neighbours along an open curve, the expected sum or mean
varies for different numbers of points. Apart from this, methodology is the same as before. 
For an open curve, two conditions are distinguished by the formulae: points located at both 
ends of a curve and no point located at either end of a curve. For the former the expected 
mean nearest neighbour distance for CSR is given by 

( 2

2 ( 1)

W N

N N

)
,

where W is the length of the curve. This is again denoted re.

The standard error for the expected mean nearest neighbour distance is given by 
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2 2

3 2

(2 7 36)

12 ( 1)

W N N

N N
,

again denoted, Sd.

These are used in the Z test. 

o e

d

r r
Z

S
.

In the case of no point located at either end of a curve the expected mean nearest neighbour 
distance for CSR is given by 

( 2

2 ( 1)

W N

N N

)
,

where W is the length of the curve. This is again denoted re.

 The standard error for the expected mean nearest neighbour distance is given by 

2 2

2 2

(2 17 12)

12 ( 1) ( 2)

W N N

N N N
,

again denoted, Sd.

These are used in the Z test. 

o e

d

r r
Z

S
.

If analyses by statistics on the sum is preferred for an open curve, then multiplying the 
formulae by N is appropriate. This undoes the mean. If analysis by statistics on a normalized
length is preferred for an open curve, then dividing the formulae by W is appropriate. 

For a Z statistic that has an approximately normal distribution, N should be greater 
than 20, say, in both cases, otherwise Z should not be used. Instead, the exact tables published 
in Selkirk and Neave (1984) should be consulted. 

The simple example given in Figure 3.12, conveniently for points dispersed along a 
straight line, which is 153,460 screen units long, is here subjected to nearest neighbour 
analysis of the mean in one dimension. The green links are nearest neighbour links. 

Figure 3.12: Points dispersed along a straight line.

By

1

min
N

o i

j i

r u j ,

the observed mean nearest neighbour distance for the pattern, shown in Figure 3.12, is 
159.320 units. 
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By

( 2

2 ( 1)

W N

N N

)
,

the expected mean nearest neighbour distance is

re = 
15360(30 2)

2 30(30 1)
=  264.258 units. 

Moving on with the test for significance. Fist, by 

2 2

2 2

(2 17 12)

12 ( 1) ( 2)

W N N

N N N
,

the standard error is 

2 2

2 2

15360 (2 30 17 30 12)

12 30 (30 1) (30 2)
 = 40.614, 

and

o e

d

r r
Z

S
 = 

159.320 264.258

40.614
 = –2.584, 

which exceeds the 1.96 standard deviations from tables of the normal distribution for the  = 
.05 level of significance. Hence H0 of CSR is rejected, and because the observed mean nearest
neighbour distance is less than the expected mean, the points tend to clustering. 

The nearest neighbour statistic 

o

e

r
R

r
 = 

159.320

264.258
= 0.603, 

where R = 0 is maximum clustering, R = 1 is random , and R = 2 is maximum regularity. 

Nearest neighbour study 

We have used categories of nearest neighbour analyses discussed in this chapter to 
model human perceptual judgment. Subject’s perception of a graded range of point patterns, 
ranging from tightly clustered to highly regular, show that the human visual system is 
sensitive to degrees of dispersion of image elements in a way that closely parallels the results 
of nearest neighbour analysis. 

Our study (Preiss & Vickers, 2005, detailed in Appendix A) employed stimuli 
consisting of dots distributed over areas, around circles, and along lines, each of various 
densities. An eleven-point scale was arranged as eleven squares abutted horizontally beneath
the stimuli, and numbered consecutively from –5, through 0, to +5. From left to right, the five 
squares to the left of centre represented most to least clustered and the five squares to the right 
of centre represented least to most regular. The square at the centre represented randomness.
Participants were 8 males and 8 females, aged from 19 to 52 years, drawn opportunistically 
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from the university student population. They were asked to respond with their subjective 
judgments of degree in the range from tightly clustered to highly regular. 

For each stimulus, the value of the objective mean nearest neighbour distance, ro, and 
of the nearest neighbour statistic, R = ro/re, was calculated. It might be most simply supposed 
that participants judge the degree of clustering or regularity by estimating the objective mean
nearest neighbour distance, ro. Yet, although there were reasonably strong correlations in the 
case of all three pattern types (average Pearson r = .89), scattergrams of participant’s linearly
rescaled ratings against ro in each case showed substantial deviations from linearity. 

In contrast, Figure 4 shows the linearly rescaled mean ratings, produced by 
participants, for the areal, circular, and linear patterns, respectively, plotted against values of 
R. For all three pattern types, the relation between the ratings and R is well described by a 
straight line, with an intercept close to zero and a slope approaching unity. For the areal, 
circular, and linear pattern types, r2 values were .97, .97 and .96, respectively. As illustrated in
Figure 4d, data for all three pattern types are well described by a single linear function with an 
intercept of 0.12 and a slope of 0.92 (r2=.96). It is clear that the theoretical values of R
account for virtually all (at least 96%) of the variance in the empirical ratings. 

In contrast, when differences between the linearly rescaled mean ratings and values of 
R were compared with the number of dots in each pattern, there was no significant correlation 
for any of the three pattern types. That is, dot density made no significant additional 
contribution to predicting response ratings. This reinforces the earlier finding that ratings were 
not satisfactorily accounted for by mean nearest neighbour distance alone. 

Figure 3.13: Mean subjective ratings of the degree to which patterns were 
perceived as clustered, random, or regular, plotted against objective values of R.
From (a) to (d), respectively, the figures show the results for areal, circular, and 
linear patterns, and those for all three pattern types combined.
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Nearest neighbour analysis and the perception of clustering, regularity, and randomness 

The finding that participant’s ratings of the degree of clustering, regularity, or 
randomness in dot patterns is not determined solely by the mean nearest neighbour distance is 
to be expected. For example, imagine a pattern, in which dots are located at the vertices of an 
(unseen) square grid, and in which the side of each grid element is one cm. We would be 
unlikely to judge such a pattern as more (or less) regular than a similar pattern, in which the 
side of each element is two cm, despite the fact that the mean nearest neighbour distance for 
the first pattern is half that for the second. That is, judgments of regularity are based on the 
structure of a pattern rather than the density of its elements. This has the advantage that such 
judgments can be expected to remain invariant (within broad limits) under the uniform 
dilation or contraction of a pattern (as well as under rotation and translation). 

The finding that dot density makes no contribution to categorising the patterns as 
clustered or regular suggests that it would not be possible to explain the results in terms of a 
set of distances that exceed, or fall below, some critical absolute size. Such an explanation is, 
in any event, unlikely because by comparison with values of R for nearest neighbour 
distances, which in the study range from 0.05 up to 2, equivalent values for all interdot 
distances show minimal variation; despite extreme changes in the structure of the patterns. 
Equivalent values for all interdot distances are invariant with respect to the density of random 
dot patterns and, as illustrated in Table 1, are fairly insensitive to constraints in such patterns. 
Hence there seems to be little prospect for attempts to account for the operation of a Gestalt 
principle of proximity by means of neural structures (like those of Maloney, Mitchison, and 
Barlow, 1987, Wilson, Wilkinson, and Asaad, 1997, or Wilson and Wilkinson, 1998) that are 
sensitive to dot pairs (or dipoles) that are (anatomically) defined in terms of absolute distance. 

R values for nearest neighbour 

distances

Equivalent values for all interdot 

distances

Areal Circular Linear Areal Circular Linear

Most

clustered

0.06 0.05 0.07 0.92 0.86 0.94

Most

regular

2 2 1.94 1.02 1.01 1.15

Table 3.4: R values for nearest neighbour distances at most clustered and most regular employed in this 
experiment, compared to equivalent values at most clustered and most regular for all interdot distances. 

The results are consistent with the view that participants are capable of doing exactly 
what they are asked to do in this experiment (i.e., assess the degree to which patterns are 
clustered, random, or regular; with respect to completely random patterns). Moreover, their 
judgments accurately reflect a statistical summary of the relational structure in each pattern. 
This suggests that participants not only have information about the mean nearest neighbour 
distance within a pattern, but that they can also calculate (or have access to) some quantity 
that represents the mean expected nearest neighbour distance for a random pattern with a 
similar number of dots. In other words, we can frame an explanation of the proximity 
principle at the computational level distinguished by Marr (1982). At this level, participants 
appear to make their judgments in a way consistent with the calculation R = ro/re.
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Chapter 4:  Interpretation of Ripley’s K-function in Spatial Point Pattern 

Analysis

Brief summary of chapter

Nearest neighbour analysis uses the mean of nearest neighbour distances in a test of 
significance for pattern type: it is a first order statistic. Spatial point pattern analysis, based on 
Ripley’s K, uses the variance of point-to-point distances in analysis of pattern type: it is a 
second order statistic. (See Ripley, 1976, 1977.) 

After the essential theoretical elements of Ripley’s K are outlined, it is put to work in 
analysis of visual patterns, including Glass, clustered and regular, and Marroquin patterns. 
This involves graphing counts (or more specifically, sums) of pattern elements located in the 
ranges of incrementally increasing distance ‘lags’ from each pattern element. The range of 
inquiry can, but usually does not, cover all point-to-point distances. Edge correction 
techniques are also discussed, and a mathematical exposition on ‘weighted edge correction’ is 
given.

Ripley’s K establishes useful distance limits in pattern detection, beyond which further 
associations of pattern elements fall below some level of significance. Needless to say, it is 
particularly suitable for setting distance limits in pattern detection methods that include 
association by distance as a parameter. Rather than suffer the overhead of dealing with all 
point-to-point distances, only distances out to some limit are considered. Like a good deal of 
early work in the thesis, the justification for including Ripley’s K will not become wholly 
apparent until development of our transformational approach. 

The distribution theory and statistical methodology outlined in this chapter are not 
original; however, their implementation along with application to configurations of interest to 
the study of human visual perception is original. Unlike the other computer programs used in 
the thesis, which were written from first principles, or written to reflect and develop our own 
theoretical ideas, this implementation closely follows Haase (1995). 

All point-to-point distances 

The geometry relevant to any pattern discriminating measure based on distance is 
contained somewhere within all point-to-point links. These are fundamental to distance 
relationships in point patterns. For completeness, all point-to-point distances are here briefly 
mentioned before interpretation of Ripley’s K-function, which uses the variance of point-to-
point distances.

The pdfs for all point-to-point distances for two situations involving complete spatial 
randomness (CSR) are shown in Figures 4.1 and 4.2. 



63

Probability density function for point to 

point distances in a unit square
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Figure 4.1: Pdf for all point-to-point distances for
CSR in a square of unit side (unit square).

Probability density function for point to point

distances in a circle of unit radius.
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Figure 4.2: Pdf for all point-to-point distances for
CSR in a circle of unit radius (unit circle).

A distribution of N points over some area has 1 ( 1
2

N N ) inter-point distances. The 

theoretical distribution of distances, T, between members of pairs of points for CSR depends 
on the size and shape of the area only. Formulae are here given for the cdfs of T for a square 
of unit side 

3 4
2

4 2 2
2

2 1 2

8
0 1

3 2
( )

1 4( 1)(2 1)
2 1

3 2 3 2 sin (2 1)

t t
t t

H t
t t t
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2

and a circle of unit radius 

2 21 2 1( ) 1 2( 1)cos ( ) (1 ) 1 (0 2
2 2 4

t t tH t t t t

(See Bartlett, 1964; Diggle, 1983). 

Differentiating these gives the pdfs shown in Figures 4.1 and 4.2. Note that the 
formulae for point-to-point distances contain only references to distance. They are 
independent of N. The means and standard deviations of the distributions are independent of 
numbers of points. In other words the distributions of inter-point distances remain invariant 
with changes in point density. This is not the case for near neighbour distances. 

For a square or circular area, the mean and standard deviation of point-to-point 
distances reduce as a function of reducing area (because pairings at greater distance intervals 
generally cannot be as far apart). The mean and standard deviation of near neighbour 
distances reduce as a function of increasing density (points per unit area). For a given number
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of points they reduce with reducing area, but for a given area they also reduce with increasing
number of points. 

Density

For N points distributed in an area, A, the density, here denoted , equals N/A. In 

Figure 4.3, for example, there are 10 points in an area of 11 units  9.5 units = 104.5 square 

units:  = 10/104.5 = 0.096. The density is 0.096 of a point per square unit, which, since 
points are discrete, does not seem to make much sense. Put another way, this says that there is 
one point to 1/0.096 = 10.450 square units, on average. Had there been 200 points, for 
example, in Figure 4.3, the density would have been 200/104.5 = 1.914 points per square unit. 

Figure 4.3: Ten points in an area 11 units  9.5 units. The circles show 
distance increments from just four of the points, by way of example.

If points are Poisson (randomly) distributed, the expected, or theoretical, value for the 

number of points in a circle with radius t is 2t . To borrow from the example given above 
for density, if the circle just happened to have a radius, t, equal to 1.824 units, for which its 

area, 2t , equals 10.450 square units, then 2t  = 0.096  10.450 = 1. The circle is expected 

to have one point. 

Ripley’s K and the Poisson distribution 

Ripley’s K is a function of incrementally increasing distance lags, represented by the 

variable t. For the Poisson distribution K(t) = 2t . A plot of K(t) , which equals 2t ,

against t is linear. (The square-root transformation was suggested by Besag in the discussion 

of Ripley, 1977). The expression 2t = t is a constant multiplied by t, which, plotted 

against t, is linear, with Y-intercept . Dividing by  gives K(t)/ , for which the Y-

intercept is zero. Subtracting t gives K(t)/ – t, for which the plot is zero for all t. The 

mathematics provides a theoretical reference of zero for all t along the x-axis. This is a 
normalization related to the theoretical number of randomly distributed points in an area, by 
which distributions of estimates can be compared. (See Ripley, 1976, 1981) 
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Calculating distances in a plane 

Positions of points in a plane are usually defined by rectangular coordinates (x, y), for 

which the distance between two points is 2

1 2 1 2( ) ( 2)x x y y . Distance between any 

point, i, and any other point, j, denoted uij, is then 2( ) (i j i j

2)x x y y . Distances are 

calculated for all combinations where i j , then sorted into ascending order and saved for 

further reference. (Note that distance from point i to point j is equal to distance from point j to 
point i. Inter-point distances are calculated twice because edge correction can prescribe 
different weightings to each; about which more later.) 

Algorithm using Ripley’s K

Distance t is set to an appropriate, small, initial value, and the number of inter-point 
distances not greater than t are counted from the sorted list. Distance t is then incremented by 
the amount of its initial value. Again, the number of inter-point distances not greater than t are 
counted from the sorted list, and so on, for equal increments of t that take it out to some value 
yet to be considered. 

The process results in an array of count values: one value for each distance taken by t.
Distance resolution is determined by the researcher’s choice of distance increments for t; with 
greater resolution—along with greater processing overhead—for smaller increments.

Distance t can be considered a radius to a circle centred on each point in turn, from
which point the distances to the other points are measured. As t is incremented, so the circle
gets larger. Again, see Figure 4.3 above. For each other point in the circle or on the 
circumference, the counter for the particular radius is incremented by one. 

The procedure effectively produces a cumulative distribution function constituted of

estimates at intervals of t. In this sense it corresponds to refined nearest neighbour analysis. 
The cumulative distribution of estimates is effectively compared for significance with 
corresponding points on the theoretical cumulative distribution for random points, but 
Ripley’s K includes the normalization described above. 

Estimator for K(t)

Denote a value It(uij), for which It is the count belonging to a value of t for the distance

comparisons uij t. The expression for the mean count of inter-point distances not greater than 
the value of t is

1

N
( )t ijI u ,      (1) 

i j

where N is the number of points in a study area. Here, the double summation means
that for each point i there is a summation operation on every other point j. (For each member
of the range of i the whole range of j not equal to i is invoked.) Expression (1) gives the 
average number of points over the areas of circles of radius t. It is the empirical equivalent of

the Poisson-related function 2t , hence it is necessary to divide by  to get the

estimator . Dividing by  means multiplyingK(t)
1

N
 in expression (1) by 

A

N
, where A is the 

study area. Inclusion of a weighting factor, wij, which corrects for edge effects (discussed
later), results in the estimator
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K(t)  = 
2

1

N
A

1

ijw
 ( )t ijI u .      (2) 

i j

K(t)  is an approximately unbiased estimator for K(t), and was given by Ripley (1976, 

1981). (See, also, Diggle, 1983; Haase, 1995, 2000.) 

Spatial point pattern analysis (SPPA) plot 

To appreciate the relationship of K(t)  with K(t) consider the manner in which 2t

increases as a function of t. The symbol  is a constant peculiar to each study area, and so is 
a constant, therefore the manner in which the number of points increases over increasing areas 
for the Poisson distribution is shown by the squared function. Yet for an empirical situation
the manner in which the number of points increases over increasing areas need not correspond 
to this squared function. By comparison, it can be excessive at small t and deficient at larger t;
to cite just one example.

For Ripley’s K the normalizing expression ( )K t
t  is graphed against t, to give

the SPPA plot. This kind of plot, as opposed to simply plotting K(t) against t, discards what is 
irrelevant and has better scaling resolution. If points are Poisson distributed, the resulting plot 
is everywhere zero. However, for a pattern of points the K(t) in the expression could be 
greater than or less than that for Poisson distributed points, hence the plot against the 
corresponding t would be greater than or less than zero. 

Confidence intervals

The Monte Carlo procedure is recommended for finding a confidence interval. For a 
99% confidence interval, the lowest and highest values of K(t) for each t from 99 Poisson 
simulations are used. On this basis, a 95% confidence interval requires 19 Poisson simulations
for each t. If Monte Carlo is not practicable, Ripley suggests that approximate 1% and 5% 

significance points for populations are 1.68 A
N

 and 1.42 A
N

 respectively. For

samples 1.68 
1

A
N

 and 1.42 
1

A
N

 should be used. Confidence intervals are based 

upon measures associated with the random distribution, not measures associated with an 
empirical distribution that is being tested against such randomness. They provide a graphic 
reference concerning significance for empirical measures. 

Examples

For a distribution that is uniformly random, ( )K t
t  plotted against t is expected 

to fall within the confidence interval about zero. Figure 4.4 shows 400 such randomly
distributed points and Figure 4.5 shows the corresponding SPPA plot. In all the examples,

( )K t
t  plotted against t is shown in red, and the upper and lower confidence interval 

delimiters are shown in green and blue respectively. 
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Figure 4.4:  Random point pattern, from which Figure 4.5 was 
derived.
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Figure 4.5:  SPPA plot (shown in red) for the 400 randomly distributed points shown
in Figure 4.4. Plotting was performed for distance lags out to half the length of a side
of Figure 4.4. In keeping with the expectation that the plot falls within the confidence
interval (delimited by the green and blue plots) no structure is evident.

For a distribution in which there is clustering, i.e. an excess of small distances, 

( )K t
t  is high (above the positive confidence limit) for small t, and for a distribution in 

which there is regularity, i.e. a deficit of small distances, ( )K t
t  is low (below the

negative confidence limit) for small t. See Figures 4.6 and 4.8, along with their counterparts, 
Figures 4.7 and 4.9. 
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Figure 4.6: Horizontally translated Glass pattern, from which
Figure 4.7 was derived. (The Glass pattern is that shown in
Figure 3.3, for which a nearest neighbour analysis of the mean
was performed.)
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Figure 4.7:  SPPA plot for the100 horizontally translated Glass pairs shown in
Figure 4.6. Clustering is evidenced at relatively small distance lags by the part of the
red plot that is well above the upper confidence delimiter. The clustering
corresponding to displacement of elements of Glass pairs is at the distance lag 
indicated by the sharp peak.
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Figure 4.8:  The most regular possible pattern, from which
Figure 4.9 was derived.

SPPA Plot for 400 Regularly Spaced Points in
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Figure 4.9: SPPA plot for the most regular possible pattern, represented by the
triangular lattice arrangement shown in Figure 4.8. Note the repeating tendency over
the distance lags. Regularity is pronounced at relatively small distance lags related to
the least inter-point distances, and then repeats with diminishing tendency at
increasing distance. The alternations indicate more points than expected at some
regular distances followed closely by less points than expected at intervening regular
distances.

Figure 4.10 exhibits clustering and regularity, hence the corresponding SPPA plot shown in 
Figure 4.11 shows clustering at small t and regularity at greater t.
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Figure 4.10: Composite pattern, with clustering at small
distances and regularity at greater distances, from which
Figure 4.11 was derived.

SPPA Plot for Regularly Spaced Clusters of
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Figure 4.11:  SPPA plot for the regularly spaced clusters shown in Figure 4.10. The
plot shows clustering at small t and regularity at greater t. Note the repeating
tendency. The regularity and clustering deviations indicate more points than
expected at lags up to about an eight the length of a side of figure 4.10, followed by
less points than expected at lags up to about a quarter the length of a side. The
second clustering deviation is not significant. However, along with the following
regularity deviation the clustering, regularity alternation that can be seen in Figure
4.10 over increasing distance is reflected.

Marroquin patterns are related to Glass patterns, only they are generated by transformations
on structured arrays; such as a lattice of dots. Additionally the transformations are typically
moved through any magnitude from relatively small to relatively large. See Figures 4.12 and 
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4.14 for Marroquin patterns produced by 16.5o and 37o of rotational offset (in which one 
square array of dots remained stationary while its identical other was rotated around the 
common centroid). A hallmark of Marroquin patterns is the alternating tendency, at increasing 
t, between clustering and regularity. This is shown in Figures 4.13 and 4.15 for the two 
Marroquin patterns. (In the next chapter the alternation will be seen with other kinds of 
measurement for the same two patterns.)

Figure 4.12: Marroquin pattern rotated by 16.5o, from which
Figure 4.13 was derived.
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Figure 4.13:  SPPA plot for the Marroquin pattern rotated by 16.5o, shown in Figure
4.12. Note the alternating tendency. The regularly spaced regularity and clustering of
the pattern is evident in the plot.
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Figure 4.14: Marroquin pattern formed by a rotation of 37o, from
which Figure 4.15 was derived.

SPPA Plot for Marroquin Pattern rotated by 37 
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Figure 4.15:  SPPA plot for the Marroquin pattern formed by a rotation of 37o,
shown in Figure 4.14. Note the alternating tendency. Although rotation offset is 
considerably more than that for the previous Marroquin pattern, the plot is similar.

Ripley’s K has the advantage over nearest neighbour analysis in that it provides
information all the way out to a terminal distance for t. All point-to-point distances out to a 
terminal distance for t are used. For the two Marroquin patterns, clusterings and regularities 
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are repeated on increasing distance scales. This is seen by the repeating patterns of the graphs; 
albeit effects reduce as distances increase. This is partly due to a screening effect. Take Figure 
4.11, for example. The longer distance regularity, equating to a deficit count at larger t, is 
somewhat diluted by the contribution of the shorter distance excess count for clustering. (The 
algorithm might be amended for some applications by discarding the cumulative distribution 
principle and considering the way counts change over ‘bands’ of distances. Of course, it then
assumes the probability density principle.)

Edge correction in general

SPPA realistically applies to rectangular or circular study areas. For an ideal situation 
the study area needs to be embedded within a larger area, so that it is well buffered on all 
sides by statistically similar detail. See Figure 4.16. 

Figure 4.16: The inner area is the study area, and the outer
area is the buffer zone.

For nearest neighbour analysis it is easy to appreciate the edge effect. Some points in 
the study area that are proximate upon the edges have their nearest neighbours outside the 
edges, in the buffer zone. Without a buffer zone these particular points in the study area 
would have been paired with respective nearest points in the study area, which would not

have been their nearest neighbours. 
For point-to-point distances, a concomitant consideration arises. Any distance from a 

first point in a study area to a second point in the study area that is greater than the distance 
from the first point to the study area boundary is problematic without a buffer zone: part of 
the spatial neighbourhood of the first point lies outside the study area. 

A buffer zone needs to be at least equal in width to the largest value of t. If all point-
to-point distances are to be processed, then, in an extreme case where each point of a pair of 
points lies in opposite corners of a study area, the buffer zone needs a width at least equal to 
the length of the diagonal of the study area. Since most patterns supply increasingly limited
information as t increases, then the range of t (to be addressed later) is usually limited.
Broadly, data for an area up to four times as big as the study area need to be recorded. This 
generally means that a buffer zone for Ripley’s K needs to be appreciably bigger than a buffer 
zone for a typical nearest neighbour analysis. 
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A buffer zone is not always practicable; especially one suitable for Ripley’s K. First it 
requires considerably more data recording than that for the area of interest, and second it 
needs the same distributional characteristics as that for the area of interest. It may be that the 
area of interest has a limited number of samples, and that further sampling on all sides is not 
an option. 

Toroidal edge correction uses replicate data points across opposite edges and corners 
of a study area, as if the surface was rolled into one cylinder or another in which opposite 
edges or corners abut. (See Ripley, 1979, 1981.) This is acceptable for random distributions, 
but can otherwise cause errors. For example, well separated clusters that are on opposite sides 
of a study area come out close together, which biases the point-to-point distribution. Toroidal 
edge correction can give biased results for non-random patterns. 

Other edge correction schemes attempt to weight calculations in such a way as to 
compensate for the lack of a buffer zone. A weighted edge correction scheme was described 
in the last chapter for nearest neighbour analysis. In that scheme, mean nearest neighbour 
distance was calculated using only those nearest neighbour distances from points i to points j
that were less than the distances between the points i and their nearest boundaries. (The 
weighting coefficients were implicitly one or zero.) For Ripley’s K, this method would result 
in penalising the distance count more with increasing r, which would be untenable. 

Weighted edge correction 

Two of the issues that have not yet been addressed are the terminal distance for t and 
the weighting factor wij. There is a connection between these, and it is convenient to deal first 
with weighting. A weighted edge correction scheme identified by Getis and Franklin (1987), 
and modified by Haase (1995, 1996), is now described for SPPA. While requiring that data 
for a study area alone be recorded, it assumes that the study area is bound by a larger region 
with the same point density and distribution. 

Two basic situations arise for rectangularly bound point-to-point distances. See Figure 
4.17.

1. The distance from point i to point j is greater than the distance between point i
and the nearest boundary. 

2. The distance from point i to point j is greater than either distance between 
point i and the two nearest boundaries. 

For the second situation, two divisions exist. 

1. The distance between point i and the nearest corner is not greater than the 
distance from point i to point j.

2. The distance between point i and the nearest corner is greater than the distance 
from point i to point j.

These situations will be addressed presently. 

Although the distance from a point i to a point j is the same as the distance from point 
j to point i, a weighting asymmetry may apply. Part of the spatial neighbourhood at inter-point 
distance ij for point i can lie outside a study area while the whole of the spatial neighbourhood 
for point j can lie inside the study area, or some other part lie outside. This is why inter-point 
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distances are calculated twice. Counts for one or both may need modification by way of 
weighting.

The following three (corrected) equations are given in Haase (1995, 1996), and apply 
to Figure 4.17, which is a copy of his Figure 4, cases A, B, and C respectively. Weighting is 
based upon the proportion of the circumference of the circle, with radius uij, centred on point i
and passing through point j, that lies within the study area boundaries. 

11 cos ( / ) /ij ijw e u

1 1

1 21 [cos ( / ) cos ( / ) / 2] / 2ij ij ijw e u e u

1 1

1 21 [2cos ( / ) 2cos (( / )] / 2ij ij ijw e u e u

For case A in Figure 4.17, the distance, uij, between point i and point j is greater than
the distance, e, between point i and the nearest boundary. For case B, the distance between 
point i and point j is greater than either distance, e1 and e2, between point i and the two nearest
boundaries. The same applies to case C, but the distance between point i and the nearest 
corner is greater than the distance between point i and point j.
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Figure 4.17:  Copy of Figure 4 from Haase(1995).

Unfortunately, cases B and C from the figure do not appear general. They appear to be 
special cases in which e1 and e2 are the same length. Moreover case B shows the 
circumference of the circle centred on point i grazing the corner of the study area. That is, the 
distance between point i and point j is the same as the distance between point i and the nearest 
corner. However, for case B the relevant part of the circumference of the circle centred on 
point i would be normally out beyond the corner. 

With regard to case C, Haase (1995) emphasises his special instance of case B. He 
states:

If both distances between point i and the two nearest boundaries are smaller than the distance between
point i and the nearest corner…
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As an additional computational step it is necessary to calculate the distances of point i to all four
corners of the plot. If all these distances are smaller than the distances between i and both nearest 
boundaries, e1 and e2…(p. 578)

But any two distances between point i and the two nearest boundaries, which 
correspond to the sides of a rectangle, must be shorter than their diagonal, which corresponds 
to the distance between point i and the nearest corner of the study area! The equations given 
in Haase (1995, 1996) still apply, however. 

In the interest of generality, modified figures of Haase’s (1995) cases B and C are 
given below, with a copy of case A included for completeness. See Figures 4.18 to 4.20, the 
latter two of which show unequal distances, e1 and e2, between point i and the two nearest 
boundaries. Figure 4.19 also shows the circumference of the circle centred on point i located
out beyond the corner of the rectangular boundary. The geometric analysis deals with the 
more general situation, which includes the situation for Haase’s cases B and C in Figure 4.17. 

Figure 4.18:  The distance, uij, from point i is greater than the distance
between point i and the nearest boundary.
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Figure 4.19:  The distance, uij, from point i is greater than either distance
between point i and the two nearest boundaries.

Figure 4.20: The distance, uij, from point i is greater than
either distance between point i and the two nearest 
boundaries. Additionally the distance between point i and the
nearest corner is greater than the distance uij.

Geometric analysis 

The idea of the geometric analyses is to find the proportion of the circumference of the 
circle that lies inside the study area. This can be accomplished by first finding the proportion
that lies outside the study area. Referring to Figure 4.18 for the present, the proportion of the 
circumference indicated by the arc of the minor sector, within the dotted radii (same length as 

uij), is just 2
2

 if  is in radians and 2
360

if  is in degrees. My explanation uses 

radians.
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Angle  = arccos( )
ij

e
u

, which is 1( )
ij

e
u

cos , therefore the proportion of the 

circumference indicated by the arc of the minor sector equals 

12cos ( )

2

ij

e
u

, which simplifies

to

1cos ( )
ij

e
u

. Hence the proportion of the circumference of the circle that lies inside the 

study area is 

1cos ( )
ij

e
u

1 .

A similar argument applies to Figure 4.19, but on this occasion 
2

radians needs to be 

added to the sum of 1 and 2, which gives all of the angle for the sector with the arc that lies 

outside the study area. This, then, is 1 11 2cos ( ) cos ( )
2ij ij

e e
u u

, and 

1 11 2cos ( ) cos ( )
2

2

ij ij

e e
u u

 gives the proportion of the circumference that lies outside the 

study area. Hence the proportion of the circumference that lies inside the study area is 

1 11 2cos ( ) cos ( )
2

1
2

ij ij

e e
u u

.

For Figure 4.20, two sectors with arcs that lie outside the study area are involved. The 
proportion of the circumference of the circle that lies inside the study area is 

1 – 

1 11 22cos ( ) 2cos ( )

2

ij ij

e e
u u

, which simplifies to 

1 11 2cos ( ) cos ( )
ij ij

e e
u u

1 .

This expression can be used in cases where the sum of 1 and 2 is not greater than 

2
radians, but would be normally used where the sum of 1 and 2 is less than

2
radians.

At
2

radians it gives the same result as the expression for Figure 4.19. 

The sense of weighting factor, w

The sense of w can now be appreciated. It is based upon the assumption that the region 
around a study area has a point density and distribution similar to nearby regions in the study 
area. If a point is to be some (radial) distance from another point, then, again, the probability
of it being in the study area is equal to the proportion to the circumference in the study area of 
a circle centred on that other point. 

Suppose the proportion of the spatial neighbourhood of some point i (at distance uij

t) is 1. A value is registered for which the weighting does not increase the count for K(t).
Furthermore suppose that t is small and that many of the proportions are 1. The sum of the 
weighted elements does not increase the count for K(t) by much.

Upon incrementing t, the sum for the uij  the previous t remains unchanged. But 
suppose the proportion of the spatial neighbourhood of some point i (now at a distance uij >

previous t and  current t) is .8, i.e. wij = .8, or 4
5

. Although the point j at distance u from

the point i is in the study area, it had a prior probability of .8 for being in the study area. 
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Accordingly the contribution of the point j to the count is increased by a factor of 1
.8

, or 5
4

.

Those points found further out from the point i, but with distance uij > previous t and 
current t, have their respective contributions to the count increased by more, and those points 
found further in, also with distance uij > previous t and  current t, have their respective 
contributions to the count increased by less; and maybe some not at all. This compensates the 
count in a statistical way for the deficit of points due to the variously abbreviated spatial 
neighbourhoods for the uij.

Note that in the tradition of a cumulative distribution function, counts for K(t) at 
greater values of t include all counts for lesser values of t. To recap: weighting each ‘1’ 
registered for uij t, increases its value inversely as the proportion of the circumference of 
the circle that lies within the study area (hence elements are summed instead of counted). 
Additionally, a closer point j t from point i is less likely to have its ‘1’ altered by 
weighting. The more distant a point j t from point i, the more likely it is to have its ‘1’ 
increased, and the more likely it is that the increase is greater.

Now it is easier to see why smaller increments for t give finer detail on spatial 
variability. It equates to sample increments chosen for a cumulative distribution function so as 
not to miss relevant density changes. 

Methodology

Haase (1995) indicates the counts are summed (upon dividing each by its wij) after 
checking all point-to-point distances t for each distance t. Note that the methodology 
described herein uses list locations for wij (weightings) assigned to corresponding sorted list 
locations for uij (distances). This allows a weighted summation; which is restricted to just the
inter-point distances not greater than t. To test uij t for every uij would be inefficient. And 
since summation for any t includes all summations for smaller t, then, in practice, these are 
not recalculated either. The current summation simply equals the previous (running) 
summation plus the summation for the current interval. Lastly, it is worth remembering that 
summation is over each and every point, out to other points not further than distance t.

Terminal value for t

Since methods of edge correction can relate to terminal value for t it is necessary to 
address this issue. Haase (1995, p. 577) reports that the edge correction handled by the three 

equations above gives approximately unbiased values for t up to 2
2

 the length of the side 

of a square study area, and up to 1
2

the length of the shorter side of any other rectangular 

study area. This is because larger values for t mean that circles centred on points near the 
middle of the study area may intersect three boundaries. 

In connection with patterns of vegetation, Ripley suggests 
2

A as the upper limit for 

t, where A is the area of the study region. This might be the case for many patterns, even 
where a maximum buffer zone could be employed, because most patterns typically supply 
increasingly limited information as t increases.
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Chapter 5:  Density Dependent Versus Density Free Analysis 

Brief summary of chapter 

Nearest neighbour analyses are density dependent statistical methods for 
differentiating point pattern types. Alternatively, statistical operations on distributions of least 
angles of Delaunay triangles afford an effective, density free method for differentiating point 
patterns.1 Nearest neighbour distributions for various visual patterns are compared with 
corresponding distributions of smallest angles for respective Delaunay triangles. Edge-to-edge 
and edge-to-point ratios involving Delaunay triangles are also examined for ability to 
differentiate point patterns. The patterns include Glass, clustered and regular, and Marroquin 
patterns, as well as patterns with reflection symmetry.

Reflection symmetry, delineated by the Voronoi diagram and involving medial axes, 
is examined with a view to the way that it might form an ‘inductive bias’ for visual 
perception.

The distribution theory for least angles outlined in this chapter is not original. 
However, the implementation and application, along with that of nearest neighbours, 
involving configurations of interest to the study of human visual perception, are original. 
Observations regarding proportions and ratios of Delaunay edges are also original. Medial 
axes, of themselves, are not original; however, their implementation and application in this 
chapter are original.

Discriminating point patterns 

Again, nearest neighbour analyses are density dependent statistical methods for 
differentiating point pattern types, ranging from degrees of clustering, through randomness, 
through degrees of regularity. Choice of study area boundaries affects outcomes. Density—
number of points per unit area—is related to choice of boundaries for the area calculation. 
Statistical operations on distributions of least angles of Delaunay triangles provide a density 
free method for differentiating point patterns. 

Furthermore the ratio formed by the number of direct Delaunay edges to the number
of all Delaunay edges, appears to differentiate point patterns. My investigation shows that 
different point patterns can be formulated to give any number of Delaunay neighbours within 
sets, on top of which ratios can range from a lower bound of approximately .4 to an upper 
bound of 1. 

Distribution of least angles 

Figures 5.1 and 5.2 show the pdf and cdf for least angles of Delaunay triangles for 
complete spatial randomness (CSR). The least angle of a Delaunay triangle is here designated 

. The marginal density of least angle was derived by Mardia, Edwards, and Puri (1977). 

Since the least angle of any triangle cannot be greater than 60o, or 
3

radians, which 

is approximately 1.05 radians, then this constitutes the upper limit of the scale for . The
expression for the probability density function of  is 

2[cos 2 cos 4 ( 3 )sin 2 ]
0

3
,

and is denoted ( )f .

1 Distribution of least angles: a frequency count, in the form of a histogram, for the smallest angle in each
Delaunay triangle.



82

Probability Density Function

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0.
00

0.
07

0.
14

0.
21

0.
28

0.
35

0.
42

0.
49

0.
56

0.
63

0.
70

0.
77

0.
84

0.
91

0.
98

1.
05

 (radians)

f(
)

Figure 5.1: Pdf for least angles of Delaunay triangles for CSR.

The indefinite integral of the formula for the pdf gives the formula for the cdf. The 
expression for the continuous cumulative distribution function of  is then 

1 1 12[ ( 3 )cos 2 sin 2 sin 4 ]
2 4 41 0

3
,

and is denoted ( )F .
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Cumulative distribution function
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Figure 5.2: Cdf for least angles of Delaunay triangles for CSR.

The important feature of these formulae is that they have no terms for number of 
points or for area. Analyses based on this methodology are density free: the problem of 
choosing a minimal regular boundary for a set of points evaporates. This can have significant 
benefits, especially where there are large differences between local point densities. If an area 
needs to be made significantly larger to include just a few more points, the effectiveness of 
nearest neighbour analyses is depleted, for example. 

For nearest neighbour distances, the means and standard deviations change with 
density, but for least angles this is a void point. There is but one mean for least angles
belonging to CSR, and one standard deviation. The mean is the integral of ( )f for 0 < 

3
, which equals 0.537 radians (or 

27

16
 radians). The variance is the integral of

2( )mean f ( )  for 0 < 
3

, which equals 0.052 radians (or 23 2 27
( )

6

7 1

32 8 1
radians), and the square root gives the standard deviation as 0.227 radians. And, of course, the 
standard deviation associated with CSR is the standard error needed for statistical testing; as 
per nearest neighbour analysis. (The use in hypothesis testing follows previous methodology
for nearest neighbours.)

Lastly, edge effects can be avoided by not counting angles from triangles for which 
vertices are common to vertices of the convex hull. My analyses with and without these 
angles show that edge effects are minimal for the examples employed herein. Consequently, 
edge effects are not considered for the following.

Implementation of least angle and other measures 

The point of interest is the way in which the distribution functions correspond to the 
actual patterns, and, further, how least angle methodology overcomes some problems and 
ambiguities associated with nearest neighbour methodology. To this end, distribution 
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functions for both methods, representing a variety of point patterns, are displayed side by side 
in Figures 5.3 to 5.12. 

Some examples show agreement and others show grades of difference. The upper left 
form in each case belongs to least angle (given in degrees on this occasion), and the upper 
right form belongs to nearest neighbour. Each shows theoretical (Poisson) and empirical cdfs 
and pdfs. The pdfs are over-scaled with respect to the cdf s for sake of better viewing 
definition. Small circles show empirical cdfs and vertical lines empirical pdfs. Clustering is 
evident by the small circles above the theoretical cdf, and regularity is evident by the small 
circles below the cdf. The lower left form in each case shows the source pattern, and the lower 
right form shows the corresponding Delaunay triangulation. Yellow edges are direct 
neighbour edges and black edges are indirect neighbour edges. 

Keep in mind that internal Delaunay edges are doubly drawn, and edges on the convex 
hull are singly drawn. Keep in mind, also, that sometimes quite a few edges can be of equal 
length. The text box shows three ratios. The first ratio is formed by the number of different

length direct Delaunay edges divided by the total number of different length Delaunay edges, 
both direct and indirect. For this ratio, all edges are treated as single links. The second ratio is 
formed by the number of direct Delaunay edges divided by the total number of Delaunay 
edges, both direct and indirect. For this ratio, all edges are treated as actually drawn. And the 
third ratio is formed by the total number of edges, treated as single links, divided by the 
number of points. These ratios were included in the investigation in the hope that they might 
discriminate between random displays and patterned displays, as well as between different 
types of patterns. 
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Proportion of different length direct Delaunay edges to total different length Delaunay
edges = 0.622
Proportion of direct Delaunay edge count to total Delaunay edge count = 0.627
Edge to point ratio = 3.555

Figure 5.3: Lower left: random point set. Upper left: least angle distribution functions for random point
set. Upper right: nearest neighbour distribution functions for random point set. Lower right: Delaunay
triangulation of random point set. Yellow edges are direct neighbour edges and black edges are indirect
neighbour edges. Least angle distributions show good agreement with nearest neighbour distributions for
the random point set.
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Proportion of different length direct Delaunay edges to total different length Delaunay
edges = 0.630
Proportion of direct Delaunay edge count to total Delaunay edge count = 0.619
Edge to point ratio = 3.375

Figure 5.4: Lower left: rotational Glass pattern. Upper left: least angle distribution functions for
rotational Glass pattern. Upper right: nearest neighbour distribution functions for rotational Glass pattern.
Lower right: Delaunay triangulation of rotational Glass pattern. Yellow edges are direct neighbour edges
and black edges are indirect neighbour edges. Least angle distributions agree with nearest neighbour
distributions on clustering for the rotational Glass pattern, but the least angle distributions reflect the
disposition of the points more accurately.
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Proportion of different length direct Delaunay edges to total different length Delaunay
edges = 0.827
Proportion of direct Delaunay edge count to total Delaunay edge count = 0.835
Edge to point ratio = 2.832

Figure 5.5: Lower left: fairly regular pattern. Upper left: least angle distribution functions for fairly
regular pattern. Upper right: nearest neighbour distribution functions for fairly regular pattern. Glass
pattern. Lower right: Delaunay triangulation of fairly regular pattern. Yellow edges are direct neighbour
edges and black edges are indirect neighbour edges. Least angle distributions agree with nearest
neighbour distributions in a general sense on regularity for this fairly regular pattern.
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Proportion of different length direct Delaunay edges to total different length Delaunay
edges = 0.592
Proportion of direct Delaunay edge count to total Delaunay edge count = 0.594
Edge to point ratio = 3.269

Figure 5.6: Lower left: regularly spaced clusters. Upper left: least angle distribution functions for 
regularly spaced clusters. Upper right: nearest neighbour distribution functions for regularly spaced 
clusters. Lower right: Delaunay triangulation of regularly spaced clusters. Yellow edges are direct
neighbour edges and black edges are indirect neighbour edges. The pattern shows regularly spaced
clusters, and demonstrates a situation for which least angle methodology has the advantage. The
distributions for least angles nicely reveal the relative proportions of clustering and regularity,
particularly with a dearth of middle angles for the empirical pdf. The local maximum for regularity in the
nearest neighbour empirical pdf—above small blue circle—is not as obvious, and the nearest neighbour
empirical cdf only shows clustering.
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Proportion of different length direct Delaunay edges to total different length Delaunay
edges = 0.675
Proportion of direct Delaunay edge count to total Delaunay edge count = 0.707
Edge to point ratio = 3.000

Figure 5.7: Lower left: pattern with a mixture of attributes. Upper left: least angle distribution functions
for pattern with a mixture of attributes. Upper right: nearest neighbour distribution functions for pattern
with a mixture of attributes. Lower right: Delaunay triangulation of pattern with a mixture of attributes.
Yellow edges are direct neighbour edges and black edges are indirect neighbour edges. Least angle 
distributions clearly deal with the whole story: relative degrees of clustering, randomness, and regularity.
The (density dependent) nearest neighbour distributions are not nearly as good at depicting the story
under these conditions.
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Proportion of different length direct Delaunay edges to total different length Delaunay
edges = 1.000
Proportion of direct Delaunay edge count to total Delaunay edge count = 1.000
Edge to point ratio = 5.204

Figure 5.8: Lower left: most regular pattern. Upper left: least angle distribution functions for most regular
pattern. Upper right: nearest neighbour distribution functions for most regular pattern. Lower right:
Delaunay triangulation of most regular pattern. Yellow edges are direct neighbour edges. There are no
indirect neighbour edges in this instance. Least angle distributions agree with nearest neighbour
distributions on perfect regularity for the most regular possible pattern. Note that for the most regular
pattern there is essentially zero frequency for all but one value for least angles and one value for nearest
neighbour distances.
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Proportion of different length direct Delaunay edges to total different length Delaunay
edges = 0.872
Proportion of direct Delaunay edge count to total Delaunay edge count = 0.656
Edge to point ratio = 4.030

Figure 5.9: Lower left: Marroquin pattern with 3o of rotation. (The pattern was generated by rotation,
about the original, of points located at the intersections of an invisible square grid.) Upper left: least angle 
distribution functions for Marroquin pattern. Upper right: nearest neighbour distribution functions for
Marroquin pattern. Lower right: Delaunay triangulation of Marroquin pattern. Yellow edges are direct
neighbour edges and black edges are indirect neighbour edges. Least angle distributions deal much better
than nearest neighbour distributions with proportions of clustering and regularity in Marroquin patterns.
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Proportion of different length direct Delaunay edges to total different length Delaunay
edges = 0.799
Proportion of direct Delaunay edge count to total Delaunay edge count = 0.736
Edge to point ratio = 4.385

Figure 5.10: Lower left: Marroquin pattern with 16.5o of rotation. Upper left: least angle distribution
functions for Marroquin pattern. Upper right: nearest neighbour distribution functions for Marroquin
pattern. Lower right: Delaunay triangulation of Marroquin pattern. Yellow edges are direct neighbour
edges and black edges are indirect neighbour edges. A hallmark of Marroquin patterns is the alternating
tendency between clustering and regularity over increasing distance scales, represented perhaps a little 
more accurately here by the least angle distributions. 
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Proportion of different length direct Delaunay edges to total different length Delaunay
edges = 0.756
Proportion of direct Delaunay edge count to total Delaunay edge count = 0.668
Edge to point ratio = 4.766

Figure 5.11: Lower left: Marroquin pattern with 37o of rotation. Upper left: least angle distribution
functions for Marroquin pattern. Upper right: nearest neighbour distribution functions for Marroquin
pattern. Lower right: Delaunay triangulation of Marroquin pattern. Yellow edges are direct neighbour
edges and black edges are indirect neighbour edges. Least angle distributions show more clearly the
disposition of points, and deal more effectively with the alternation.
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Proportion of different length direct Delaunay edges to total different length Delaunay edges = 
0.588
Proportion of direct Delaunay edge count to total Delaunay edge count = 0.599
Edge to point ratio = 3.800

Figure 5.12: Lower left: Pattern with reflection symmetry. Upper left: least angle distribution functions for
pattern with reflection symmetry. Upper right: nearest neighbour distribution functions for pattern with reflection
symmetry. Lower right: Delaunay triangulation of pattern with reflection symmetry. Yellow edges are direct
neighbour edges and black edges are indirect neighbour edges. Neither least angle nor nearest neighbour deals
well with reflection symmetry. Compare the distributions for these 200 points with the distributions for the 200
random points shown first, in Figure 5.3. The difference between the distributions is marginal at best.

By way of example, the alternating tendency between clustering and regularity over 
increasing distance scales for Marroquin patterns was seen in Chapter 3 using Ripley’s K.

Note that this tendency is also seen in least angle and nearest neighbour cdfs. Agreement
between methods, inasmuch as what they are designed to reveal, exists for the other patterns 
as well, which is to be expected.

Generally, least angles have proved to discriminate pattern classes somewhat better 
than nearest neighbours. However, there is little difference between the two methods for 
random displays and reflection symmetry patterns, and there is no difference between the two 
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methods for a most regular pattern. (This must also apply to the degenerate situation. That is, 
a most clustered pattern; a pattern in which all points are superposed.) 

Briefly, there are two ways to consider pair-wise edges in point patterns. One is to 
treat them as the theory suggests. If some edges are drawn more than once owing to over-
drawing by a procedure, then give them the weight they deserve. Another is to treat them all 
as unweighted: after all, any link is singular to the eye. Each has its advantages. 

The pictures speak for themselves: unweighted and weighted treatments, different 
length connections and common length connections, applied to diverse patterns often 
discriminate them from random point sets and from one another quite well. And, of course, 
the ratios could be tested for statistical significance against that of a theoretical random point 
set.

Generally, if using ratios derived from a random display as the point of departure for 
patterns, then more regular patterns are commonly associated with greater ratios. The 
Marroquin patterns, for example, show this, and ratios derived from the most regular pattern 
(Figure 5.8) could be used as yet another point of departure. Notwithstanding this, the ratios 
do not discriminate Glass patterns from random displays, nor do they discriminate reflection 
symmetry patterns from random displays. 

Before proceeding with the problem of reflection symmetry, it was shown in Chapter 
3, pages 59 to 61, that participant’s judgments accurately reflect a nearest neighbour statistical 
summary of relational structure in patterns. Owing to accordance between the density 
dependent and density free method, this may be interpreted in the more general sense of 
Barlow (1999), who emphasized the importance of statistical regularities in the environment 
and referred to many researchers who have begun to show how the regular statistical 
properties of images are exploited by neural mechanisms. 

The problem of reflection symmetry 

The measures outlined do not differentiate reflection symmetry, which is apparent 
from scrutiny of Figure 5.12. This point is reinforced by Figures 5.13 and 5.14, the first of 
which is composed of 500 randomly distributed points and the second of which is composed 
of 500 reflection symmetry points. (A common kind of reflection symmetry point pattern can 
be formed by taking a copy of a random point set, flipping it, and then placing it back on top 
of the original.) 
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Proportion of different length direct Delaunay edges to total different length Delaunay edges
= 0.624
Proportion of direct Delaunay edge count to total Delaunay edge count = 0.626
Edge to point ratio = 3.694

Figure 5.13: Left: random point set consisting of 500 points. Right: Delaunay triangulation of random
point set. Yellow edges are direct neighbour edges and black edges are indirect neighbour edges.

Proportion of different length direct Delaunay edges to total different length Delaunay edges = 
0.630
Proportion of direct Delaunay edge count to total Delaunay edge count = 0.632
Edge to point ratio = 3.808

Figure 5.14: Left: reflection symmetry pattern consisting of 500 points. Right: Delaunay triangulation of
reflection symmetry. Yellow edges are direct neighbour edges and black edges are indirect neighbour edges.

Reflection symmetry and the Voronoi diagram

Why does reflection symmetry appear to refuse evaluation? The answer may lie in the 
construct that reflection symmetry is fundamental to descriptions of all point distributions; 
including, of course, random point sets. It is hidden in every pattern: it evades attention by its 



97

obviousness. The proposed primacy of reflection symmetry is now addressed over the 
remainder of the current chapter and the whole of the next chapter.

Consider Figure 5.15. Reflection symmetry is obvious from the Voronoi diagram
shown in Figure 5.15(a), which results from two points. It is also obvious from the Voronoi-
Delaunay diagram shown in Figure 5.15(b), which results from four points. 

Figure 5.15: Voronoi diagram of two points (a). Voronoi diagram of four points (b).

The Voronoi diagram is a tessellation based on reflection symmetries! In the two 
dimensional sense it is a collection of lines of reflection, and these as medial axes. If the
shape, or outline, of a figure is taken as the criterion, then included in the lines of reflection is 
the medial axis belonging to the outline. If some detail is included within the outline, then 
included in the lines of reflection are the medial axes belonging to the detail. See Figures 5.16 
to 5.18, in which the medial axes are depicted, roughly, by the thicker white lines. Indeed, 
medial axes form a defined subset of the Voronoi diagram.

Figure 5.16: Medial axis (bold white) resulting from
approximately regularly spaced sampling of hand-drawn rectangle.
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Figure 5.17: Medial axis (internal bold white) resulting from
approximately regularly spaced sampling of hand-drawn, arbitrary shape.

Figure 5.18: Medial axes (internal bold white) resulting from approximately regularly spaced
sampling of hand-drawn girl in a dress.
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A point to note, taking Figure 5.16 as the example, is that if the outline was 
continuous (a particular infinite set of points) then the medial axis would extend all the way to 
the corners; and would be reinforced everywhere between vertices. Note that the medial axis 
also says something about the shape of the object. It describes shape on a reflection proximity 
basis. It is not just a simple, single axis of reflection; except under the most basic of 
circumstances as per Figure 5.15(a). 

For interest sake, Figure 5.17 shows nearest neighbours (green), the remaining 
minimum spanning tree (red), the remaining direct Delaunay edges (yellow), and the indirect 
Delaney edges (black), which delineate the outline of the shape described by the medial axis. 
It is not difficult to appreciate that a lot of direct Delaunay edges belong to the minimum 
spanning tree. Figure 5.18 depicts a stylised girl in a dress. Note how the medial axes pertain 
to reflection symmetries, elongations, and orientations of figural components. Furthermore 
the rotational symmetry of the stylised head is obvious from the thinner white lines. Figures 
5.17 and 5.18 also show some external thicker white lines, which highlight the axes of 
external concavities. These kinds of underpinning to figural geometry characterize some 
essential features of the shapes, and may contribute to recognition of spatial relationships 
among components. 

Inductive bias to visual perception 

It is not difficult to find studies suggesting the importance of reflection symmetry as a 
visual primitive (see, for example, Freyd & Tversky, 1984; Kovacs & Julesz, 1994; Locher & 
Nodine, 1987). These studies emphasize the effortless detection of symmetry as a preattentive 
function. They indicate that the global impression fostered by symmetry configures serial 
scrutiny to exploit redundancy among local features. (Hence departure from symmetry results 
in more diverse scrutiny.) What these studies show might be interpreted as an inductive bias
for visual perception. And this is more compelling if, as Leyton (1992) depicts, axes of 
symmetry, with degrees of curvature, can be generally identified in visual stimuli of any kind. 

 So the proposal is that reflection symmetry defies classification by ratios and any 
such method that might differentiate point sets because it lurks in all arrangements of points, 
or features. It underlies, or forms an inductive bias for, visual perception. We are predisposed 
to proceed from the specific to the general: from one part or other to the whole, and an 
important instrument in the realization of the whole is that of reflection symmetry. It provides 
a geometry at all relevant spatial scales, which serves the perception of organization. This 
geometry delineates structure in the form of relations among visual features that determine 
which features are perceived as belonging together. And the assumption of symmetry in the 
wider sense allows us to form a view of the whole from some limited viewpoint. We have a 
predisposition to induce the whole from one part or other. 

The inevitable hypothesis is that perceptual sensitivity to reflection symmetry is 
inherent in the manner by which features of salience automatically associate with their areal 
regions as per the Voronoi diagram. And since Delaunay triangulation is the dual of the 
Voronoi diagram, it gives as much information, but in a different way. The Voronoi diagram 
pertains to what region belongs to a feature and Delaunay triangulation pertains to which 
features go with a feature. In this sense, we might question how such a mechanism can be 
implemented by networks of neurons, but first we need to question how detection of 
reflection symmetry is handled by something akin to networks of neurons; namely artificial 
neural networks. 
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Chapter 6:  Reflection Symmetry and Neural Networks 

Brief summary of chapter 

This chapter shows how partitioning by reflection symmetry can be handled by neural 
networks. A simple configuration of artificial neural network with fixed symmetrical weights 
(corresponding to fixed synaptic strengths) is examined for ability to discriminate symmetry 
classes from asymmetry classes, as well as provide graded responses for degrees of 
asymmetry in pattern sets. The configuration is robust in symmetry detection with respect to 
logarithmic and other operations on weights. 

Neural networks for which weights require training are examined for characteristics 
while, and upon, learning to discriminate symmetry classes from asymmetry classes. Weights 
develop in a symmetrical way, and the networks are robust in symmetry detection. 

A strategy for getting a neural network to tessellate the field as per the Voronoi 
diagram is discussed with a view to the way that the network might form an inductive bias, 
based on reflection symmetry, for visual perception. 

The work outlined in this chapter, with the exception of that indicated of other 
researchers along with basic neural network methodology, is original. The implementation of 
the neural networks is also original. (I wrote and proved the software from first principles.) 
Voronoi, Delaunay, and medial axes concepts, of themselves, are not original; however, their 
implementation and application in this chapter are original. 

Introduction 

Symmetry plays a remarkable role in perception problems. Peaks of brain activity are 
measured in correspondence with visual patterns showing symmetries (Di Gesù & Valenti, 
1996; Norcia, Candy, Pettet, Vildavsky, & Tyler, 2002). Different symmetric dot patterns 
alternated every half a second with different random dot patterns of the same density show 
sequences of visual evoked potentials the same as those of random-random sequences up to 
about 0.2 second, after which response difference between symmetric and random patterns is 
considerable. Hence symmetry in dot patterns appears to be extracted after an initial response 
phase, which is indifferent to pattern configuration. Results are consistent with the hypothesis 
of Lee, Mumford, Romero, and Lamme (1998), and Tyler and Baseler (1998); both cited by 
Norcia et al. They agree that symmetry appears to be extracted by processing in the 
extrastriate cortex. 

How might a symmetry mechanism be implemented, in a robust manner, in a 
biological neural system? To this end a detailed examination of various artificial neural 
networks, implemented in a collection of computer programs, was undertaken; even if 
somewhat naively. They were tailored from descriptions given in general neural network 
literature. The following account is not intended to provide details of neural network 
operation. Rather it assumes some elementary familiarity, such as could be gained from 
Aleksander and Morton (1991), Dayhoff (1990), Haykin (1994), Muller, Reinhardt, and 
Strickland (1995), or Sejnowski, Kienker, and Hinton (1986). Because little detail is provided 
on principles of operation of the different artificial neural networks, it is strongly 
recommended that the concerned reader consult a basic reference. For those not so concerned, 
the following account should be intuitively clear.

Symmetric networks 

Connections within feedback, or recurrent, networks can be either symmetric or 
asymmetric. In a symmetric network the weights between connected units in opposite 
directions are equal; in asymmetric networks they are not. (If every pair of processing units 
has a connection in each direction, then a network is fully interconnected.) Symmetry has 
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proven important in determining whether activation converges to a single stable state or not. 
Activation in symmetric recurrent networks inevitably converges to a single stable state,
whereas in asymmetric networks activation need not converge (Hopfield, 1982). 

Error back-propagation on a hard learning task 

The task is to detect whether or not a pattern of input points is symmetric about the 
middle. Let the number of points be even in this case: then 11011011 is symmetric and 
11101010 is not, for example. (If each 1, otherwise each 0, represents a point, then areal point
patterns can be represented by blocks of these.) For the arrangement depicted in Figure 6.1, 
weights between input units and hidden units are arranged symmetrically, –1, +1, +2, –2, –4, 
+4…+2(n–1), –2(n–1), –2(n–1), +2(n–1)…+4, –4, –2, +2, +1, –1. 

Input patterns are multiplied by the weights, the results of which are summed at the 
hidden units. (Outputs of hidden units are also multiplied by weights, the results of which are
summed at the output unit.) Whether or not a pattern activates a unit depends on whether or 
not its bias, or threshold, is surmounted by a summed product. All symmetric patterns activate 
the negatively biased hidden units with values of 0. Hence their outputs have values of 0 and 
the positively biased output unit is switched on. Asymmetric patterns surmount the negative 
threshold; hence one of the hidden units switches to an output value of 1, say, and the output 
unit is switched off. Significantly, inputs of any bit width require only two hidden units. 

Figure 6.1: A network that detects symmetry. Only two hidden units are required for any number
of input units (after Aleksander & Morton, 1991).

In this kind of connectionist modelling of mirror-symmetry detection, solution weights 
from inputs to hidden units are arranged symmetrically about appropriate axes. It could be 
argued that a large number of points (or features) require a large range of weight values (like 
folding and refolding a piece of paper: a thickness that extends from the earth to the moon
requires just a moderate number of doublings). However the logarithm of the weights works
equally as well. 
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Implementation

The networks shown in Figures 6.2 to 6.5 include a mechanism for giving graded 
responses to degrees of asymmetry in pattern sets, and this will be dealt with presently. 
Meanwhile Figure 6.2 shows an effective arrangement of weights, for a 16 bit wide input, 
scaled down to fit the form. Black squares represent ‘hard-wired’ negative weights 
proportionally by area and white squares represent hard-wired positive weights proportionally
by area. The first column of weights are input, or first layer, weights, and represent those
incident upon the first hidden unit. The second column of weights are also input, or first layer, 
weights, and represent those incident upon the second hidden unit. The other weights are 
second layer weights, and represent those incident upon the output unit. 

Figure 6.2: Weights (synaptic strengths) by area and polarity. (The symmetry measure, in 
response to the input pattern, is explained later on in the text.)

Figure 6.3 shows the logarithm of these, which works equally as well. 
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Figure 6.3: Logarithm of weights (synaptic strengths) by area and polarity. (The symmetry
measure, in response to the input pattern, is explained later on in the text.)

Scaling makes no difference to detection outcome. Furthermore logarithms taken from any 
contiguous sequence of doublings makes no difference to detection outcome: see Figure 6.4. 

Figure 6.4: Logarithm of weights (synaptic strengths) taken from an arbitrary contiguous
sequence of doublings. (The symmetry measure, in response to the input pattern, is explained
later on in the text.)

Lastly a reversed sequence of weights works equally as well: see Figure 6.5. 
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Figure 6.5: Logarithm of weights (synaptic strengths) taken from an arbitrary contiguous
reversed sequence of doublings. (The symmetry measure, in response to the input pattern, is
explained later on in the text.)

And this is closest to what happened when an error back-propagation network, based upon the 
multilayer perceptron, and with half the width of input (8 bits instead of 16 bits), was trained 
to discriminate symmetric patterns. See the otherwise raw weights in Figure 6.6. 

Figure 6.6: Weights by area and polarity.

Extensive training of various networks suggests a vast number of readily assumed weight
organizations with some form of symmetry, of which any selection detects mirror symmetry.
The arrangements are simple and robust. 
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Error back-propagation through a neural network, against the direction of synaptic 
connections, may be biologically implausible. However the supervised method of learning, 
through successive error reduction between output and target values, is comparatively simple
in computational terms, and has proved helpful in neurobiological studies. The function of 
interneurons found in a leech, for example, have been understood by comparison with a 
computer simulated network trained by error back-propagation (Lockery, Fang, & Sejnowski, 
1990; Lockery, Wittenberg, Kristan, & Cottrell, 1989).

Extensions

The networks shown in Figures 6.2 to 6.5 include a mechanism for giving graded 
responses to degrees of asymmetry in pattern sets. The simplest model counts the number of 
asymmetries in an input pattern, line by line. Strength of asymmetry in a line is judged by 
how many points are not symmetrically paired, and how far apart corresponding locations are. 
See Figures 6.7 and 6.8. If a line has perfect symmetry, then it contributes 1/(number of lines) 
to the graded response. If it has asymmetry then it provides a weakened contribution, related 
to strength of asymmetry, to the graded response. 

Figure 6.7: Pattern with partial asymmetry.
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Figure 6.8: Pattern with complete asymmetry.

But, by way of caveat, consider the following point. The network depicted in Figure 
6.6 does not train to a global minimum error if the number of symmetric inputs is too few 
relative to the number of asymmetric inputs. For example, with all eight bit combinations—16
symmetric inputs and 240 asymmetric inputs—the network repeatedly gets caught in a local 
minimum despite an otherwise effective simulated annealing regime. But there is no such 
training problem with 16 symmetric inputs and 48 asymmetric inputs, for example. However 
if symmetric weights are hard-wired, rather than trained, then the network discriminates any 
symmetry from any number of asymmetries. Or even if weights are partially hard-wired 
(seeded) for symmetry before training, the improvement is significant. Additionally the 
network under training does not necessarily produce commensurate, or smoothly varying, 
symmetric weights. (Commensurate symmetric weights are produced if the number of 
symmetric inputs is around, or over, half the total number of inputs.) 

One further caveat is necessary. With some abbreviated set of input patterns employed
in training, containing more than around half that are asymmetric, the asymmetric inputs, 
included in the training set with the symmetric inputs, need to be selected at random from all 
the possible asymmetric combinations. Too many asymmetric inputs with some chance class 
characteristic, or consistency, cause the network to accommodate by perturbation of weight 
symmetry, and slow the learning process. 

Given a fair training regime, first layer weights are symmetric in magnitude only, or 
symmetric in polarity and magnitude. For the former, second layer weights have different 
magnitudes, and for the latter they have the same magnitudes. Hence the system is 
compensated by considerations related to symmetry. And, of course, polarity for second layer 
weights also figures in the balance. See Figures 6.9 and 6.10. 
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Figure 6.9: Weights by area and polarity.

Lastly networks with more hidden units and/or more layers of hidden units train 
successfully with relatively fewer symmetric inputs; just 16 symmetric inputs among 256 
inputs, for example. The more complex the network, the greater its training capacity. See 
Figure 6.10. 

Figure 6.10: More complex network with more hidden units and more layers.

Despite there being just 16 symmetric input patterns amongst 256 input patterns, consisting of 
all possible eight bit combinations, the weights train symmetrically. Even so, inclusion of all 
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248 asymmetric patterns delivers a kind of symmetry inherent in the whole. See Figure 6.11 
for a graphic representation of the trained weights. So as not to bias network training, the 
order within each set of training patterns was randomised for all networks.
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Figure 6.11: Trained weights for network shown in Figure 6.10. Green and red vertices at second
layer inputs two to nine represent first layer weights incident upon second layer units one and three 
respectively. Magenta and blue vertices at second layer inputs two to nine represent first layer
weights incident upon second layer units two and four respectively. Grey and black vertices at third
layer inputs two to five represent second layer weights incident upon third layer units one and two
respectively. (All colours at inputs one represent corresponding bias, or threshold, values for second
and third layer units.)

In any event the idea is not to involve the reader in the technicalities of neural
networks, but simply to engender an appreciation of the fact of simple and robust symmetric
weights; robust enough that perturbing final weight configurations in a limited way appears 
not to interfere with performance.

Interestingly, other classes into which the training patterns can be segregated, odd or 
even parity for example, do not necessarily train as readily as that for symmetry. The gradient
descent to the region of global minimum error between output and target values for symmetric 
patterns can be sudden and dramatic, especially for the more complex networks. The 
untrained weights typically pulse a few times by way of omen, and then quite suddenly the 
output error reduces considerably as the weights take on the appearance of their final 
configuration. All further training runs just serve to garnish the situation: to reduce the error
to some small arbitrary amount. 

Other networks

By way of summary for some other styles of networks investigated—Boltzmann,
unsupervised learning by competition among processing units, unsupervised learning by 
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discovery of cluster structure, and some with step, as opposed to sigmoid style, activation 
functions—mirror symmetry was found generally not to be too difficult for them to learn.1

With competitive learning, for example, each processing unit distinguishes a class. No target 
values are required for training: just a strategy for selecting the processing unit with the 
largest response to a pattern, and a method of reinforcing that response. Using a competitive
learning network with two processing units, the weights shown in Figure 6.12, resulting from
14, eight bit symmetric patterns mixed with 14, eight bit asymmetric patterns, were 
established rapidly and repeatedly. Once again, note the symmetry of the weights for 
whichever processing unit learned almost all of the symmetric patterns. 
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Figure 6.12: Green vertices represent weights for the processing unit that learnt the
asymmetric patterns and red vertices represent weights for the processing unit that learnt
the symmetric patterns.

Lastly, joining discrete values in the preceding two graphs by lines might seem inappropriate, 
but line graphs indicate symmetries and asymmetries more clearly than bar graphs. Just the 
vertices of the graphs correspond to weight values and no credence should be given to what 
lies between.

Neural networks and inductive bias 

Earlier claims in this thesis amount to symmetry being psychologically fundamental,
and so giving an inductive bias to perceptual organization. This perspective is reconciled with 
the neural network simulations by now showing that a neural network can implement that 
inductive bias. 

Voronoi network

A hypothesis at the end of the last chapter was that perceptual sensitivity to reflection 
symmetry is inherent in the manner by which features of salience automatically associate with 
their areal regions. Hence it is fair to consider a neural network, based upon reflection 

1 A Boltzmann network has symmetric connections between units. It is a stochastic, recurrent network that
employs simulated annealing.
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symmetry, that produces Voronoi tessellations of the field. The properties of such a network 
might be of interest to the relevant neurophysiology. 

To get a network with discrete inputs to draw Voronoi cells, the areal field first needs 
to be discretized by an appropriate tessellation, or tiling, such that distance in any direction is 
approximated by the number of tiles crossed along the path. A regular tessellation comprises
congruent regular polygons. A regular polygon has three or more equal sides and angles, and 
there are just three regular polygons that tessellate in the (Euclidean) plane: triangles, squares 
and hexagons. See Figure 6.13. 

A

B

C

Figure 6.13: Tessellations of A: triangles, B: squares, C: Hexagons (after Alejandre, 1994–2003).

(Since a hexagon can be made up of six equilateral triangles with a common vertex, at the 
centre, then, fundamentally, there are just two regular polygons that tessellate in the plane.) 

A tessellation of squares is suitable for symmetry detection, but is unsuitable for 
distance estimation. To cite the worst case: squares crossed at 45o span approximately 1.414 
times the distance than the same number of squares crossed at the vertical or horizontal. A 
tessellation of hexagons provides an acceptable approximation for equal distance in all 
directions, and suitably small hexagons provide fine discretization. The area of a hexagon 
needs to be small enough so that the likelihood of it overlying more that one point is remote;
see Figure 6.14. 
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Figure 6.14: Output of the Voronoi drawing network is shown in white.
The black lines at A show some binary symmetries that delineate the
Voronoi segment. The black lines at B show a ternary symmetry that marks
the point of intersection of Voronoi segments. (Some of the common
segments are slightly disjoint due to the granularity of the distance
measuring mechanism.)

The Voronoi drawing network detects binary symmetries on the basis of empty 
hexagons and hexagons with a point: 0s and 1s, say, respectively. Detection occurs when the 
input field contains two 1s, with an equal number of zeros (empty hexagons) to each 1 
(occupied hexagon); or, in the minimal case, no zeros to each 1. In drawing a Voronoi cell 
segment, the network must be able to also detect ternary—and for degenerate situations, 
quaternary—symmetries among the binary bits so as to terminate the segment and initiate the 
next binary symmetry detection. (Ternary, and quaternary, symmetry detections are 
performed by appropriate multiple binary symmetry detections.) In the search for such 
positional symmetry, degrees of asymmetry, as previously outlined, are minimized via 
gradient descent. 

Left at this, Voronoi type cells resulting from all possible half distances between 
point-pairs would be eventually constructed in an overlapping manner. But only the 
‘neighbourly’ half distances are required.2 Hence the mirror symmetry with the minimum
number of zeros to each of a pair of 1s is the relevant initiating symmetry. (This is guaranteed 
to be a Delaunay edge because it is a nearest neighbour edge.) The number of zeros to the 
ones is then incremented until the ternary symmetry is encountered, upon which the next
binary symmetry detection includes the one from the initiating symmetry. (The equidistant,
other, one is simply recorded at this stage.) This occurs until a cell is complete, or the edge of

2 As it turns out, half distance points between all possible point pairs provide a useful device for pattern
discrimination, which is addressed in Section 2 of the thesis.
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the form is encountered. Then another symmetry, involving the (next) hitherto recorded, but 
unprocessed, symmetry, is processed similarly, and so on, until all relevant symmetries have 
been processed. 

Left at this, problems arise in exceptional situations: if more than two points at a time 
are co-linear across a form, for example. This can be overcome by having a variable input 
width to the network; and so on for other problems (which I refrain from mentioning, given 
the thrust of the chapter). While demonstrating feasibility through some choice of 
methodology, the more important consideration concerns the characteristics of such a network 
in terms of requirements for neurophysiology. They are: 

At least two complementary processing neurons per lineal input 

Logarithmic synaptic strengths  

Asymmetry minimising mechanism 

In the case of just two processing neurons some ‘hard-wiring’, or seeding, of synaptic 
strengths might be expected. This is not necessary for slightly more complex neural 
arrangements. If no hard-wiring is evident then the environment needs to include a variety of 
asymmetry classes in order for the symmetries to train properly: either that, or a large number 
of symmetries relative to asymmetries. The prospect of logarithmic synaptic strengths is 
consistent with the logarithmic responses of eyes, ears, and other sense organs to stimuli 
(Berne & Levy, 1993; Somjen, 1972, for example). And any asymmetry minimising 
mechanism is consistent with the ubiquitous fact of energy minimisation found in nature 
(Barton, 1997; Nordholm, 1997, for example). 

Neurophysiologic correlates 

Among the expositions made by Cook (2003) in a paper on spatial regularity among 
retinal neurons, two are relevant to the current problems. The first elucidates the subject of his 
paper:

Regular arrays of retinal neurons often extend dendrites in a competitive, territorial manner that 
minimizes the overlap of their dendritic fields and causes them to tessellate, ‘tiling’ the retina like the 
individual pieces…of a ceramic mosaic. (p. 463)

A tessellation of the field is a prerequisite for the above-described Voronoi drawing network, 
which forms an interesting coincidence with Cook’s observation. The second exposition 
relates to mammalian ganglion cell mosaics, which appear to come in inner and outer 
stratified pairs: 

The dominance of mammalian alpha and beta cells in early studies of mosaics, starting with those that 
first showed the importance of dendritic stratification… has created a general impression that mosaic-
forming neurons are typically organized into pairs of related ‘subtypes’ that differ only in their 
stratification and in giving opposite-sign physiological responses to visual stimuli… 

Thus, it is plausible that some of the order in these paired mosaics is created by a process that 
encourages neighboring multistratified cells to remodel their dendrites into opposite-sign pairs, and 
that each complementary pair of mosaics may have evolved by the developmental remolding of a 
single ancestral mosaic whose neurons remained bistratified or multistratified throughout life. (p. 472) 
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The above-described symmetry detecting networks with two hidden units have precisely this 
kind of complementary configuration; which forms an even more interesting coincidence with 
Cook’s observation.3

Levels of medial axes 

At this stage, another matter requires attention. It stems from the observation that 
peaks of brain activity are measured in correspondence with visual patterns showing 
symmetries (Di Gesù & Valenti, 1996; Oka, van Tonder, & Ejima, 2001). But the claim is 
that symmetry informs the detection process for any pattern. That medial axes are obtained—
via some equivalent to the Voronoi process—from a salient subset of surface descriptors, 
particularly those delineating the peripheral, is evident from the approach. Much interior 
detail results in many submedial delineations that preclude the medial belonging to the 
peripheral. Nonetheless some of the symmetries that show peaks in brain activity are 
augmented by a lot of interior detail: symmetries that are immediately evident in the sense of 
all medials due to salient subsets of surface descriptors. Hence level of brain activity could be 
related to ‘nesting levels’ of symmetries.  

Returning to the Voronoi network, the untenable situation is noted for Voronoi cells 
eventually resulting, in an overlapping manner, from all possible half distances between point 
pairs. (Point pairs, of course, represent the most basic symmetries, followed by triplets of 
points and, in degenerate cases, quadruplets of points.) The number of operations required to 
produce such overlapping cells would be prohibitive in any practical situation. However, 
salient subsets of pairings (which, of course, also account for triplets and quadruplets) result 
in medial axes and submedial delineations of import. 

If Voronoi tessellation is performed for a subset constituting a peripheral (or maybe a 
subset constituting a convex hull) separately, for example, as well as for a whole set, and then 
superposed, the result is a Voronoi tessellation on a Voronoi tessellation. This provides two 
levels of detail. Figure 6.15 is a sampling representation of a whole set (without 
superposition) that shows nearest neighbour, minimum spanning tree, remaining direct 
Delaunay triangulation, and indirect Delaunay triangulation in different colours, along with 
the Voronoi tessellation. (Note: just the left half of the face was sampled and the sampling 
points mirrored to the right before processing, hence the right is not fitted exactly over the 
pictures in Figures 6.16 and 6.17.) Figure 6.16, shows Voronoi tessellation performed for the 
peripheral, and Figure 6.17 shows the superposition. Minimum spanning trees are shown in 
different colours, along with corresponding Voronoi tessellations. In any such representation, 
edges may be sampled discretely at roughly equal nearest neighbour intervals that may be 
scaled differently for different edges. The representation allows much freedom in overall 
sampling scale and point location. 

3 This should not be confused with the on- and off-centre activated centre-surround responses of bipolar and 
ganglion cells in the retina, which indicate a difference in light intensities that remains constant with change in 
illumination. These do not come in complementary pairs in any way to which Cook refers. 
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Figure 6.15: Sampling representation of whole face set. The dots are 
approximately regularly spaced sampling points, of which the
coordinates are the only input to the computer program. All lines are 
output after processing. The Voronoi diagram is shown in white. Nearest 
neighbour edges are shown in green; remaining minimum spanning tree
is shown in red; remaining direct Delaunay edges are shown in yellow;
and indirect Delaunay edges are shown in black.
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Figure 6.16: Voronoi diagram due to peripheral face set is shown by 
thin lines and minimum spanning tree is shown by the heavy outline.

Figure 6.17: Superposition, with Voronoi diagram due to peripheral
face set shown in black and Voronoi diagram due to whole face set 
shown in yellow. Minimum spanning trees are shown in magenta.
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Just two superpositions of Voronoi tessellations, by way of example, may seem somewhat 
arbitrary. Groups of salient elements may be processed separately or together and then 
superposed, and could result in several superpositions of Voronoi tessellations 

Finally the relative neighbourhood graph is given in Figure 6.18. Note that features do 
not have a gap in their outlines as per the minimum spanning tree. Nor are there as many
edges as per Delaunay triangulation. Perhaps these edges may have a higher degree of 
pertinence among those of the Delaunay triangulation. Of course, all the measures described 
in the hierarchy are implicit in Delaunay triangulation. Of fundamental import for optimal
computing methodology for these measures is the philosophy of the Voronoi tessellation 
approach.

Figure 6.18: Relative neighbourhood graph of whole face set. 

Application to human visual perception 

According to Blum (1973), inventor of the medial axis transform, the medial axis 
appears to be of great help in the recognition of particular shapes. Somewhere in the visual 
processing mechanism, recognition of spatial relationships among components with 
hierarchical groupings needs to be established, not the least important being adjacent
component relationships. These relationships are inherent in Delaunay triangulation and the 
Voronoi diagram, also from which medial axes can be obtained. 

Medial and submedial axes relate to degrees of elongation or symmetry of a shape. 
They provide a compact description related to spatial arrangement, orientation, and size, 
which are shown in neurophysiological studies to be associated with the functional role of the 
primary visual cortex. See Lee, Mumford, Romero, and Lamme (1998), for example.
According to Marr (1982) ‘shape’ is the geometry of an object’s physical surface. Such 
geometry is underpinned by axes that are determined by salient geometrical characteristics of 
shape. Medial and submedial axes provide an object-based coordinate system, based on a 
hierarchy of component axes, for surrounding spatial arrangements.

The 2D medial and submedial axes obtained from the projection of a 3D body onto an 
image plane often have very similar forms to the projection of the medial and submedial axes 
of the 3D body onto the image plane. The axes articulate how components are put together, 
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and such relationships among components are relatively invariant to change in viewpoint, as 
well as to bending and moving states of articulated shapes. And medial axes form the basis 
for reconstruction of a 3D body by the medial axis transform, which has been hypothesized to 
have an analogue in visual processing. Again, see Lee, Mumford, Romero, and Lamme 
(1998).
 The effect of reflection symmetry on serial scrutiny has been shown by eye 
movement, or eye tracking, devices, which give a record of visual scanning behaviour by 
subjects presented with various visual stimuli. Locher and Nodine (1973), for example, 
observed that the eye movements of subjects who examined a randomized sequence of shapes 
were concentrated on one side of the axis of symmetry for symmetrical shapes. However, 
their eye movements did not exhibit such one sided scanning patterns for asymmetrical 
shapes. In a later, more refined, study they found that eye fixations were concentrated along a 
perceived axis of symmetry (Locher & Nodine, 1987). This approach might be advanced by a 
study that looks for scanning behaviour and fixation points consistent with the notion of 
submedial axes. However, because of visual span, which is broadened when expectation is 
satisfied and narrowed when further scrutiny is required, a multitude of minor submedials 
would not normally be expected to invoke saccades. Location of attention cannot be observed 
like that of gaze. Yet, there might be saccades associated with more dominant submedials; 
between the middle and peripheral of a figure, for example.  

Concluding remarks 

The problem of salience with regard to surface descriptors is a matter at hand for 
cognitive psychology. Artificial neural networks that employ competition through lateral 
inhibition are shown to simulate the property of the retina that highlights differences. This 
thesis investigates salience primarily based upon considerations of proximity; and any edge, 
graded change, or regularity, as might be detected by such a network, constitutes salience. 
These, approximated by some contiguity of points, permit the Voronoi process to produce 
symmetry descriptors in the form of relevant medials. The larger picture for salience, of 
course, includes considerations of where attention is directed, by what demands, and how 
narrow or broad the focus is: all associated with executive functions. 

Having demonstrated some possibilities, it might be reasonable to implicate operations 
of a neural character in much of what proceeds from the application of Voronoi, Delaunay 
explanations of previous chapters. Neural operations that produce a Voronoi-like partitioning 
of the field, which results in a geometry at all relevant spatial scales, could well serve the 
perception of organization inasmuch as the proximity principle is concerned. Such 
partitioning facilitates delineation of structure in the form of relations among visual features 
that determine which features are perceived as belonging together. 

Clearly not all can be researched in an experimental manner by one researcher given a 
limited time. Hence the theoretical orientation contained herein is necessarily accompanied by 
limited experimental support. The primary intent is to propose a theory, based upon somewhat 
novel methodology, for psychological consideration. 


	Chapter 1: Basic Structures and their Perceptual Relevance
	Section 1: A Computational Approach to Low-level Grouping in Visual Perception
	Chapter 2: Production of Structure by Joining Pairs of Points on a Surface
	Chapter 3: Nearest Neighbours
	Chapter 4: Interpretation of Ripley’s K-function in Spatial Point Pattern Analysis
	Chapter 5: Density Dependent Versus Density Free Analysis
	Chapter 6: Reflection Symmetry and Neural Networks

