Application of a “Glucose Release Index” to assess physical and chemical characteristics of cereal grains that may influence starch digestion and subsequent energy supply to monogastrics

Submitted by

Mohammad-Reza Zarrinkalam

This thesis is submitted to The University of Adelaide as a requirement for the degree of Doctor of Philosophy

Department of Animal Science
Faculty of Sciences
Roseworthy Campus, The University of Adelaide

August 2002
TABLE OF CONTENTS

LIST OF TABLES

LIST OF FIGURES

THESIS SUMMARY

DECLARATION

DEDICATION

ACKNOWLEDGMENTS

ABBREVIATIONS

1 CHAPTER 1 GENERAL INTRODUCTION

2 CHAPTER 2 LITERATURE REVIEW

3 CHAPTER 3 THE GLUCOSE RELEASE INDEX AS A PREDICTOR OF STARCH DIGESTIBILITY WITHIN AND BETWEEN CEREAL GRAIN TYPES

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33
3.3 RESULTS...33
3.3.1 Development and optimisation of an in vitro method for determining the osmotic in the GRI from starch in cereal grains..33
3.3.2 Comparison of the GRI within barley, sorghum and wheat..34
3.3.3 Comparison of the GRI between barley, sorghum and wheat..34
3.3.4 The relationship of the GRI to total, soluble and insoluble starch in barley, sorghum and wheat. ...34
3.4 DISCUSSION..41

4 CHAPTER 4 PHYSICAL AND CHEMICAL CHARACTERISTICS OF STARCH GRANULES AND THEIR RELATIONSHIP TO THE GLUCOSE RELEASE INDEX IN BARLEY, SORGHUM AND WHEAT...47

4.1 INTRODUCTION...43
4.2 MATERIALS AND METHODS......................................45
4.2.1 Sample selection and preparation..........................45
4.2.2 Enzymatic determination of starch granule surface area in barley, sorghum and wheat..................45
4.2.2.1 Sample preparation and staining45
4.2.2.2 Morphometric analysis...............................46
4.2.3 Analysis of starch viscoelasticity in barley, sorghum and wheat...16
4.2.4 Determining the amylase content and the amylase : amylpectin ratio in starch isolated from barley, sorghum and wheat...17
4.2.5 Statistical analysis..48
4.2.5.1 Analysis of variance for starch granule surface area parameters in cereal grains48
4.2.5.2 Regression analysis between the physical and chemical properties of starch granules and their GRI values...48
4.3 RESULTS...48
4.3.1 Physical characteristics of starch granules..............48
4.3.1.1 Differences in starch granules between barley cultivars ...49
4.3.1.2 Differences in starch granules between sorghum cultivars ..54
4.3.1.3 Differences in starch granules between wheat cultivars ...54
4.3.1.4 Differences in starch granule characteristics between barley, sorghum and wheat54
4.3.2 Viscoelasticity of starch isolated from barley, sorghum and wheat...55
4.3.3 Relationship of starch granule size and distribution to the viscoelasticity and amylose : amylopectin ratio in barley, sorghum and wheat..64
4.3.4 Relationship between the viscoelasticity, starch granules sizes and amylopectin ratio of starch with GRI of barley, sorghum and wheat..64
4.4 DISCUSSION..64
4.4.1 Within grain type..65
4.4.2 Between the grain types...66
4.4.3 Summary..67

5 CHAPTER 5 EXTRACT VISCOSITY AS A PREDICTOR OF ANTI-NUTRITIONAL PROPERTIES OF NON-STARCH POLYSACCHARIDES IN BARLEY, SORGHUM AND WHEAT FOR PIGS AND POULTRY..69

5.1 INTRODUCTION...69
5.2 MATERIALS AND METHODS......................................71
5.2.1 Sample selection and preparation..........................71
5.2.2 Determining the composition of NSP in barley, sorghum and wheat..................................71
5.2.3 Determining extract viscosity in barley, sorghum and wheat..71
5.2.4 Determining the composition of NSP in selected barley acid extract residues73
5.2.5 Statistical analysis..73
5.3 RESULTS...77
5.3.1 The chemical composition of soluble and insoluble NSP in barley, sorghum and wheat.............73
5.3.2 Relationship of the GRI with the soluble and insoluble NSP composition in barley, sorghum and wheat ..74
5.3.3 Extract viscosity and its relationship to the NSP composition in barley, sorghum and wheat79
5.3.4 The composition of soluble and insoluble NSP in the residues of acid extracts from milled barley, and their relationship to viscosity ..84
6 CHAPTER 6 INFLUENCE OF MILLING PROCESS AND KERNEL INTEGRITY OF BARLEY, SORGHUM AND WHEAT ON THEIR GLUCOSE RELEASE INDEX

6.1 INTRODUCTION

6.2 MATERIALS AND METHODS

6.2.1 Sample selection and preparation

6.2.2 Determining the GRI

6.2.3 Determining the grain hardness index

6.2.4 Statistical analysis

6.3 RESULTS

6.3.1 Effect of the type of milling process on the GRI

6.3.1.1 2mm-milling

6.3.1.2 Roller-milling

6.3.2 Grain hardness index of barley, sorghum and wheat and their relationship to GRI values

6.4 DISCUSSION

7 CHAPTER 7 INFLUENCE OF THE PROTEIN MATRIX ON GLUCOSE RELEASE INDEX IN BARLEY, SORGHUM AND WHEAT GRAINS

7.1 INTRODUCTION

7.2 MATERIALS AND METHODS

7.2.1 Sample selection

7.2.2 Determining the influence of protein matrix on the GRI from starch in cereal grains

7.2.3 Crude protein determination

7.2.4 Scanning electron microscopy of grains

7.2.5 Statistical analysis

7.3 RESULTS

7.3.1 Determining the GRI values in barley, sorghum and wheat with or without peptide pre-treatment

7.3.2 Scanning electron microscopy

7.4 DISCUSSION

8 CHAPTER EIGHT - THESIS DISCUSSION

8.1 STARCH-RELATED FACTORS

8.2 NON-STARCH RELATED FACTORS

8.2.1 Non-starch polysaccharides

8.2.2 Milling quality of grains

8.3 FUTURE RESEARCH DIRECTION

8.4 CONCLUSION

9 BIBLIOGRAPHY

10 APPENDICES

Appendix 1.1 The place of conduct, statistical antilies used and original purpose of the assays presented in the chapters of the current thesis

Appendix 3.1. The source, location and cultivars of the selected barley, sorghum and wheat samples sourced from the Premium Grains for Livestock Program

Appendix 3.2 The glucose release index of the selected barley, sorghum and wheat samples sourced from the Premium Grains for Livestock Program

Appendix 3.3 The proportion of dry matter, total starch, resistant starch and total digestible starch content

Data sourced from the Premium Grains for Livestock Program

Appendix 4.1 The physical characteristics of A-type and B-type starch granules in selected barley samples

Appendix 4.2 The physical characteristics of A-type and B-type starch granules in selected sorghum samples

Appendix 4.3 The physical characteristics of A-type and B-type starch granules in selected wheat samples

Appendix 4.4 The amylose/amylopectin ratio, and viscoelastic properties of starch in barley, sorghum and wheat samples. Data sourced from the Premium Grains for Livestock Program

Appendix 5.1 The percent of soluble and insoluble non starch polysaccharides (NSP) in barley samples based on dry matter (DM) of grains. Data sourced from the Premium Grains for Livestock Program
LIST OF TABLES

Table 1.1 The range of available energy values observed for common Australian food grains when feed to pigs and poultry (Hughes and Chox, 1999; van Batenfeld, 1999a)... 2
Table 3.1 The 27 treatments used for designing the glucose release index in vitro assay for cereal grains.. 12
Table 3.2 Analysis of variance of the glucose release index in two randomly selected wheat samples determined by varying temperature, incubation time and enzyme concentration. ... 35
Table 3.3 Analysis of variance of the glucose release index in two randomly selected wheat samples, assayed at temperature $c_2 = 50.40^\circ C$ with varying enzyme concentrations and incubation times... 36
Table 3.4 Differences in the glucose release index between the two randomly selected wheat samples (sample 1 and 2) determined for incubation times $(a1, a2, a3)$ and enzyme concentrations $(b1, b2, b3)$, at a constant temperature level of $c_2 (50.40^\circ C)^2$... 37
Table 4.1 Maximum and minimum values of starch granule physical characteristics in barley, sorghum and wheat.. 50
Table 4.2 Comparison of the physical characteristics of the measured 2000 starch granules from each meal sample of barley, sorghum and wheat (values with different superscripts differ significantly (pot(50))).. 59
Table 4.3 Maximum and minimum values of starch viscoelasticity in barley, sorghum and wheat... 60
Table 4.4 Linear regression analysis of the glucose release index values with the chemical and physical characteristics of starch granules in (a) barley, (b) sorghum and (c) wheat.. 63
Table 5.1 The range in insoluble and soluble non-starch polysaccharide (NSP) composition, in barley, sorghum and wheat samples... 77
Table 5.2 The relationship between the non-starch polysaccharide (NSP) composition of barley, sorghum and wheat with their glucose release index values (GRI).. 79
Table 5.3 The relationship between the non-starch polysaccharide (NSP) composition in barley and wheat and their viscosity values... 81
Table 5.4 Composition of non-starch polysaccharides (NSP) in the crude extract residues of barley.. 82
Table 7.1 Grain samples selected for investigating the influence of protein matrix on the glucose release index.. 105
Table 7.2 A comparative analysis of the glucose release index values (GRI) of starch in barley wheat and sorghum with (+) or without (-) protein pre-treatment (significant interactions between grain type and protein treatment) .. 105
Table 8.1 The relationship between physical and chemical characteristics of grains with their glucose release index, which is an indicator of starch digestibility of grains... 120
LIST OF FIGURES

Figure 2.1 Factors that may influence the available energy values of feed-grains to animals. 6
Figure 2.2 The hypothetical effects of variable starch digestibility on the ratio of animal enzyme to microbial enzyme digestion activities, and the consequence on the ratio of glucose and organic acid production in the small intestine of monogastric animals .. 11
Figure 2.3 Longitudinal section of a wheat grain. Reproduced from (Fomeranz, 1987). 15
Figure 2.4 Schematic representation of starch granule structure ... 20
Figure 3.1 The rate of starch hydrolysis in vitro from high and low AME wheat samples 28
Figure 3.2 A representative diagram showing a comparison of the rate of in vitro starch digestion that is typical when using the Megazyme™ total starch assay () and the desirable rate for determining differences in starch digestibility of grains (). 28
Figure 3.3 Flow diagram of the rapid digestible starch assay for cereal grains based on the modified Megazyme™ total digestible starch assay .. 31
Figure 3.4 The distribution of the glucose release index (GRI %) within the barley samples 38
Figure 3.5 The distribution of the glucose release index (GRI %) within the sorghum samples 38
Figure 3.6 The distribution of the glucose release index (GRI %) within the wheat samples 39
Figure 3.7 The distribution of the glucose release index (GRI %) across sorghum, barley and wheat samples ... 39
Figure 3.8 The relationship between the glucose release index (GRI) values of barley, sorghum and wheat with their corresponding total and digestible starch content. (P<0.05). .. 40
Figure 4.1 Surface area distribution pattern of A-type starch granules (SGs) (μm²) in the barley samples 51
Figure 4.2 Surface area distribution pattern of B-type starch granules (SGs) (μm²) in the barley samples 51
Figure 4.3 The total area of A-type starch granules (SGs) (μm²) x 1000) of the barley samples 52
Figure 4.4 The mean area of A-type starch granules (SGs) (μm²) of the barley samples 52
Figure 4.5 The number of B type : A-type starch granules (SGs) of the barley samples 53
Figure 4.6 Surface area distribution pattern of A-type starch granules (SGs) (μm²) in the sorghum samples . 53
Figure 4.7 Surface area distribution pattern of B-type starch granules (SGs) (μm²) in the sorghum samples . 54
Figure 4.8 The mean area of A-type starch granules (SGs) (μm²) of the sorghum samples 55
Figure 4.9 Surface area distribution pattern of A-type starch granules (SGs) (μm²) in the wheat samples 57
Figure 4.10 Surface area distribution pattern of B-type starch granules (SGs) (μm²) in the wheat samples 57
Figure 4.11 The mean area of A-type starch granules (SGs) (μm²) between wheat samples 58
Figure 4.12 The average peak viscosity of barley, sorghum and wheat grains ... 58
Figure 4.13 The average holding viscosity value of barley, sorghum and wheat grains 59
Figure 4.14 The average final viscosity value of barley, sorghum and wheat grains 61
Figure 4.15 The positive relationship between the mean area of A-type starch granules (SGs) and the percentage of amylose content for the wheat samples (dry matter basis =DMM) (P<0.05). 62
Figure 5.1 The relationship between total insoluble non-starch polysaccharides (NSP) (determined by using the standard a-xene adial method) and their glucose release index (GRI) values in sorghum. The two outlier samples (boxed in red) were removed prior to stepwise linear regression analysis 75
Figure 5.2 The positive linear relationship between the cellulose content and the glucose release index (GRI) in wheat .. 75
Figure 5.3 The range in viscosity values for water and acid extracts in barley grains 76
Figure 5.4 The range in viscosity values for water and acid extracts in sorghum 76
Figure 5.5 The range in the viscosity values for water and acid extracts in wheat 76
Figure 5.6 The average viscosity values of water and acid extracts in barley, sorghum and wheat 80
Figure 5.7 The positive trend between the viscosity values of the acid extract residue and the total non-starch polysaccharides NSP in barley (P<0.005). ... 83
Figure 5.8 The positive relationship between the viscosity values of the acid extract and the total insoluble non-starch polysaccharides NSP in barley (P<0.002). .. 83
Figure 6.1 The glucose release index values (GRI) values for selected roller-milled barley, sorghum and wheat cultivars, expressed as the proportional difference (% Δ) between 0.5mm-nailed GRI values. 93
Figure 6.2 The glucose release index values (GRI) values for selected roller-milled barley, sorghum and wheat cultivars, expressed as the proportional difference (% Δ) between 0.5mm-nailed GRI values. 93
Figure 6.3 The average comparison of grain hardness index values within the grain types (barley = 18, sorghum = 18 and wheat = 19) ... 94
Figure 6.4 The linear positive relationship between the proportional %GRI values for the roller milled samples in comparison to their corresponding %GRI values for 0.5mm (%ΔGRI) with their
hardness index values (a=barley, n=17, P<0.05), (b= sorghum, n=16, P<0.05) and (c=wheat,
P=0.05, n=10).. 96
Figure 6.5 The linear positive relationship between the proportional %GRI values for the 2mm milled
samples in comparison to their corresponding %GRI values for 0.5mm (%&GRI) with their
hardness index values (a=barley, n=13, P<0.002), (b=sorghum, n=16, P=0.05) and (c=wheat,
P=0.05, n=10).. 97
Figure 7.1 A flow diagram of the glucose release index assay for cereal grains pre-treated with pepsin’ 106
Figure 7.2 A comparison of the glucose release index (GRI) with or without pepsin treatment of barley,
wheat and sorghum.. 108
Figure 7.3 A comparison of the difference in the glucose release index (GRI) values in barley, sorghum and
wheat treated with and without pepsin to the crude protein content (%) .. 109
Figure 7.4 Scanning electron microscopy of barley, sorghum and wheat showing endosperm cells filled with
starch granules.. 110
Figure 7.5 Scanning electron microscopy of the endosperm region in barley, prior to and following pepsin
digestion.. 111
Figure 7.6 Scanning electron microscopy of the endosperm region in wheat, prior to and following pepsin
digestion.. 112
Figure 7.7 Scanning electron microscopy of the continuous endosperm region in sorghum, prior to and
following pepsin digestion.. 113
Figure 7.8 Scanning electron microscopy of the floury endosperm region in sorghum, prior to and following
pepsin digestion.. 114
Figure 7.9 Pores on the surface of starch granules in the endosperm region of sorghum following digestion by
pepsin.. 115
Summary

In the pig and poultry production industries, energy forms the largest and the greatest cost pressure when a diet is formulated. In Australia, cereal grains such as barley, sorghum, and wheat are the main dietary energy sources, comprising more than 60% of the diet in many cases. Traditionally, during diet formulation, the energy value of a grain has been represented by a single figure for that particular grain type. However, several studies have indicated that the energy availability from different grains fed to pigs and poultry varies significantly even within one grain cultivar. Given these findings, the use of a single value to represent the energy of each grain type during diet formulation, can lead to inefficient utilization of dietary resources by animals, and thus decreased animal performance and consequently, a decrease in profit for the pig and poultry production industries.

Thus, there is an opportunity to develop a rapid and reproducible in vitro assay to accurately assess the available energy values and nutritional quality of each grain type. In order to develop such an assay, further understanding of factors that affect the available energy values of grains need to be explored.

Starch, which is hydrolysed into glucose by animals, is the most abundant energy component in cereal grains, and there is evidence suggesting that variations in digestible or metabolisable energy values may be related to the extent of starch digestibility. For example in poultry, variations in the in vitro digestibility of starch between several wheat cultivars have been shown to correlate with their in vivo available metabolisable energy values. However, it is not known to what extent starch digestibility varies between cultivars of other grain types such as barley and sorghum.

There is an increasing body of evidence suggesting that differences in the physical and chemical properties of cereal grains may play an important role in influencing starch digestibility and, consequently, animal performance. Thus, the general hypothesis of this study was that starch digestibility varies between barley, sorghum and wheat, and between cultivars within grain types and this is related to specific chemical and physical characteristics of the grains. To examine this, the following issues were investigated using 18 barley, 15 sorghum and 10 wheat cultivars: 1) an in vitro glucose release index (GRI) assay was developed to assess starch digestibility within and between the cereal grain types and, 2) the GRI was correlated to both starch-related (e.g., starch content, starch granule size, the amylose to amylopectin ratio, starch gelatinisation properties) and non-starch-related (e.g., non-starch polysaccharide composition, kernel hardness) the presence of
protein matrix and milling quality) physical/chemical characteristics within and between the cereal grains.

Results revealed significant variations in the GRI both between grains and within a given grain type. The GRI values ranged between 27 - 45%, 25 - 54% and 32 - 53% in barley, sorghum and wheat respectively. Correlation analysis revealed that the GRI in barley, sorghum and wheat was influenced by the physical and chemical characteristics of starch- and non-starch-related grain properties, although the type of characteristic influencing GRI was specific to the grain type. In barley, the ratio of amyllose to amylopectin, starch gelatinisation and kernel hardness influenced the GRI. In sorghum, the GRI was influenced by the ratio of amyllose to amylopectin, the presence of a protein matrix surrounding starch granules and kernel hardness. Finally in wheat, the presence of protein matrix and milling quality influenced the GRI. It was also shown that the extract viscosity of grains within barley and wheat, but not sorghum, varied significantly.

In conclusion, this study 1) indicated that the GRI may be influenced by some physical and chemical characteristics of cereal grains, and that these characteristics are specific to the type of grain, and 2) identified that future work should establish the relationship between GRI in vivo starch digestion and absorption of cereal grains.

The physical and chemical characteristics that may influence starch digestion are discussed in relation to their potential physiological effects on energy digestion, and utilisation in animals. The information generated will provide a basis for future studies that will ultimately assist in the design of in vitro assays to predict energy availability from barley, sorghum and wheat grains fed to pigs and poultry, and contribute to the more efficient use of grains in monogastric production systems.
Declaration

This work contains no material which has been accepted for the award of any other degree or diploma in any University or other Tertiary Institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent for this copy of my thesis, when deposited in the University Library, to being available for loan and photocopying.

Mohammad-Reza ZARRINKALAM

Date: 27/11/02
Dedication

This thesis is dedicated to my parents, Mr Hossien Zarrinkalan and Mrs Zahra Zarrindokht Pourjalali for believing in my dreams and giving me encouragement to pursue them.

And to my wife Krystyna, for her love and believing in me.
Acknowledgments

I would like thank God, who has given me the courage to take risks in my life.

The current work could not be achieved without the assistance and guidance of a large number of people. I have been extremely fortunate to have access to an extraordinary team of supervisors during my PhD project and I would like to express my warmest thanks to these people as follows:

Dr David Tivey, Lecturer, The University of Adelaide, who showed me the lateral way of thinking and always gave me confidence by saying “if I can do it, you can too”

Dr Robert van Barneveld, Barneveld Nutrition, and supervisor of the subprogram No.3 “Rapid and Objective Analytical Tests” of the Premium Grains for Livestock Program, who showed me determination through his “just do it!” comments and that the sky is the limit.

Dr Dean Revell, Senior Lecturer, The University of Adelaide, and Associate Professor Mingan Choct, Lecturer, New England University, who taught me the scientific way of thinking and writing and for always being there for me.

Dr John Black, John Black Consulting, who encouraged me to look beyond my boundary “seeing the bigger picture”.

I would also like to show gratitude to Australian Pork Limited (APL) for their financial support and to the GRDC both for their financial support and allowing me to use their data for my PhD project. Many thank go to Ms Michelle Lorimer for her assistance in statistical analysis and Mrs Margaret Cargill for her kind help in editing my literature review. My thanks also go to Ms Helen Colin and Dr Meredith Woodwork for their assistance in the microscopy work. I would also like to thank the people in CEMMSA and the School of Rural Sciences and Agriculture at the University of New England, for their assistance in my experiments. Thank you to Aventis Co. and the SARDI grain quality laboratory for generously allowing me to use their facility, equipment and their expertise. I would also like to show gratitude to Australian Pork Limited (APL) for their financial support and to the Grain Research and Development Corporation (GRDC) both for their financial support and allowing me to use their data for my PhD project. To the APL postgraduate group (especially Mr Ben Gursansky and Dr. Mike Taverner) thank you for all your support. I would like to also thank my fellow post-graduate students in the Animal Science Department, for your friendship, especially Mr Bob Hughes (Uncle Bob) for his advice and encouragement during my PhD. My sincere thanks to the people in SARDI and The University of Adelaide, especially the pig and poultry research group, Jurek (Polish
Australian friend), Sharon, Kylee, Stove, Geoff, Derek, Peter, Evelyn, Sandy and Michael for their friendship and support.

I would like to thank my family in Australia and Iran for their immeasurable support during my PhD. Finally I would like to thank my wife, Krystyna, for her editing, love and support that made the difficult times through my PhD journey seem easier.
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AME</td>
<td>apparent metabolisable energy</td>
</tr>
<tr>
<td>DE</td>
<td>digestible energy</td>
</tr>
<tr>
<td>GRI</td>
<td>glucose release index</td>
</tr>
<tr>
<td>LSD</td>
<td>least significant differences</td>
</tr>
<tr>
<td>ME</td>
<td>metabolisable energy</td>
</tr>
<tr>
<td>MJ</td>
<td>megajoule</td>
</tr>
<tr>
<td>MPa.s</td>
<td>millipascal seconds</td>
</tr>
<tr>
<td>NSP</td>
<td>non-starch polysaccharides</td>
</tr>
<tr>
<td>RVA</td>
<td>rapid visco analyser</td>
</tr>
<tr>
<td>RVU</td>
<td>rapid visco analyser units</td>
</tr>
<tr>
<td>SGs</td>
<td>Starch granules</td>
</tr>
</tbody>
</table>