Lumbar Intervertebral Disc Infection: Pathology, Prevention and Treatment

Rebecca Walters, B. Biomed. Sc.

Enrolled through the Department of Pathology, Faculty of Health Sciences, The University of Adelaide.

Research conducted at The Adelaide Centre for Spinal Research, Division of Tissue Pathology, Institute of Medical and Veterinary Science, Adelaide.

A thesis submitted for the degree of Doctor of Philosophy by Publication in the Faculty of Health Sciences, The University of Adelaide.

March 2006
Table of Contents

TABLE OF CONTENTS.. 2
ABSTRACT ... 3
DECLARATION ... 5
ACKNOWLEDGMENTS ... 6

CHAPTER 1: INTRODUCTION ... 7
 1.1 Discitis ... 7
 1.2 Symptoms, signs and investigations to diagnose iatrogenic discitis 9
 1.3 Current theories for treating discitis ... 10
 1.4 Current theories for preventing discitis .. 11
 1.5 Thesis Objectives .. 13
 1.6 References .. 14

CHAPTER 2: EFFECTS OF INTERVERTEBRAL DISC INFECTION ON THE DEVELOPING OVINE SPINE ... 22
 2.1 Statement of authorship .. 22
 2.2 Title page for published manuscript ... 23

CHAPTER 3: THERAPEUTIC USE OF CEPHAZOLIN TO PREVENT COMPLICATIONS OF SPINE SURGERY ... 35
 3.1 Statement of authorship .. 35
 3.2 Title page for published manuscript ... 36

CHAPTER 4: PROPHYLACTIC CEPHAZOLIN TO PREVENT DISCITIS IN AN OVINE MODEL ... 52
 4.1 Statement of authorship .. 52
 4.2 Title page for published manuscript ... 53

CHAPTER 5: PREVENTING AND TREATING DISCITIS: CEPHAZOLIN PENETRATION IN OVINE LUMBAR INTERVERTEBRAL DISC ... 69
 5.1 Statement of authorship .. 69
 5.2 Title page for published manuscript ... 70

CHAPTER 6: PENETRATION OF CEPHAZOLIN IN HUMAN LUMBAR INTERVERTEBRAL DISC .. 85
 6.1 Statement of authorship .. 85
 6.2 Title page for published manuscript ... 86

CHAPTER 7: FINAL DISCUSSION ... 100
 7.1 Summary ... 100
 7.2 Future Directions ... 103
 7.3 Conclusion ... 104
 7.4 References .. 105

CHAPTER 8: AMENDMENTS ... 107
 8.1 Structure and composition of the intervertebral disc ... 107
 8.2 Comparison of the human and sheep disc ... 108
 8.3 Dosing guidelines ... 109
 8.4 Chapter Amendments .. 110
 8.5 References .. 116
Abstract

Discitis is a potential complication of any open or percutaneous spinal procedure which involves entry into the intervertebral disc. The infection initiates an inflammatory response which leads to endplate rupture. Although there are variations in the severity of symptoms, the main feature of discitis is severe back pain which is not relieved by rest. The infection may spontaneously resolve over time although incapacitating back pain may persist for many months. In some cases serious complications result from the spread of infection to the adjacent vertebral bodies and over time osteomyelitis will develop with resultant bone destruction and collapse. The prognosis for many patients with discitis is poor with continual disabling back pain, prolonged absence from gainful employment and inability to return to daily living activities.

Clinical and experimental evidence now supports the prophylactic use of a suitable antibiotic to prevent discitis. In South Australia cephazolin is the antibiotic of choice to prevent or treat discitis due to *Staphylococcus* spp. While cephazolin has been shown to prevent discitis after inoculation with *Staphylococcus* spp. it is not universally accepted. Uncertainty exists regarding the ability of the antibiotic to enter the disc, and if it is effective in preventing and treating discitis. This is further complicated by the lack of suitable methods for detecting and measuring the concentration of cephazolin in the disc.

An experimental ovine model was used to investigate (a) the natural progression of discitis in the growing lumbar spine; (b) a technique to detect and measure the concentration of cephazolin in the disc; (c) the effect of prophylaxis when dose and time of administration of cephazolin was varied; (d) the effect of parenteral cephazolin after discitis was established and (e) the influence of health and age of the disc on prophylactic and parenteral treatment with cephazolin. In a clinical study the concentration of cephazolin was measured in degenerate human disc tissue to determine if therapeutic concentrations were achieved.
The ovine studies showed that discitis had no significant effect on the development of the growing lumbar spine after one year although infection was associated with reduced disc area and height. Preventing discitis with cephazolin was reasonably successful, regardless of age and health of the disc. Timing of cephazolin administration was crucial to prevent discitis in immature animals.

A high-performance liquid chromatography technique was used to measure the concentration of cephazolin in the disc. The greatest concentration of cephazolin in ovine discs was achieved 15 minutes after a bolus dose of intravenous antibiotic was administered, although detectable levels were measured for a further 2 hours. The concentration of cephazolin was not uniform across the disc with greater concentrations in the outer disc compared to the inner disc. Although there were measurable levels of cephazolin in these discs, it was ineffective at treating discitis once established. In the clinical study detectable levels of cephazolin were recovered in human discs for more than 2 hours after administering a 1-g bolus dose. The concentration of cephazolin peaked in the human discs between 37 and 53 minutes, but in only half of the discs was the concentration of cephazolin considered therapeutic against *Staphylococcus aureus*.

While discitis may spontaneously resolve over time, the infected disc does not recover to its original form. Furthermore, parenteral cephazolin was ineffective at preventing endplate destruction once an intradiscal inoculum was established. While this study proved cephazolin is able to enter the disc and provide reasonable protection against infection, it appears that discitis cannot be completely abolished. The timing of prophylaxis remains a critical factor to achieve therapeutic concentrations of cephazolin in the disc. Due to the serious complications that result from discitis this study supports the use of prophylactic antibiotic administered at an optimal time before the disc is violated during any spinal procedure.
Declaration

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution. To the best of my knowledge and belief this work contains no material previously published or written by another person, except where due reference has been made.

I give consent for this copy of my thesis, to be made available for loan and photocopying. The author acknowledges that copyright of published works contained within this thesis resides with the copyright holders of those works.

Rebecca Walters

March 2006
Acknowledgments

I gratefully acknowledge my supervisors Dr Robert Moore and Professor Robert Fraser for their supervision, advice, support and assistance with editing throughout my candidature.

I would also like to acknowledge the support from the staff at The Adelaide Centre for Spinal Research, Institute of Medical and Veterinary Science, where the majority of this work was carried out.

Many thanks to the staff at the Veterinary Services Division, Infectious Diseases Laboratories and Division of Biochemistry, Institute of Medical and Veterinary Science for their assistance during my research.

Special thanks to Mr Ted Horgan and staff at the Royal Perth Hospital for assistance with the biochemical assay, Dr Ian Parkinson for statistical support, Mr Lance Mickan for providing bacterial suspensions, Professor Barrie Vernon-Roberts for assistance with editing and for his enthusiasm for research, Dr David Hall and Dr Chris Cain for their support and advice on clinical issues, Dr Razmi Rahmat and Dr Yoshio Shimamura for their surgical assistance and international jokes and Dr Felicity Johnson for assistance with proof reading.

I would also like to thank the Faculty of Health Sciences, The University of Adelaide for awarding me a Postgraduate Travelling Fellowship and DePuy Spine for awarding me the DePuy Spinal Fellowship. I also acknowledge the support of Mayne Pharma Pty Ltd., Australia for supplying antibiotics for the research studies.

I am very appreciative of the funding and support I received to travel and present this research at international and national meetings including the International Society for the Study of the Lumbar Spine and the Spine Society of Australia.

Finally I would like to thank the Department of Pathology, The University of Adelaide for allowing me to conduct my PhD with them and enabling me to submit my thesis by publication.